The Poincaré dodecahedral space

Gert Vegter and Rien van de Weijgaert (joint work with Guido Senden) University of Groningen

> OrbiCG/Triangles Workshop on Computational Geometry

> > Sophia Antipolis, December 8, 2010

ヘロト 人間 ト ヘヨト ヘヨト

æ

Poincaré dodecahedral space

Sophia Antipolis, December 8, 2010

3

Poincaré dodecahedral space

Sophia Antipolis, December 8, 2010

< 🗇 🕨

ъ

Platonic solids

Kepler (1571–1630)

Sophia Antipolis, December 8, 2010

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kepler: Mysterium Cosmographicum (1596)

Mercury – Octahedron – Venus – Icosahedron – Earth – Dodecahedron – Mars – Tetrahedron – Jupiter – Cube – Saturn

"Van deze veelvlakken zijn er precies vijf en vijf zijn er nodig om de zes planeten uit elkaar te houden. Zo werkt God's denken!"

There are exactly five Platonic solids

Proof:

• e_v : nr. edges/vertex $v_e = 2$: nr. vertices/edge e_f : nr. edges/face $f_e = 2$: nr. faces/edge

 $v e_v = e v_e = 2e$ $f e_f = e f_e = 2e$

イロト イポト イヨト イヨト 一臣

There are exactly five Platonic solids

Proof:

2

• e_v : nr. edges/vertex $v_e = 2$: nr. vertices/edge e_f : nr. edges/face $f_e = 2$: nr. faces/edge

$$v e_v = e v_e = 2e$$
 $f e_f = e f_e = 2e$

ヘロン 人間 とくほ とくほ とう

ъ

There are exactly five Platonic solids

Proof:

2

• e_v : nr. edges/vertex $v_e = 2$: nr. vertices/edge e_f : nr. edges/face $f_e = 2$: nr. faces/edge

$$v e_v = e v_e = 2e$$
 $f e_f = e f_e = 2e$

イロト イポト イヨト イヨト 一臣

There are exactly five Platonic solids

Proof:

2

• e_v : nr. edges/vertex $v_e = 2$: nr. vertices/edge e_f : nr. edges/face $f_e = 2$: nr. faces/edge

$$v e_v = e v_e = 2e$$
 $f e_f = e f_e = 2e$

ヘロン 人間 とくほ とくほ とう

ъ

Five Platonic solids (cont'd)

$$(e_f - 2)(e_v - 2) < 4$$
, with $e_v \ge 3$ and $e_f \ge 3$.

e_v	ef	f	Туре
3	3	4	Tetrahedron
3	4	6	Kubus
3	5	12	Dodecahedron
4	3	8	Octahedron
5	3	20	Icosahedron

$$f = rac{4e_v}{4 - (e_v - 2)(e_f - 2)}$$

Sophia Antipolis, December 8, 2010

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Regular tesselations and (constant) curvature – 2D

K > 0 (spherical)

K < 0 (hyperbolic)

・ロト ・ 理 ト ・ ヨ ト ・

ъ

angle (Euclidean: 108°) 120° 90°

Polytopes in 4D (polychorons)

3D Regular Tesselations (by Platonic solids)

Vertex-figure: intersection of vertex-centered 2-sphere with tesselation

Sophia Antipolis, December 8, 2010

< 🗇 🕨

< ∃→

- < ⊒ → -

3D Regular Tesselations (by Platonic solids)

Vertex-figure: intersection of vertex-centered 2-sphere with tesselation

- 11 possible regular tesselations (of \mathbb{S}^3 , \mathbb{E}^3 or \mathbb{H}^3):
 - By tetrahedra, cubes or dodecahedra,
 Vertex-figures: tetrahedra, octahedra or icosahedra
 - By octahedra Vertex-figure: cube
 - By icosahedra Vertex-figure: dodecahedron

ヘロン 人間 とくほ とくほ とう

1

3D Regular Tesselations (by Platonic solids)

Proof.

٩

- Vertex-figure: Platonic solid, *c_v* faces, *c_e* faces/vertex.
- Euler for polyhedral 3-manifolds: v e + f c = 0.

$$\left(\frac{4}{d-2}+c_{v}
ight)\left(\frac{2d}{d-2}-c_{e}
ight)=rac{8d}{(d-2)^{2}}$$

d: degree of vertex in (boundary of a) cell

•
$$d = 3$$
: $(c_v, c_e) \in \{(4,3), (8,4), (20,5)\}$
 $d = 4$: $(c_v, c_e) = (6,3)$
 $d = 5$: $(c_v, c_e) = (12,3)$

くロト (過) (目) (日)

э

3D Regular Tesselations (by Platonic solids)

Cell	d	EDA	Cv	V-figure	Ce	DA	Space
Tetra	3	70.53 ⁰	4	Tetra	3	120 ⁰	S3
			8	Octa	4	90 ⁰	S ³ (∗)
			20	lcosa	5	72 ⁰	S ³ (∗)
Cube	3	90 ⁰	4	Tetra	3	120 ⁰	S ³
			8	Octa	4	90 <i>°</i>	E3
			20	lcosa	5	72 ⁰	Ⅲ ³ (∗)
Dodeca	3	116.57°	4	Tetra	3	120 ⁰	S ³
			8	Octa	4	90 <i>°</i>	⊞ ³ (∗)
			20	lcosa	5	72 ⁰	Ш3
Octa	4	109.47°	6	Cube	3	120 ⁰	S ³
Icosa	5	138.19 ⁰	12	Dodeca	3	120 ⁰	Ш3

(E)DA: (Euclidean) Dihedral Angle

Sophia Antipolis, December 8, 2010

ヘロト ヘアト ヘビト ヘビト

ъ

Group actions and quotient manifolds

- *I*^{*} < S³: binary icosahedral group (order: 120)
- 'Lift' of group *I* < SO(3) of rotational symmetries of dodecahedron (order: 60) under universal covering map S³ → SO(3)
- S³/I*: Poincaré Dodecahedral Space (PDS), 3-manifold of constant positive curvature.
- *Voronoi Diagram* of any *I**-orbit: consists of 120 congruent cells. Type?

イロト イポト イヨト イヨト 三日

Group actions and quotient manifolds

- *I*^{*} < S³: binary icosahedral group (order: 120)
- 'Lift' of group *I* < SO(3) of rotational symmetries of dodecahedron (order: 60) under universal covering map S³ → SO(3)
- S³/I*: Poincaré Dodecahedral Space (PDS), 3-manifold of constant positive curvature.
- *Voronoi Diagram* of any *I**-orbit: consists of 120 congruent cells. Type?

イロト イポト イヨト イヨト 三日

Estimating the volume

The maximum number of cells for the different tesselations:

- Tetrahedron (V-figure: tetrahedron): *c* < 12
- Cube (V-figure: tetrahedron): c < 13
- Octahedron (V-figure: cube): *c* < 30
- Dodecahedron (V-figure: tetrahedron): c < 127

・ 同 ト ・ ヨ ト ・ ヨ ト …

Estimating the volume

The maximum number of cells for the different tesselations:

- Tetrahedron (V-figure: tetrahedron): c < 12
- Cube (V-figure: tetrahedron): c < 13
- Octahedron (V-figure: cube): c < 30
- Dodecahedron (V-figure: tetrahedron): *c* < 127
- Tetrahedron with V-figure octahedron or icosahedron: not the orbit of a single cell!

(4 個) とくほう くほう …

Estimating the volume

The maximum number of cells for the different tesselations:

- Tetrahedron (V-figure: tetrahedron): c < 12
- Cube (V-figure: tetrahedron): c < 13
- Octahedron (V-figure: cube): *c* < 30
- Dodecahedron (V-figure: tetrahedron): c < 127

c = 120, so \mathbb{S}^3/I^* must be obtained by gluing dodecahedra (identifying faces), such that

- four dodecahedra incident to each vertex ($c_v = 4$)
- three tetrahedra incident to each edge ($c_e = 3$)

イロン 不良 とくほう 不良 とうほ

PDS: Identify opposite faces with twist

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Spherical PDS: $c_e = 3$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with minimal twist $\pi/5$

Spherical PDS: $c_e = 3$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with minimal twist $\pi/5$

Spherical PDS: $c_e = 3$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with minimal twist $\pi/5$

Spherical PDS: $c_e = 3$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with minimal twist $\pi/5$

Hyperbolic PDS: $c_e = 5$

Figure: Schlegel diagram of dodecahedron. Opposite faces identified with twist $3\pi/5$

Poincaré Dodecahedral Space

Sophia Antipolis, December 8, 2010

▲ @ ▶ | ▲ 三 ▶

Sophia Antipolis, December 8, 2010

<ロ> (四) (四) (三) (三) (三)