Curvature and Combinatorics of Triangulations

John M. Sullivan

Institut für Mathematik, Technische Universität Berlin DFG Research Group *Polyhedral Surfaces* Berlin Mathematical School DFG Research Center MATHEON

Workshop on Computational Geometry INRIA, Sophia Antipolis, 2010 December 8

Berlin opportunities

Berlin Mathematical School

- New international math graduate school
- Courses in English at three universities
- www.math-berlin.de

Triangulations of the torus T^2

- Average vertex degree 6
- *Exceptional* vertices have $d \neq 6$
- Regular triangulations have $d \equiv 6$

Edge flips give new triangulations

- Flip changes four vertex degrees
- Can produce 5²7²-triangulations (four exceptional vertices)
- Quotients of some such tori are 5,7-triangulations of Klein bottle

Torus Triangulations

Two-vertex torus triangulations

Torus Triangulations

Refinement or subdivision schemes

Exceptional vertices preserved

- Old vertex degrees fixed
- New vertices regular

Lots more 4,8-, 3,9-, 2,10- and 1,11-triangulations

Torus Triangulations

Is there a 5,7-triangulation of the torus?

(any number of regular vertices allowed)

Is there a 5,7-triangulation of the torus?

(any number of regular vertices allowed)

No!

First proved combinatorially by Jendrol' and Jucovič (1972)

We give geometric proofs

- using curvature and holonomy
- or complex function theory

Joint work with

- Ivan Izmestiev, Günter Rote, Boris Springborn (Berlin)
- Rob Kusner (Amherst)

Combinatorics and topology

Triangulation of any surface

Double-counting edges gives:

$$\tilde{d}V = 2E = 3F$$
$$\frac{\chi}{\tilde{d}V} = \frac{\chi}{2E} = \frac{\chi}{3F} = \frac{1}{\tilde{d}} - \frac{1}{2} + \frac{1}{3}$$
$$6\chi = \sum_{d} (6-d)v_d$$

Notation

- $\tilde{d} :=$ average vertex degree
- $v_d :=$ number of vertices of degree d

John M. Sullivan (TU Berlin)

Curvature and Combinatorics

Eberhard's theorem

Triangulation of S²

$$12 = \sum_{d} (6-d) v_d$$

Theorem (Eberhard, 1891)

Given any (v_d) satisfying this condition, there is a corresponding triangulation of \mathbb{S}^2 , after perhaps modifying v_6 .

Examples

- 5^{12} -triangulation exists for $v_6 \neq 1$
- 3^4 -triangulation exists for v_6 even ($v_6 = 2$ only non-simplicial)

Torus triangulations

- The condition $0 = \sum (6-d)v_d$ is simply $\tilde{d} = 6$.
- Analog of Eberhard's Theorem would say
 - \exists 5,7-triangulation for some v_6

Instead, this is the one exception (and there are no exceptions for higher genus [JJ'77])

Discrete Gauss curvature for polyhedral surface

Intrinsic Gauss curvature

- angle defect = $2\pi \sum \theta$ at a vertex
- Gauss/Bonnet holds $\int K dA = 2\pi \int k_g ds$
- natural choice

Extrinsic Gauss curvature [BK82]

- $\frac{1}{2\pi}\int |K| = \text{average } \# \text{ of critical points of height functions}$
- need different discretization
- some vertices have both + and curvature

Euclidean cone metrics

Definition

Euclidean cone metric on *M* is locally euclidean away from discrete set of cone points.

• Cone of angle $\omega > 0$ has *curvature* $\kappa := 2\pi - \omega$.

Definition

Triangulation on *M* induces *equilateral metric*: each face an equilateral euclidean triangle.

- Exceptional vertices are cone points
- Vertex of degree d has curvature $(6 d)\pi/3$

Regular triangulations on the torus

Theorem (cf. Alt73, Neg83, Tho91, DU05, BK06)

A triangulation of T^2 with no exceptional vertices is a quotient of the regular triangulation T_0 of the plane, or equivalently a finite cover of the 1-vertex triangulation.

Proof:

Equilateral metric is flat torus \mathbb{R}^2/Λ . The triangulation lifts to the cover, giving T_0 . Thus $\Lambda \subset \Lambda_0$, the triangular lattice.

Regular triangulations on the torus

Corollary

Any degree-regular triangulation has vertex-transitive symmetry.

Holonomy of a cone metric

Definition

- $M^o := M \setminus \text{cone points}$
- $h: \pi_1(M^o) \to SO_2$
- $H := h(\pi_1)$

Lemma

For a triangulation, *H* is a subgroup of $C_6 := \langle 2\pi/6 \rangle$.

Proof:

As we parallel transport a vector, look at the angle it makes with each edge of the triangulation.

John M. Sullivan (TU Berlin)

Curvature and Combinatorics

Holonomy theorem

Theorem

A torus with two cone points p_{\pm} of curvature $\kappa = \pm 2\pi/n$ has holonomy strictly bigger than C_n .

Corollary

There is no 5,7-triangulation of the torus.

Proof:

Lemma says H contained in C_6 ; theorem says H strictly bigger.

Proof of Holonomy theorem:

Shortest nontrivial geodesic γ avoids p_+ . If it hits p_- and splits excess angle $2\pi/n$ there, consider holonomy of a pertubation. Otherwise, γ avoids p_- or makes one angle π there, so slide it to foliate a euclidean cylinder. Complementary digon has two positive angles, so geodesic from p_- to p_- within the cylinder does split the excess $2\pi/n$.

John M. Sullivan (TU Berlin)

Meaning

Torus constructed from quadrilateral by gluing opposite sides. But these are not parallel; more like cone than cylinder.

Berger's vector in crystallography

Finite piece with single exceptional vertex – disclination. 5,7 or 4,8 piece – still a dislocation: can't fit in regular substrate.

Doesn't apply to torus - because not parallelogram.

Quadrangulations and hexangulations

Theorem

The torus T² has

- no 3,5–quadrangulation
- no bipartite 2,4-hexangulation

Generalizing the holonomy theorem

Question

Given n > 0 and a euclidean cone metric on T^2 whose curvatures are multiples of $2\pi/n$, when is its holonomy *H* contained in C_n ?

Curvature as divisor

- Cone metric induces Riemann surface structure
- Cone point p_i has curvature $m_i 2\pi/n$
- Divisor $D = \sum m_i p_i$ has degree 0

Main theorem

Theorem

$$H < C_n \iff D$$
 principal

Proof:

Cone metric gives developing map from universal cover of M^o to \mathbb{C} . Consider the n^{th} power of the derivative of this developing map. This is well-defined on M iff $H < C_n$. If so, its divisor is D. Conversely, if D is principal, corresponding meromorphic function is this n^{th} power.

Note: The case n = 2 is the classical correspondance between meromorphic quadratic differentials and "singular flat structrues".

Combinatorial curvature in 3D

- Given a triangulation
- Put standard geometry on each simplex (euclidean regular)
- Measure discrete curvature around edges (or in higher dimensions, around codim-2 faces)
- Positive combinatorial curvature ←→ positive curvature operator

Forman's combinatorial Ricci curvature

- for surfaces it is different
- doesn't recover Gauss/Bonnet

Cubulations

- Edge of valence 4 is flat
- Edge valences $\leq 4 \iff CBB(0)$
- Edge valences $\geq 4 \iff CBA(0)$
- Works in any dimension

Triangulations in 3D

- No "flat" case for euclidean regular tetrahedra every edge has nonzero angle defect
- Euler number $\chi := V E + F T$
- All 3-manifolds have $\chi = 0$
- For triangulation: 4T = 2F, $3F = \bar{n}E$, $2E = \bar{z}V$
 - $\bar{n} = average edge valence$
 - \bar{z} = average vertex degree
- Implies $6 \bar{n} = 12/\bar{z}$
- But no definite connection to topology of ambient space

Bounds in 3D

- Any value of 4.5 < n̄ < 6 (corresponding to 8 < z̄ < ∞) can be achieved for any ambient space
- $\bar{n} < 4.5$ ($\bar{z} < 8$) only for S^3 [Luo/Stong]
- Implies some face has n ≥ 5, some bubble has z ≥ 9 faces

Combinatorics — geometry in three dimensions

- Triangulated 3-manifold \longrightarrow each tetrahedron regular euclidean
- Edge valence $\leq 5 \iff$ curvature bounded below by 0

Enumeration (with Frank Lutz)

- All simplicial 3-manifolds with edge valence ≤ 5
- Exactly 4761 three-spheres plus 26 finite quotients
- Surely true that Ricci flow immediately gives positive curvature
- [Matveev, Shevchishin]: Can smooth to get positive curvature
- Can start with spherical geometry on each tetrahedron

Enumeration interpreted for dual bubble clusters

"Sanity" conditions

Dual to simplicial complex means:

- never have multiple faces between the same two bubbles
- never have multiple edges between the same three bubbles
- in particular, no faces with n = 1 or n = 2

$n \leq 5$

Foam structures (bubble clusters) with $n \leq 5$ for all faces

• 11 types of foam cells (tetrahedron to dodecahedron) allowed

Foam structures (bubble clusters) with $n \le 5$ for all faces

- Enumerated by [Lutz/Sullivan 2005]
- All are finite clusters best thought of as foams in S³
- Exactly 4761 combinatorial types (in R³ also have to choose which bubble infinite)

Example $n \leq 5$

John M. Sullivan (TU Berlin)

Curvature and Combinatorics

Example $n \equiv 4$

John M. Sullivan (TU Berlin)

Curvature and Combinatorics

Example $n \equiv 5$

John M. Sullivan (TU Berlin)

Curvature and Combinatorics

TCP foams

TCP structures from transition metal alloy chemistry

- large atoms pack at vertices of nearly regular tetrahedra
- Voronoi cells (Dirichlet domains) have faces with n = 5 or n = 6, no adjacent 6s
- Allows four cell types in foam, z = 12, 14, 15, 16

Why TCP?

- Plateau rules say foam dual to triangulation and suggest tetrahedra close to regular
- Best known equal-volume foams are TCP duals
- All known (Euclidean) TCP foams are combinations of:

TCP foams

TCP ratios

- TCP triangulations by definition have $5 \le \overline{n} \le 5\frac{1}{4}$ ($12 \le \overline{z} \le 16$)
- Why do all known Euclidean ones have
 - $5\frac{1}{10} \le n \le 5\frac{1}{9} \quad (13\frac{1}{3} \le \overline{z} \le 13\frac{1}{2})?$

TCP foams

Known Euclidean TCP foams

New TCP foams

- TCP foams constructed [Sullivan 2002 Delft] in $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$
- These lie to the expected sides of the plane 6X 2P 7Q 12R = 0 of the known Euclidean TCPs

New TCP foams

One Euclidean family gives arbitrary blend of A15, Z

Generalize by allowing green edges with no vertex

Newer TCP foams

New results [Lutz/Sulanke/Sullivan 2006]

- No TCP foam with only 16s (in any ambient space)
- Look for TCP foams with just 12s and 14s Examples found with 12 ≤ z̄ ≤ 13 tile S³ Examples found with just 14s have Heisenberg geometry (not hyperbolic)

Open questions

With restrictions can we relate combinatorics to topology?

- Any 3-manifold can be tiled with n = 4, 5, 6
- Conj: can be tiled with TCP foam
- For such restricted classes of foams are there connections between z̄ and the ambient geometry?