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Problem setup

We are given a set Σ of n spheres in Ed, such that ni spheres
have radius ρi, where 1 ≤ i ≤ m and 1 ≤ m ≤ n.

The radii are pairwise distinct, i.e., ρi 6= ρj for i 6= j.

The dimension d is considered fixed.

Problem

What is the worst-case combinatorial complexity of the convex hull
CHd(Σ) of Σ, when m is fixed?

Was posed as an open problem by [Boissonnat & K. 2003]

The problem is interesting only for odd dimensions.
Throughout the talk d ≥ 3, and d odd.
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Previous/Related work – Worst-case complexities

For a point set P in Ed the worst-case complexity of CHd(P )
is Θ(nb

d
2
c). Same for spheres with same radius.

[Aurenhammer 1987]: The worst-case complexity of CHd(Σ)
is O(nd

d
2
e).

Reduction to power diagram in Ed+1.

[Boissonnat et al. 1996]: Showed that CH3(Σ) = Ω(n2).

[Boissonnat & K. 2003]: Showed that CHd(Σ) = Ω(nd
d
2
e) for

all d ≥ 3.

Correspondence between Möbius diagrams in Ed−1 with
additively weighted Voronoi cells in Ed and convex hulls of
spheres in Ed (via inversions).

Worst-case bound for Möbius diagrams in Ed−1 is Θ(nd
d
2 e).
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Previous/Related work – Worst-case optimal algorithms

[Chazelle 1993]: The convex hull of n points in Ed, d ≥ 2, can

be computed in worst-case optimal O(nb
d
2
c + n log n) time.

Worst-case optimal algorithms already existed for d = 2, 3.

[Boissonnat et al. 1996]: Presented a O(nd
d
2
e + n log n) time

algorithm: worst-case optimal only for even dimensions (at
that point).

Lifting map from spheres in Ed to points in Ed+1, using the
radius as the last coordinate.

[Boissonnat & K. 2003]: Due to the lower bound of Ω(nd
d
2
e)

for CHd(Σ), the algorithm in [Boissonnat et al. 1996] is
actually worst-case optimal for all d ≥ 2.

OrbiCG/Triangles Workshop on CG, December 9, 2010 Convex hulls of spheres/parallel polytopes 5 / 42



Introduction
Parallel polytopes

Convex hull of spheres
Summary, extensions & open problems

Problem setup
Previous work & problem history
Our results

Previous/Related work – Output-sensitive algorithms

Many output-sensitive algorithms for the convex hull of
points. We mention those related to this presentation:

[Seidel 1986]: Uses the notion of polytopal shellings to
compute CHd(P ) in O(n2 + f log n) time.
[Matoušek & Schwarzkopf 1992]: Improved the n2 part of

Seidel’s algorithm to get O(n2−2/(b d
2 c+1)+ε + f log n).

[Chan, Snoeyink & Yap 1997]: Works in 4D and has running
time O((n+ f) log2 f).
Many more algorithms for 2D and 3D, some of which are
optimal (in the output-sensitive sense).

Very few output-sensitive algorithms for spheres:

[Nielsen & Yvinec 1998]: Computes CH2(Σ) in optimal
O(n log f) time.
[Boissonnat, Cérézo & Duquesne 1992]: Gift-wrapping
algorithm for computing CH3(Σ); runs in O(nf) time.
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Our results – Some definitions

We have a set of spheres Σ consisting of n spheres, such that
ni ≤ n spheres have radius ρi, where 1 ≤ i ≤ m and m ≥ 2 and m
is fixed.

Definition

We say that ρλ dominates Σ if nλ = Θ(n).

Definition

We say that Σ is uniquely dominated if, for some λ, nλ = Θ(n),
and ni = o(n) for all i 6= λ.

Definition

We say that Σ is strongly dominated if, for some λ, nλ = Θ(n),
and ni = O(1)) for all i 6= λ.
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Our results – Qualitative point-of-view

We use the term generic worst-case complexity to refer to the
worst-case complexity of CHd(Σ) where there is no restriction on
the number of distinct radii in Σ.

Result

If Σ is dominated by at least two radii, the worst-case complexity of
CHd(Σ) matches the generic worst-case complexity.

Result

If Σ is uniquely dominated, the worst-case complexity of CHd(Σ) is
asymptotically smaller than the generic worst-case complexity.

Result

If Σ is strongly dominated, the worst-case complexity of CHd(Σ)
matches the worst-case complexity of convex hulls of points.
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Our results – Quantitative point-of-view

Theorem

The worst-case complexity of CHd(Σ), for m fixed, is

Θ(
∑

1≤i 6=j≤m nin
b d

2
c

j ).

Result

If Σ is dominated by at least two radii, the complexity of CHd(Σ)
is Θ(nd

d
2
e).

Result

If Σ is uniquely dominated, the complexity of CHd(Σ) is o(nd
d
2
e).

Result

If Σ is strongly dominated, the complexity of CHd(Σ) is Θ(nb
d
2
c).
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Our results – Methodology

For the upper bound we reduce the sphere convex hull problem to
the problem of computing the complexity of the convex hull of m
d-polytopes lying on m parallel hyperplanes of Ed+1.

Theorem

Let P be a set of m d-polytopes {P1,P2, . . . ,Pm} lying on m parallel
hyperplanes of Ed+1. The worst-case complexity of CHd+1(P) is

O(
∑

1≤i 6=j≤m nin
b d

2 c
j ), where ni = f0(Pi), 1 ≤ i ≤ m.

For the lower bound we first construct a set Σ of Θ(n1 +n2) spheres

in Ed such that the complexity of CHd(Σ) is Ω(n1n
b d

2 c
2 + n2n

b d
2 c

1 ).
Then we generalize this construction for m ≥ 3.

This construction also gives a matching lower bound for the parallel
polytope convex hull problem.
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Definitions

Polytope P: the convex hull of a set of points P

Face of P: intersection of P with at least one supporting
hyperplane

k-face: k-dimensional face

trivial face: the unique face of dimension d (P)

proper faces: faces of dimension at most d− 1
d-polytope: a polytope whose trivial face is d-dimensional

vertices: 0-faces; edges: 1-faces

facets: (d− 1)-faces; ridges: (d− 2)-faces;

simplicial polytope: all proper faces are simplices

fk(P): number of k-faces of P
f-vector: (f−1(P), f0(P), . . . , fd−1(P))

f−1(P) = 1 (empty set)
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Definitions (cont.)

For simplicial d-polytopes we can define the h-vector:

(h0(P), h1(P), . . . , hd(P)),

where

hk(P) =
k∑
i=0

(−1)k−i
(
d− i
d− k

)
fi−1(P).

hk(P): number of facets in a shelling of P whose restriction
has size k.

The elements of the f-vector determine the h-vector and vice
versa.
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Dehn-Sommerville equations

The element of the f-vector are linearly dependent.

They satisfy the so called Dehn-Sommerville equations:

hk(P) = hd−k(P), 0 ≤ k ≤ d.

Important implication: if we know the face numbers fk(P),
0 ≤ k ≤ bd2c − 1, we can determine the remaining face

numbers fk(P), bd2c ≤ k ≤ d− 1.
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Simplicial vs. non-simplicial polytopes

For any non-simplicial d-polytope there exists a (nearby) simplicial
polytope with the same number of vertices, and with at least as
many faces as the non-simplicial polytope:

Theorem ([Klee 1964],[McMullen 1970])

Let P be a d-polytope.

1 The d-polytope P ′ we obtain by pulling a vertex of P has the
same number of vertices with P, and fk(P) ≤ fk(P ′) for all
1 ≤ k ≤ d− 1.

2 The d-polytope P ′ we obtain by successively pulling each of
the vertices of P is simplicial, has the same number of
vertices with P, and fk(P) ≤ fk(P ′) for all 1 ≤ k ≤ d− 1.
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Adaptation to parallel polytopes

Lemma

Let P = {P1,P2, . . . ,Pm} be a set of m ≥ 2 d-polytopes lying on
m parallel hyperplanes Π1,Π2, . . . ,Πm of Ed+1, respectively,
where Πj is above Πi for all j > i. Let Pi be the vertex set of Pi,
1 ≤ i ≤ m, P = P1 ∪ P2 . . . ∪ Pm, and P = CHd+1(P ). The
points in P can be perturbed in such a way that:

1 the points of Pi remain in Πi, 1 ≤ i ≤ m,

2 all the faces of P ′, except possibly the facets P ′1 and P ′m, are
simplices, and,

3 fk(P) ≤ fk(P ′) for all 1 ≤ k ≤ d,

where P ′ is the polytope we obtain after having perturbed the
vertices of P in P .
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Adaptation to parallel polytopes – Sketch of Proof

First we pull the vertices of P1 so that P1 becomes simplicial
(we consider P1 embedded in Ed).

Secondly we pull the vertices of Pm so that Pm becomes
simplicial (we consider Pm embedded in Ed).

Finally, for each i, 2 ≤ i ≤ m− 1, we pull the vertices of Pi in
P, so that all faces of P, except P1 and Pm, become
simplicial.

4 At each step above the number of vertices of the new
polytope is the same as the old polytope.

4 At each step above the number of faces of the new polytope
is at least as big as the number of faces of the old polytope.
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The setting

P1

P2

P3

P4

P̃

F

L

By means of the lemma, we
need only consider polytopes P
such that P is simplicial,
except possibly for its two
facets P1 and Pm.

Π̃: hyperplane parallel and
between Πm−1 and Πm.

F : set of faces of P with
non-empty intersection with Π̃.

For each k-face F ∈ F , at least
one point comes from Pm,
whereas the remaining k points
come from P1, . . . ,Pm−1.
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The “easy” upper bound

Let A = (α1 . . . , αm), B = (β1, . . . , βm) ∈ Nm. Define: |A| =
Pm
i=1 αi, and

A 4 B, iff αi ≤ βi, 1 ≤ i ≤ m.

Theorem

The number of k-faces of F is bounded from above as follows:

fk(F) ≤
X

(0,...,0,1)4A4(k,...,k)
|A|=k+1

mY
i=1

 
f0(Pi)
αi

!
, 1 ≤ k ≤ d.

Proof.

A k-face F ∈ F is defined by k + 1 vertices of P, where at least one vertex
comes from Pm, whereas the remaining vertices are vertices of P1, . . . ,Pm−1.
Let αi be the number of vertices of F from Pi. We have: 0 ≤ αi ≤ k for
1 ≤ i ≤ m− 1, 1 ≤ αm ≤ k, and

Pm
i=1 αi = k + 1. The maximum number of

possible (αi − 1)-faces of Pi is
`
f0(Pi)
αi

´
. Hence, the maximum possible number

of k-faces of F is
Qm
i=1

`
f0(Pi)
αi

´
. Summing over all possible values for the αi’s

we get the desired expression.

Corollary

Let ni = f0(Pi), 1 ≤ i ≤ m. The following asymptotic bounds hold:

fk(F) = O(nkm

m−1X
i=1

ni + nm

m−1X
i=1

nki ), 1 ≤ k ≤ b d
2
c.
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Defining an auxilliary polytope

Call C the polytopal complex with facets the facets of F .

Call L the faces of P not in Pm or F . Call ∂L = C ∩ L.

Call ∂Pm the boundary complex of Pm.

Define the point set Q so as to consist of the points of Pm,
∂L and two additional points y and z.

y is below Π1 and visible by the vertices of P1 only.
z is below Πm and visible by the vertices of Pm only.

Define Q = CHd+1(Q); ; Q is simplicial (d+ 1)-polytope.

∂L is the link of y in Q.

∂Pm is the link of z in Q.
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Relations on faces

1 For a vertex v ∈ Q, call Sv its star. Then:

fk(Q) = fk(F) + fk(Sy) + fk(Sz), 0 ≤ k ≤ d,
where f0(F) = 0.

2 For the faces of Sz and ∂Pm, we have for 0 ≤ k ≤ d:

fk(Sz) = fk(∂Pm) + fk−1(∂Pm)

= O(n
b d

2
c

m )

where f−1(∂Pm) = 1 and fd(∂Pm) = 0.

3 For the faces of Sy and ∂L, we have for 0 ≤ k ≤ d:

fk(Sy) = fk(∂L)+fk−1(∂L)

= O((
m−1∑
i=1

ni)b
d
2
c) = O(

m−1∑
i=1

n
b d

2
c

i )

where f−1(∂L) = 1 and fd(∂L) = 0.
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Using the Dehn-Sommerville equations

Combining the bounds for fk(F), fk(Sy) and fk(Sz), for
0 ≤ k ≤ bd2c, we get:

fk(Q) = O(n
b d

2
c

m

m−1∑
i=1

ni + nm

m−1∑
i=1

n
b d

2
c

i ), 0 ≤ k ≤ bd2c.

Hence for the elements of the h-vector we have:

hk(Q) =
k∑
i=0

(−1)k−i
(
d+ 1− i
d+ 1− k

)
fi−1(Q), 0 ≤ k ≤ d+ 1

= O(n
b d

2
c

m

m−1∑
i=1

ni + nm

m−1∑
i=1

n
b d

2
c

i ), 0 ≤ k ≤ bd+1
2 c
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Using the Dehn-Sommerville equations (cont.)

Using the Dehn-Sommerville equations we get for
bd+1

2 c ≤ k ≤ d+ 1:

hk(Q) = hd+1−k(Q) = O(n
b d

2
c

m

m−1∑
i=1

ni + nm

m−1∑
i=1

n
b d

2
c

i )

Writing the f-vector in terms of the h-vector we have:

fk−1(Q) =
k∑
i=0

(
d+ 1− i
k − i

)
hi(Q), 0 ≤ k ≤ d

= O(n
b d

2
c

m

m−1∑
i=1

ni + nm

m−1∑
i=1

n
b d

2
c

i ), 0 ≤ k ≤ d.
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hk(Q) = hd+1−k(Q) = O(n
b d

2
c

m

m−1∑
i=1

ni + nm

m−1∑
i=1

n
b d

2
c

i )

Writing the f-vector in terms of the h-vector we have:

fk−1(Q) =
k∑
i=0

(
d+ 1− i
k − i

)
hi(Q), 0 ≤ k ≤ d

= O(n
b d

2
c

m

m−1∑
i=1

ni + nm

m−1∑
i=1

n
b d

2
c

i ), 0 ≤ k ≤ d.
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Definitions & preliminaries
Upper bound on number of faces cut by a hyperplane
Inductive proof for upper bound

The complexity of CHd+1(P)

P1

P2

P3

P4

P̃

F

L

Theorem

Let P = {P1,P2, . . . ,Pm} be a
set of a fixed number of m ≥ 2
parallel d-polytopes, where d ≥ 3
and d is odd. The worst-case
complexity of CHd+1(P) is

O(
∑

1≤i 6=j≤m
nin
b d

2
c

j ),

where ni = f0(Pi), 1 ≤ i ≤ m.
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Inductive proof for upper bound

The complexity of CHd+1(P) – Inductive proof

P1

P2

P3

P4

P̃

F

L

Proof.

Let T (m) be the worst-case complexity of
CHd+1(P).
The set of faces of P is the disjoint union of L, F and
the set of faces of Pm. The faces in L are also faces of
CHd+1(P \ {Pm}), which implies that the
complexity of L is at most T (m− 1). Therefore, we
have:

T (m) ≤ T (m− 1) + O(n
b d
2 c

m )

+ O(n
b d
2 c

m

m−1X
i=1

ni + nm

m−1X
i=1

n
b d
2 c

i )

; T (m) ≤ c(
X

1≤i6=j≤m

nin
b d
2 c

j +

mX
i=1

n
b d
2 c

i )
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Parallel polytopes

Convex hull of spheres
Summary, extensions & open problems

Upper bound
Lower bound for two radii
Lower bound for at least three radii

Context

Σ: set of n spheres in Ed

The radii of the spheres in Σ take m distinct values:
ρ1 < ρ2 < . . . < ρm

CHd(Σ): convex hull of Σ
Face of circularity ` of CHd(Σ): maximal connected portion
of the boundary of CHd(Σ), where the supporting
hyperplanes are tangent to a given set of (d− `) spheres

ni: number of spheres in Σ with radius ρi

OrbiCG/Triangles Workshop on CG, December 9, 2010 Convex hulls of spheres/parallel polytopes 25 / 42



Introduction
Parallel polytopes

Convex hull of spheres
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Upper bound
Lower bound for two radii
Lower bound for at least three radii

Lifting map

Let H0 be the hyperplane {xd+1 = 0} of Ed+1.

Map the sphere σk = (ck, ρk) to the point
pk = (ck, ρk) ∈ Ed+1.

Let P = {p1, p2, . . . , pn}. Call P = CHd+1(P ).

Let λ0 be the lower halfcone in Ed+1 with arbitrary apex,
vertical axis, and apex angle equal to π

4 .

Let λ(p) be the translated copy of λ0 with apex at p.

Define the set Λ to be the set

Λ = {λ(p1), λ(p2), . . . , λ(pn)}

Fact

λ(pk) ∩H0 = σk, 1 ≤ k ≤ n
Fact

CHd+1(Λ) ∩H0 = CHd(Σ)
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Upper bound
Lower bound for two radii
Lower bound for at least three radii

Relation between faces of CHd+1(Λ) and CHd(Σ)

Let O′ be any point inside P.

Theorem ([Boissonnat et al. 1996])

Any hyperplane of Ed supporting CHd(Σ) is the intersection with
H0 of a unique hyperplane H of Ed+1 satisfying the following
three properties:

1. H supports P,

2. H is the translated copy of a hyperplane tangent to λ0 along
one of its generatrices,

3. H is above O′.

Conversely, let H be a hyperplane of Ed+1 satisfying the above
three properties. Its intersection with H0 is a hyperplane of Ed
supporting CHd(Σ).
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Convex hull of spheres
Summary, extensions & open problems

Upper bound
Lower bound for two radii
Lower bound for at least three radii

Parallel polytopes

Πi: the hyperplane in Ed+1 with eq. {xd+1 = ρi}
Pi: the points of P in Πi

ni: the cardinality of Pi

P̂i: the vertex set of Pi, i.e., CHd(Pi) = CHd(P̂i)
n̂i: the cardinality of P̂i ; n̂i ≤ ni
P̂ = P̂1 ∪ P̂2 ∪ . . . ∪ P̂m
P̂ = CHd+1(P̂ )

! It is possible that P 6= P̂
This can happen if P1 6= P̂1 or Pm 6= P̂m
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Upper bound

4 There is an injection ϕ : CHd(Σ)→ P mapping a face of
circularity (d− `− 1) of CHd(Σ) to a unique `-face of P.

Points in Pi \ P̂i can never be points on a supporting
hyperplane H of P of the theorem.

4 The injection ϕ is in fact an injection from CHd(Σ) to P̂
P̂ is the convex hull of m parallel polytopes.

Therefore the complexity of CHd(Σ) is

O(
∑

1≤i 6=j≤m
n̂in̂
b d

2
c

j ) = O(
∑

1≤i 6=j≤m
nin
b d

2
c

j )
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Convex hull of spheres
Summary, extensions & open problems

Upper bound
Lower bound for two radii
Lower bound for at least three radii

The trigonometric moment curve

For any even dimension 2δ we can define the so called
trigonometric moment curve:

γtr
2δ(t) = (cos t, sin t, cos 2t, sin 2t, . . . , cos δt, sin δt), t ∈ [0, π)

Fact

For any set P of n points on γtr
2δ(t),

the convex hull CH2δ(P ) is a poly-
tope Q combinatorially equivalent to
the cyclic polytope C2δ(n)

Fact

f2δ−1(Q) = Θ(nδ)

Fact

Points on γtr
δ (t) lie on the sphere of E2δ centered at the origin with

radius
√
δ.
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Upper bound
Lower bound for two radii
Lower bound for at least three radii

First step: the prism

We assume that the ambient space is Ed, where d ≥ 3 and d odd.

1 Define H1 = {xd = z1} and H2 = {xd = z2},
z2 > z1 + 2(n2 + 2)

√
δ

2 Σ1: set of n1 + 1 points on γtr
d−1(t) ∈ H1, where for n1 points

t ∈ (0, π2 ), whereas for the last point t ∈ (π2 , π)
3 Σ2: “vertical” projection of Σ1 on H2.

4 Qi = CHd−1(Σi), and ∆ = CHd(Σ1 ∪ Σ2)

Some facts:

Ê fd−2(Qi) = Θ(n
b d−1

2
c

1 ) = Θ(n
b d

2
c

1 ) (# of facets of Qi)
Ë ∆ consists of the bottom facet Q1, the top facet Q2, and

Θ(n
b d

2
c

1 ) vertical facets
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Upper bound
Lower bound for two radii
Lower bound for at least three radii

More facts

For a vertical facet F denote by ~νF the unit normal vector
and by F+ and F− the two open halfspaces bounded by F .

Call vertical ridges, the ridges that are intersections of vertical
facets of ∆
Call Y the hyperplane with unit normal vector
~ν = (1, 0, . . . , 0), and Y +, Y − the two oriented halfspaces
delimited by Y .

Ì n1 points of Σ1 (or Σ2) belong to Y +.

Í 1 point of Σ1 (or Σ2) belongs to Y −.

Î The (d− 2)-polytope Q̃i = Qi ∩ Y has at most n1 vertices.

Ï The faces Fi of Qi intersected by Y is at most

O(n
b d−2

2
c

1 ) = O(n
b d

2
c−1

1 ).

Ð The number of vertices facets of ∆ in Y + is Θ(n
b d

2
c

1 ).
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Lower bound for two radii
Lower bound for at least three radii

Second step: spheres with non-zero radius

Y

x1

xd

~ν

~νF

F

Define a new set of n2 + 2 spheres
Σ3, where

σk = ((0, 0, . . . , 0, (2k + 1)
√
δ), ρ)

Choose ρ so that

Ê each σk does not intersect any
vertical ridge of ∆ ; ρ <

√
δ

Ë each σk intersects all vertical
facets of ∆
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Third step: perturd the spheres of Σ3 View from the top

Y

x1

xd

~ν

~νF

F

Define the spheres σ′k with radius ρ and
center:

c′k = ck+

 
kX
`=0

ε

2`

!
~ν = ck+ε

„
2− 1

2k

«
~ν

Choose ε so that

Ê each σ′k does not intersect any

vertical ridge of ∆ ; ρ <
√
δ

Ë each σ′k intersects all vertical
facets of ∆ in Y +

Ì the (d− 2)-sphere σk ∩ σ′k is
contained in F− for all vertical
facets F of ∆ in Y +

Call Σ′3 the set of perturbed spheres

Let Σ = Σ1 ∪ Σ2 ∪ Σ′3
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Faces of circularity (d− 1)

For each pair (σ′k, F ), where 1 ≤ k ≤ n2 and F a vertical
facet of ∆ in Y +, we have a unique face of circularity (d− 1)
in CHd(Σ)

; CHd(Σ) has n2Θ(n
b d

2
c

1 ) faces of circularity (d− 1)

; The complexity of CHd(Σ) is Ω(n2n
b d

2
c

1 )
WLOG n2 ≤ n1, which implies that the complexity of

CHd(Σ) is Ω(n2n
b d

2
c

1 + n1n
b d

2
c

2 )
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Construction with m ≥ 3 radii

Let N1 =
∑m

i=2 ni, N2 = n1.

Construct the sets Σ1, Σ2 and Σ′3 as in the case m = 2,
where Σ1 and Σ2 contain each N1 + 1 points and Σ′3 contains
N2 + 2 spheres.

Replace ni among the N1 points of Σ1, Σ2 in Y + by a sphere
of radius ri.

Replace the point of Σ1, Σ2 in Y − by a sphere of radius r2.

Choose r, where 0 < r � 1, such that the following two
conditions are satisfied:

Ê ∆r = CHd(Σ1 ∪ Σ2) is combinatorially equivalent to ∆0

Ë The two requirements for the spheres of Σ′3 should still be
satisfied.

; CHd(Σ) has N2Θ(N
b d

2
c

1 ) faces of circularity (d− 1)
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Results

The complexity of CHd(Σ) is Ω(
∑

1≤i 6=j≤m nin
b d

2
c

j )
WLOG, assume that n2 ≥ n1 ≥ ni, 3 ≤ i ≤ m. Then:

n1(
m∑
i=2

ni)b
d
2
c ≥ n1n

b d
2
c

2 ≥ 1
m(m− 1)

(
∑

1≤i 6=j≤m
nin
b d

2
c

j )
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2
c

j )
WLOG, assume that n2 ≥ n1 ≥ ni, 3 ≤ i ≤ m. Then:

n1(
m∑
i=2

ni)b
d
2
c ≥ n1n

b d
2
c

2 ≥ 1
m(m− 1)

(
∑

1≤i 6=j≤m
nin
b d

2
c

j )

Theorem

Fix some odd d ≥ 3. There exists a set Σ of spheres in Ed,
consisting of ni spheres of radius ρi, with ρ1 < ρ2 < . . . < ρm and
m ≥ 3 fixed, such that the complexity of CHd(Σ) is

Ω(
∑

1≤i 6=j≤m nin
b d

2
c

j ).
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2
c

j )
WLOG, assume that n2 ≥ n1 ≥ ni, 3 ≤ i ≤ m. Then:

n1(
m∑
i=2

ni)b
d
2
c ≥ n1n

b d
2
c

2 ≥ 1
m(m− 1)

(
∑

1≤i 6=j≤m
nin
b d

2
c

j )

Corollary

Let P = {P1,P2, . . . ,Pm} be a set of m d-polytopes, lying on m
parallel hyperplanes of Ed+1, with d ≥ 3 odd, and both d, m fixed.

The worst-case complexity of CHd+1(P) is Ω(
∑

1≤i 6=j≤m nin
b d

2
c

j ),
where ni = f0(Pi), 1 ≤ i ≤ m.
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Open problems

Minkowski sum of two convex d-polytopes

P: n-vertex convex d-polytope

Q: m-vertex convex d-polytope

Embed P and Q in Ed+1 and on the hyperplanes {xd+1 = 0}
and {xd+1 = 1}, respectively.

The Minkowski sum (1− λ)P ⊕ λQ, λ ∈ (0, 1) is
combinatorially equivalent to the intersection of
CHd+1({P,Q}) with the hyperplane {xd+1 = λ}.

Corollary

Let P and Q be two convex d-polytopes in Ed, with n and m
vertices, respectively, where d ≥ 3 and d odd. The complexity of
the weighted Minkowski sum (1− λ)P ⊕ λQ, λ ∈ (0, 1), as well as
the complexity of the Minkowski sum P ⊕Q, is

Θ(mnb
d
2
c + nmb

d
2
c).
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Summary & extensions
Open problems

Computing convex hulls of parallel polytopes

We can use output-sensitive algorithms for computing CHd+1(P).

For d ≥ 5 the algorithm in [Seidel 1986] and the algorithm in
[Matoušek & Schwarzkopf 1992] yield the same running time:

O((
∑

1≤i 6=j≤m
nin
b d

2
c

j ) log n), n =
m∑
i=1

ni.

For d = 3 the best two choices are the algorithm in [Matoušek
& Schwarzkopf 1992], and that in [Chan, Snoeyink & Yap
1997]. The running time is in:

O(min{n4/3+ε+(
∑

1≤i 6=j≤m
ninj) log n, (

∑
1≤i6=j≤m

ninj) log2 n}).
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Computing convex hulls of spheres

We can slightly modify the algorithm in [Boissonnat et al.
1996] to get a new algorithm adapted to the fact that the
spheres have a constant number of radii.

The algorithm first computes the convex hull for each subset
of spheres having the same radius, and keeps only the spheres
defining each convex hull. These spheres are then used to
compute the convex hull of the entire sphere set.

Time complexity:

O(nb
d
2
c + n log n+ Td+1(n1, n2, . . . , nm))

where ni is the number of spheres of radius ρi, n the total
number of spheres, and Td+1(n1, n2, . . . , nm) stands for the
time to compute the convex hull of m parallel convex
d-polytopes in Ed+1, where the i-th polytope has ni vertices
(cf. previous slide).
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Open problems

Worst-case optimal algorithms for all odd dimensions

Refinement of worst-case complexity of additively weighted
Voronoi cells, when the number of radii is fixed.

Tight bound on the complexity of the Minkowski sum when
we have at least three summands.

Exact complexity for the Minkowski sum of two (or more)
polytopes.

THANK YOU FOR YOUR ATTENTION
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