Curvature and Combinatorics of Triangulations

John M. Sullivan

Institut für Mathematik, Technische Universität Berlin
DFG Research Group Polyhedral Surfaces
Berlin Mathematical School
DFG Research Center Matheon
Workshop on Computational Geometry INRIA, Sophia Antipolis, 2010 December 8

Berlin opportunities

Berlin Mathematical School

- New international math graduate school
- Courses in English at three universities
- www.math-berlin.de

Triangulations of the torus T^{2}

- Average vertex degree 6
- Exceptional vertices have $d \neq 6$
- Regular triangulations have $d \equiv 6$

Edge flips give new triangulations

- Flip changes four vertex degrees
- Can produce $5^{2} 7^{2}$-triangulations (four exceptional vertices)
- Quotients of some such tori are 5,7-triangulations of Klein bottle

Two-vertex torus triangulations

Refinement or subdivision schemes

$\sqrt{3}$-fold

2-fold

$\sqrt{7}$-fold

3-fold

Exceptional vertices preserved

- Old vertex degrees fixed
- New vertices regular

Lots more 4,8-, 3,9-, 2,10- and 1,11-triangulations

Is there a 5,7-triangulation of the torus?

(any number of regular vertices allowed)

Is there a 5,7-triangulation of the torus?

(any number of regular vertices allowed)

No!

First proved combinatorially by Jendrol' and Jucovič (1972)

We give geometric proofs

- using curvature and holonomy
- or complex function theory

Joint work with

- Ivan Izmestiev, Günter Rote, Boris Springborn (Berlin)
- Rob Kusner (Amherst)

Combinatorics and topology

Triangulation of any surface

Double-counting edges gives:

$$
\begin{gathered}
\tilde{d} V=2 E=3 F \\
\frac{\chi}{\tilde{d} V}=\frac{\chi}{2 E}=\frac{\chi}{3 F}=\frac{1}{\tilde{d}}-\frac{1}{2}+\frac{1}{3} \\
6 \chi=\sum_{d}(6-d) v_{d}
\end{gathered}
$$

Notation

- $\tilde{d}:=$ average vertex degree
- $v_{d}:=$ number of vertices of degree d

Eberhard's theorem

Triangulation of \mathbb{S}^{2}

$$
12=\sum_{d}(6-d) v_{d}
$$

Theorem (Eberhard, 1891)

Given any (v_{d}) satisfying this condition, there is a corresponding triangulation of \mathbb{S}^{2}, after perhaps modifying v_{6}.

Examples

- 5^{12}-triangulation exists for $v_{6} \neq 1$
- 3^{4}-triangulation exists for v_{6} even ($v_{6}=2$ only non-simplicial)

Torus triangulations

- The condition $0=\sum(6-d) v_{d}$ is simply $\tilde{d}=6$.
- Analog of Eberhard's Theorem would say
$\exists \quad$ 5,7-triangulation for some v_{6}
- Instead, this is the one exception
(and there are no exceptions for higher genus [JJ'77])

Discrete Gauss curvature for polyhedral surface

Intrinsic Gauss curvature

- angle defect $=2 \pi-\sum \theta$ at a vertex
- Gauss/Bonnet holds $\int K d A=2 \pi-\int k_{g} d s$
- natural choice

Extrinsic Gauss curvature [BK82]

- $\frac{1}{2 \pi} \int|K|=$ average $\#$ of critical points of height functions
- need different discretization
- some vertices have both + and - curvature

Euclidean cone metrics

Definition

Euclidean cone metric on M is locally euclidean away from discrete set of cone points.

- Cone of angle $\omega>0$ has curvature $\kappa:=2 \pi-\omega$.

Definition

Triangulation on M induces equilateral metric: each face an equilateral euclidean triangle.

- Exceptional vertices are cone points
- Vertex of degree d has curvature $(6-d) \pi / 3$

Regular triangulations on the torus

Theorem (cf. Alt73, Neg83, Tho91, DU05, BK06)

A triangulation of T^{2} with no exceptional vertices is a quotient of the regular triangulation T_{0} of the plane, or equivalently a finite cover of the 1-vertex triangulation.

Proof:

Equilateral metric is flat torus \mathbb{R}^{2} / Λ. The triangulation lifts to the cover, giving T_{0}. Thus $\Lambda \subset \Lambda_{0}$, the triangular lattice.

Regular triangulations on the torus

Corollary

Any degree-regular triangulation has vertex-transitive symmetry.

Holonomy of a cone metric

Definition

- $M^{o}:=M \backslash$ cone points
- $h: \pi_{1}\left(M^{o}\right) \rightarrow S O_{2}$
- $H:=h\left(\pi_{1}\right)$

Lemma

For a triangulation, H is a subgroup of $C_{6}:=\langle 2 \pi / 6\rangle$.

Proof:

As we parallel transport a vector, look at the angle it makes with each edge of the triangulation.

Holonomy theorem

Theorem

A torus with two cone points $p_{ \pm}$of curvature $\kappa= \pm 2 \pi / n$ has holonomy strictly bigger than C_{n}.

Corollary

There is no 5,7-triangulation of the torus.

Proof:

Lemma says H contained in C_{6}; theorem says H strictly bigger.

Proof of Holonomy theorem:

Shortest nontrivial geodesic γ avoids p_{+}. If it hits p_{-}and splits excess angle $2 \pi / n$ there, consider holonomy of a pertubation. Otherwise, γ avoids p_{-}or makes one angle π there, so slide it to foliate a euclidean cylinder. Complementary digon has two positive angles, so geodesic from p_{-}to p_{-}within the cylinder does split the excess $2 \pi / n$.

Meaning

Torus constructed from quadrilateral by gluing opposite sides. But these are not parallel; more like cone than cylinder.

Berger's vector in crystallography

Finite piece with single exceptional vertex - disclination. 5,7 or 4,8 piece - still a dislocation: can't fit in regular substrate.
Doesn't apply to torus - because not parallelogram.

Quadrangulations and hexangulations

Theorem

The torus T^{2} has

- no 3,5-quadrangulation
- no bipartite 2,4-hexangulation

2,6-quad

$3^{2} 5^{2}$-quad

2,4-hex

1,5-hex

bip 1,5-hex

Generalizing the holonomy theorem

Question

Given $n>0$ and a euclidean cone metric on T^{2} whose curvatures are multiples of $2 \pi / n$, when is its holonomy H contained in C_{n} ?

Curvature as divisor

- Cone metric induces Riemann surface structure
- Cone point p_{i} has curvature $m_{i} 2 \pi / n$
- Divisor $D=\sum m_{i} p_{i}$ has degree 0

Main theorem

Theorem

$$
H<C_{n} \Longleftrightarrow D \text { principal }
$$

Proof:

Cone metric gives developing map from universal cover of M^{o} to \mathbb{C}. Consider the $n^{\text {th }}$ power of the derivative of this developing map. This is well-defined on M iff $H<C_{n}$. If so, its divisor is D. Conversely, if D is principal, corresponding meromorphic function is this $n^{\text {th }}$ power.

Note: The case $n=2$ is the classical correspondance between meromorphic quadratic differentials and "singular flat structrues".

Combinatorial curvature in 3D

- Given a triangulation
- Put standard geometry on each simplex (euclidean regular)
- Measure discrete curvature around edges (or in higher dimensions, around codim-2 faces)
- Positive combinatorial curvature \longleftrightarrow positive curvature operator

Forman's combinatorial Ricci curvature

- for surfaces it is different
- doesn't recover Gauss/Bonnet

Cubulations

- Edge of valence 4 is flat
- Edge valences $\leq 4 \Longleftrightarrow C B B(0)$
- Edge valences $\geq 4 \Longleftrightarrow C B A(0)$
- Works in any dimension

Triangulations in 3D

- No "flat" case for euclidean regular tetrahedra every edge has nonzero angle defect
- Euler number $\chi:=V-E+F-T$
- All 3-manifolds have $\chi=0$
- For triangulation: $4 T=2 F, \quad 3 F=\bar{n} E, \quad 2 E=\bar{z} V$
$\bar{n}=$ average edge valence
$\bar{z}=$ average vertex degree
- Implies $6-\bar{n}=12 / \bar{z}$
- But no definite connection to topology of ambient space

Bounds in 3D

- Any value of $4.5<\bar{n}<6$ (corresponding to $8<\bar{z}<\infty$) can be achieved for any ambient space
- $\bar{n}<4.5(\bar{z}<8)$ only for S^{3} [Luo/Stong]
- So foam/triangulation with periodic boundary conditions (3-torus) must have $\bar{n}>4.5(\bar{z}>8)$
- Implies some face has $n \geq 5$, some bubble has $z \geq 9$ faces

Combinatorics \longrightarrow geometry in three dimensions

- Triangulated 3-manifold \longrightarrow each tetrahedron regular euclidean
- Edge valence $\leq 5 \quad \Longleftrightarrow$ curvature bounded below by 0

Enumeration (with Frank Lutz)

- All simplicial 3-manifolds with edge valence ≤ 5
- Exactly 4761 three-spheres plus 26 finite quotients
- Surely true that Ricci flow immediately gives positive curvature
- [Matveev, Shevchishin]: Can smooth to get positive curvature
- Can start with spherical geometry on each tetrahedron

Enumeration interpreted for dual bubble clusters

"Sanity" conditions

Dual to simplicial complex means:

- never have multiple faces between the same two bubbles
- never have multiple edges between the same three bubbles
- in particular, no faces with $n=1$ or $n=2$

Foam structures (bubble clusters) with $n \leq 5$ for all faces

- 11 types of foam cells (tetrahedron to dodecahedron) allowed

Foam structures (bubble clusters) with $n \leq 5$ for all faces

- Enumerated by [Lutz/Sullivan 2005]
- All are finite clusters best thought of as foams in \mathbb{S}^{3}
- Exactly 4761 combinatorial types (in \mathbb{R}^{3} also have to choose which bubble infinite)

Example $n \leq 5$

Example $n \equiv 4$

Example $n \equiv 5$

TCP foams

TCP structures from transition metal alloy chemistry

- large atoms pack at vertices of nearly regular tetrahedra
- Voronoi cells (Dirichlet domains) have faces with $n=5$ or $n=6$, no adjacent 6 s
- Allows four cell types in foam, $z=12,14,15,16$

Why TCP?

- Plateau rules say foam dual to triangulation and suggest tetrahedra close to regular
- Best known equal-volume foams are TCP duals
- All known (Euclidean) TCP foams are combinations of:

TCP ratios

- TCP triangulations by definition have

$$
5 \leq \bar{n} \leq 5 \frac{1}{4} \quad(12 \leq \bar{z} \leq 16)
$$

- Why do all known Euclidean ones have

$$
5 \frac{1}{10} \leq n \leq 5 \frac{1}{9} \quad\left(13 \frac{1}{3} \leq \bar{z} \leq 13 \frac{1}{2}\right) ?
$$

Known Euclidean TCP foams

New TCP foams

- TCP foams constructed [Sullivan 2002 Delft] in $\mathbb{S}^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$
- These lie to the expected sides of the plane $6 X-2 P-7 Q-12 R=0$ of the known Euclidean TCPs

New TCP foams

One Euclidean family gives arbitrary blend of A15, Z

Generalize by allowing green edges with no vertex

Newer TCP foams

New results [Lutz/Sulanke/Sullivan 2006]

- No TCP foam with only 16 (in any ambient space)
- Look for TCP foams with just 12s and 14s

Examples found with $12 \leq \bar{z} \leq 13$ tile \mathbb{S}^{3}
Examples found with just 14 s have Heisenberg geometry (not hyperbolic)

Open questions

With restrictions can we relate combinatorics to topology?

- Any 3-manifold can be tiled with $n=4,5,6$
- Conj: can be tiled with TCP foam
- For such restricted classes of foams are there connections between \bar{z} and the ambient geometry?

