The Poincaré dodecahedral space

Gert Vegter and Rien van de Weijgaert (joint work with Guido Senden)
University of Groningen

OrbiCG/Triangles Workshop
on
Computational Geometry

Poincaré dodecahedral space

Sophia Antipolis, December 8, 2010

Poincaré dodecahedral space

(1) Platonic solids
(2) Polychorons (4D)
(3) Tiling the 3-sphere

Platonic solids

tetrahedron
dodecahedron

cube

octahedron

icosahedron

Kepler (1571-1630)

Sophia Antipolis, December 8, 2010

Kepler: Mysterium Cosmographicum (1596)

Mercury - Octahedron - Venus - Icosahedron - Earth -
Dodecahedron - Mars - Tetrahedron - Jupiter - Cube - Saturn
"Van deze veelvlakken zijn er precies vijf en vijf zijn er nodig om de zes planeten uit elkaar te houden. Zo werkt God's denken!"票

There are exactly five Platonic solids

Proof:

(1) $e_{V}: n r$. edges/vertex $\quad v_{e}=2$: nr. vertices/edge e_{f} : nr. edges/face $f_{e}=2$: nr. faces/edge

$$
v e_{v}=e v_{e}=2 e \quad f e_{f}=e f_{e}=2 e
$$

(3) Euler:

(3) So :

There are exactly five Platonic solids

Proof:

(1) $e_{V}: n r$. edges/vertex $\quad v_{e}=2: n r$. vertices/edge e_{f} : nr. edges/face $f_{e}=2$: nr. faces/edge
(2)

$$
v e_{v}=e v_{e}=2 e \quad f e_{f}=e f_{e}=2 e
$$

(3) Euler:

(3) So :

There are exactly five Platonic solids

Proof:

(1) $e_{V}: n r$. edges/vertex $\quad v_{e}=2$: nr. vertices/edge e_{f} : nr. edges/face $f_{e}=2$: nr. faces/edge
(2)

$$
v e_{v}=e v_{e}=2 e \quad f e_{f}=e f_{e}=2 e
$$

(3) Euler:

$$
2=v-e+f=f\left(\frac{e_{f}}{e_{v}}-\frac{e_{f}}{2}+1\right)
$$

(4) $f=\frac{4 e_{v}}{4-\left(e_{v}-2\right)\left(e_{f}-2\right)}$
(5) So :

There are exactly five Platonic solids

Proof:

(1) $e_{V}: n r$. edges/vertex $\quad v_{e}=2$: nr. vertices/edge e_{f} : nr. edges/face $f_{e}=2$: nr. faces/edge
(2)

$$
v e_{v}=e v_{e}=2 e \quad f e_{f}=e f_{e}=2 e
$$

(3) Euler:

$$
2=v-e+f=f\left(\frac{e_{f}}{e_{v}}-\frac{e_{f}}{2}+1\right)
$$

(4) $f=\frac{4 e_{v}}{4-\left(e_{v}-2\right)\left(e_{f}-2\right)}$
(5) So :

$$
\left(e_{v}-2\right)\left(e_{f}-2\right)<4, \quad e_{v}, e_{f} \geq 3
$$

Five Platonic solids (cont'd)

$$
\left(e_{f}-2\right)\left(e_{v}-2\right)<4, \text { with } e_{v} \geq 3 \text { and } e_{f} \geq 3 .
$$

e_{V}	e_{f}	f	Type
3	3	4	Tetrahedron
3	4	6	Kubus
3	5	12	Dodecahedron
4	3	8	Octahedron
5	3	20	Icosahedron

$$
f=\frac{4 e_{v}}{4-\left(e_{v}-2\right)\left(e_{f}-2\right)}
$$

Regular tesselations and (constant) curvature - 2D

$K>0$ (spherical)

$K<0$ (hyperbolic)
angle (Euclidean: 108)
120°
90°

Polytopes in 4D (polychorons)

4-simplex

24-cell

hypercube

120-cell

16-cell

600-cell

Sophia Antipolis, December 8, 2010

3D Regular Tesselations (by Platonic solids)

Vertex-figure: intersection of vertex-centered 2-sphere with tesselation

3D Regular Tesselations (by Platonic solids)

Vertex-figure: intersection of vertex-centered 2-sphere with tesselation

11 possible regular tesselations (of $\mathbb{S}^{3}, \mathbb{E}^{3}$ or \mathbb{H}^{3}):
(1) By tetrahedra, cubes or dodecahedra, Vertex-figures: tetrahedra, octahedra or icosahedra
(2) By octahedra

Vertex-figure: cube
© By icosahedra
Vertex-figure: dodecahedron

3D Regular Tesselations (by Platonic solids)

Proof.

- Vertex-figure:

Platonic solid, c_{v} faces, c_{e} faces/vertex.

- Euler for polyhedral 3-manifolds: $v-e+f-c=0$.

$$
\left(\frac{4}{d-2}+c_{v}\right)\left(\frac{2 d}{d-2}-c_{e}\right)=\frac{8 d}{(d-2)^{2}}
$$

d : degree of vertex in (boundary of a) cell
-

$$
\begin{array}{ll}
d=3: & \left(c_{v}, c_{e}\right) \in\{(4,3),(8,4),(20,5)\} \\
d=4: & \left(c_{v}, c_{e}\right)=(6,3) \\
d=5: & \left(c_{v}, c_{e}\right)=(12,3)
\end{array}
$$

3D Regular Tesselations (by Platonic solids)

Cell	d	EDA	c_{V}	V-figure	c_{e}	DA	Space
Tetra	3	70.53°	4	Tetra	3	120°	\mathbb{S}^{3}
			8	Octa	4	90°	$\mathbb{S}^{3}(*)$
			20	Icosa	5	72°	$\mathbb{S}^{3}(*)$
Cube	3	90°	4	Tetra	3	120°	\mathbb{S}^{3}
			8	Octa	4	90°	\mathbb{E}^{3}
			20	Icosa	5	72°	$\mathbb{H}^{3}(*)$
Dodeca	3	116.57°	4	Tetra	3	120°	\mathbb{S}^{3}
			8	Octa	4	90°	$\mathbb{H}^{3}(*)$
			20	Icosa	5	72°	\mathbb{H}^{3}
Octa	4	109.47°	6	Cube	3	120°	\mathbb{S}^{3}
Icosa	5	138.19°	12	Dodeca	3	120°	\mathbb{H}^{3}

(E)DA: (Euclidean) Dihedral Angle

Group actions and quotient manifolds

- $I^{*}<\mathbb{S}^{3}$: binary icosahedral group (order: 120)
- 'Lift' of group $I<S O(3)$ of rotational symmetries of dodecahedron (order: 60) under universal covering map $\mathbb{S}^{3} \rightarrow S O(3)$
- \mathbb{S}^{3} / l^{*} : Poincaré Dodecahedral Space (PDS), 3-manifold of constant positive curvature.
- Voronoi Diagram of any I*-orbit: consists of 120 congruent cells. Type?

Group actions and quotient manifolds

- $I^{*}<\mathbb{S}^{3}$: binary icosahedral group (order: 120)
- 'Lift' of group $I<S O(3)$ of rotational symmetries of dodecahedron (order: 60) under universal covering map $\mathbb{S}^{3} \rightarrow S O(3)$
- \mathbb{S}^{3} / l^{*} : Poincaré Dodecahedral Space (PDS), 3-manifold of constant positive curvature.
- Voronoi Diagram of any I^{*}-orbit: consists of 120 congruent cells. Type?

Estimating the volume

The maximum number of cells for the different tesselations:

- Tetrahedron (V-figure: tetrahedron): $c<12$
- Cube (V-figure: tetrahedron): $c<13$
- Octahedron (V-figure: cube): $c<30$
- Dodecahedron (V-figure: tetrahedron): $c<127$

Estimating the volume

The maximum number of cells for the different tesselations:

- Tetrahedron (V-figure: tetrahedron): $c<12$
- Cube (V-figure: tetrahedron): $c<13$
- Octahedron (V-figure: cube): $c<30$
- Dodecahedron (V-figure: tetrahedron): $c<127$

Tetrahedron with V-figure octahedron or icosahedron: not the orbit of a single cell!

Estimating the volume

The maximum number of cells for the different tesselations:

- Tetrahedron (V-figure: tetrahedron): $c<12$
- Cube (V-figure: tetrahedron): $c<13$
- Octahedron (V-figure: cube): $c<30$
- Dodecahedron (V-figure: tetrahedron): $c<127$
$c=120$, so \mathbb{S}^{3} / I^{*} must be obtained by gluing dodecahedra (identifying faces), such that
- four dodecahedra incident to each vertex $\left(c_{v}=4\right)$
- three tetrahedra incident to each edge $\left(c_{e}=3\right)$

PDS: Identify opposite faces with twist

Sophia Antipolis, December 8, 2010

Spherical PDS: $c_{e}=3$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with minimal twist $\pi / 5$

Spherical PDS: $c_{e}=3$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with minimal twist $\pi / 5$

Spherical PDS: $c_{e}=3$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with minimal twist $\pi / 5$

Spherical PDS: $c_{e}=3$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with minimal twist $\pi / 5$

Hyperbolic PDS: $c_{e}=5$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with twist $3 \pi / 5$

Dodecahedral tesselation of $\mathbb{S}^{3} \quad\left(c_{v}=4, c_{e}=3\right)$

Poincaré Dodecahedral Space

Dodecahedral tesselation of $\mathbb{H}^{3} \quad\left(c_{v}=8, c_{e}=4\right)$

