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Structure to Function:
Challenges in Structural Bioinformatics

. Protein complexes are ubiquitous

Stability and specificity
of macro-molecular complexes?

Prediction ?
(with little/no structural information)

. Structural information is scarce
# non redundant sequences ∼ 100 # structures

. Computer science perspective: improving the prediction of complexes
– How does bio-physics constrain macro-molecular geometry?
– How does one integrate suitable parameters into learning procedures?

.Ref: Janin, Bahadur, Chakrabarti; Quart. reviews of biophysics; 2008



Why should we get involved?

. Computational Structural Biology, key features
– O(108) (unique) genes � O(106) structures � O(103) biological complexes
– Known structures are mainly static. . .

but the entropic contribution to the free energy if often key
– Size of large molecular machines : up to millions of atoms
– Experimental insights : a zoo of experimental techniques

. Physics versus geometry
– Physical model are mainly borrowed from Newtonian mechanics:

balls, sticks - springs

. Contributions from a Computer Scientist
– Go faster – be more accurate

Joint work with S. Loriot, M. Teillaud, S. Sachdeva
– Think differently

Joint work with R. Gruenberg, J. Janin, C. Prevost
– Change the (modeling) paradigm

Joint work with T. Dreyfus



Why should we get involved?

Go faster – be more accurate
Think differently

Change the (modeling) paradigm



On the Volume of Union of Balls (Algorithms)

. Context: discriminating native vs non-native states
– Describing the packing properties of atoms : surfaces and volumes
– Application: scoring functions

Voronoi region of atoms Restricted Voronoi region

a1

a2

a3

. STAR
– Monte Carlo estimates: slow
– Fixed precisions floating-point calculations: not robust

.Ref: Gerstein, Richards; Crystallography Int’l Tables; 2002

.Ref: McConkey, Sobolev, Edelman; Bioinformatics; 2002

.Ref: McConkey, Sobolev, Edelman; PNAS 100; 2003



On the Volume of Union of Balls Cont’d (Algorithms)

. Strategy developed: certified volume calculation
– Proved a simple formula for computing the volume of a restriction
– Analyzed the predicates and constructions involved
– Interval arithmetic implementation: certified range [V−i ,V

+
i ] 3 Vi

. Observation: Robustness requires
mastering the sign of expressions

a + b
√
γ1 + c

√
γ2 + d

√
γ1γ2

with γ1 6= γ2 algebraic extensions.

. Assessment

– 1st certified algorithm for volumes/surfaces of balls and restrictions
– certified volume estimates (versus crude estimates)
– (correct classification of atoms (exposed, buried; cf misclassification))

– 10x overhead w.r.t. to calculations using doubles

.Ref: Cazals, Loriot, Machado, Teillaud; The 3dSK; CGAL 3.5; 2009

.Ref: Cazals, Kanhere, Loriot; ACM Trans. Math. Software; Submitted



Why should we get involved?

Go faster – be more accurate
Think differently

Change the (modeling) paradigm



Conformer Selection for Docking (Proof-of-concept)

. Context: mean-field theory based docking algorithms
– Select a diverse subset of s conformers out of a pool of n conformers

Conformer selection, Monod-Wyman-Changeux, 1965

Complex

+ + +

. STAR: RMSD-based or energy based conformer selection strategies

. Conformational diversity: RMSD vs geometric optimization

n conformers 10 conformers: 10 conformers:
pool to choose from diverse selection redundant selection



Conformer Selection for Docking Cont’d (Proof-of-concept)

. Strategy developed: shape matters

– Choose the selection occupying the biggest possible volume
– exposing the largest possible surface area

. Contributions
– Geometric versions of max-k-cover (NP-complete) + greedy strategy
– Computation of cell decompositions to run the optimizations
– Coarse-grain docking validations
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. Assessment
– Significant improvement for geometric and topological diversity
– Moderate for coarse-grain docking

.Ref: Cazals, Loriot; CGTA 42; 2009

.Ref: Cazals, Loriot, Machado, Teillaud; CGTA 42; 2009

.Ref: Loriot, Sachdeva, Bastard, Prevost, Cazals; ACM TCBB; 2011



Mining Protein - Protein Interfaces (Structural studies)

. Context: key interface residues; key properties / correlations?

Nature of residuesConservation of residues

???

Water dynamics Interface Geometry

. STAR

Energy Directed mutagenesis / point-wise ∆∆G ; incomplete

Free energy calculations; biological time scale beyond reach

Evolution Conserved residues;

may not apply, database dependent,conserved res. not at interface

Structure Shape, size, position of atoms; some general facts

.Ref: Bahadur, Chakrabarti, Rodier, Janin; JMB 336; 2004

.Ref: Reichmann et al.; PNAS 102; 2005

.Ref: Guharoy, Chakrabarti; PNAS 102; 2005

.Ref: Mihalek, Lichtarge; JMB 369; 2007



About Interface Models

. Distance threshold
(geometric footprint)

partner A

partner B

d

. Contacts between Voronoi
restrictions

w1

a1

b1

w2

Tile dual of pair (a1, w1) : AW interface

Tile dual of pair (a1, b1) : AB interface

Tile dual of pair (b1, w1) : BW interface

. The Voronoi interface model

– A parameter free interface model
– Singles out a single layer of atoms
– Is amenable to geometric and topological calculations

. More applications

– Shelling and depth orders
– Discrete level sets, contour tree, partial shape matching

.Ref: Cazals; Conf. on Pattern Recognition in Bioinformatics;

2010



Mining Protein - Protein Interfaces Cont’d (Structural Studies)

. Strategy developed: discrete interface parameterization
– Voronoi Shelling Order: interface partitioning into concentric shells
– Integer valued depth of atoms at interface (vs core - rim)
– Statistics (P-values, Fisher meta analysis) for various correlations

. Conservation vs dryness vs polarity . Assessment: statements
from global → per-complex

– depth and water dynamics:
significant per-complex

– conservation vs core/rim:
global trend

– polarity and depth :
global trend

.Ref: Cazals, Proust, Bahadur, Janin; Protein Science 15; 2006

.Ref: Bouvier, Gruenberg, Nilges, Cazals; Proteins 76; 2009



Why should we get involved?

Go faster – be more accurate
Think differently

Change the (modeling) paradigm



Structural Dynamics of Macromolecular Processes
Reconstructing Large Macro-molecular Assemblies

rotary propeller

Bacterial flagellum

nucleocytoplasmic transport

Nuclear Pore Complex Branched actin filaments

muscle contraction, cell division

Chaperonin cavity

protein folding

Maturing virion

HIV-1 core assembly

ATP synthase

synthesis of ATP

in mitoch. and chloroplasts

– Molecular motors
– NPC
– Actin filaments
– Chaperonins
– Virions
– ATP synthase

. Difficulties

Modularity
Flexibility

. Core questions

Reconstruction / animation
Integration of (various) experimental data

Coherence model vs experimental data

.Ref: Russel et al, Current Opinion in Cell Biology, 2009



The Zoo of curved Voronoi diagrams

. Power diagram:
d(S(c, r), p) = ‖c−p‖2−r 2

. Mobius diagram:
d(S(c, µ, α), p) = µ‖c − p‖2 − α2

. Apollonius diagram:
d(S(c, r), p) = ‖c − p‖ − r

V or(S7)

V or(S5)

V or(S6)

V or(S2)
V or(S4)

V or(S3)

V or(S1)

c1

c3

c4

c2

c6

c5

c7

. Compoundly Weighted Voronoi diagram:
d(S(c, µ, α), p) = µ‖c − p‖ − α



Prologue; I; II; III-a; III-b; Epilogue

Reconstruction of large assemblies:
global - qualitative models

versus
local - atomic-resolution models

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Alber et al; Nature; 450; 2007 Blobel et al; Nature SMB; 2009



Reconstructing Large Assemblies:
a NMR-like Data Integration Process

. Four ingredients
– Experimental data
– Model: collection of balls
– Scoring function: sum of restraints

restraint : function measuring the agreement
�model vs exp. data�

– Optimization method (simulated annealing,. . . )

. Restraints, experimental data and . . . ambiguities:

Assembly : shape cryo-EM fuzzy envelopes
Assembly : symmetry cryo-EM idem
Complexes: : interactions TAP (Y2H, overlay assays) stoichiometry
Instance: : shape Ultra-centrifugation rough shape (ellipsoids)
Instances: : locations Immuno-EM positional uncertainties

.Ref: Alber et al, Ann. Rev. Biochem. 2008 + Structure 2005



The Nuclear Pore Complex: Structure and Reconstruction
. NPC: overview

Lumen

98nm

38nm

37nm

30nm 30nm

θ = 1

θ = 2

s = 1
s = 2

s = 8

s = 7

– Eight-fold axial + planar symmetry
– 456 protein instances of 30 protein types (456 = 8× (28 + 29))

. Reconstruction results: N = 1000 optimized structures (balls):
(i) blending the balls of all the instances of one type over the N structures:

one 3D probability density map per protein type
(ii) superimposing these maps provides a global fuzzy model

. Qualitative results:
Our map is sufficient to determine the relative positions within NPC
...limited precision; not to be mistaken with the density map from EM
The localization volumes . . . allow a visual interpretation of proximities

.Ref: Alber et al; Nature; 450; 2007



Putative Models of Sub-complexes: the Y-complex

. Symmetric core of the NPC
Pom52,Pom34,Ndc1

Nup133,Nup84,Nup145C

Sec13,Nup120,Nup85,Seh1

Nic96,Nup192,Nup188,Nup157,Nup170

Nsp1,Nup49,Nup57

Pore membrane

Coat nups

Adapter nups

Channel nups

.Ref: Blobel et al; Cell; 2007

. The Y-complex: pairwise contacts

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

.Ref: Blobel et al; Nature SMB;

2009

. Y-based head-to-tail ring vs. upward-downward pointing

Cytoplasm

Nucleus

Spoke

Half-spoke

.Ref: Seo et al; PNAS; 2009

.Ref: Brohawn, Schwarz; Nature MSB; 2009

⇒ Bridging the gap between both classes of models?



Prologue; I; II; III-a; III-b; Epilogue

Building toleranced models
(Embracing the geometric noise.)



Uncertain Data and Toleranced Models:
the Example of Molecular Probability Density Maps

. Probability Density Map of a Flexible Complex:
– Each point of the probability density map:

probability of being covered by a conformation

. Question:
accommodating high/low density regions?

. Toleranced ball Si

– Two concentric balls of radius r−i < r+
i :

inner ball Si [r
−
i ]: high confidence region

outer ball Si [r
+
i ]: low confidence region

. Space-filling diagram Fλ: a continuum of models
– Radius interpolation: ri (λ) = r−i + λ(r+

i − r−i )

. Multiplicative weights required

.Ref: Cazals, Dreyfus; Symp. Geom. Processing; 2010

P1

P3

P2

P1

P3

P2

ri(λ)



Toleranced Models for the NPC

. Input: 30 probability density maps from Sali et al.

. Output: 456 toleranced proteins

. Rationale:
→ assign protein instances to pronounced local maxima of the maps

. Geometry of instances:
four canonical shapes. . .

Sec13

Pom152

Nup84

Sec13

Nup84

(i) Canonical shapes (ii) NPC at λ = 0 (iii) NPC at λ = 1



Prologue; I; II; III-a; III-b; Epilogue

Growing toleranced models and
enumerating

their finite set of topologies
(Spotting stable structures.)

VIDEO/ashape-two-cc-cycle-video.mpeg



Multi-scale Analysis of Toleranced Models:
Finite Set of Topologies and Hasse Diagram

P1[λ]

P3[λ]

P2[λ]

(i) (ii)

(iii)

iA iBiC

P1[λ]

P1[λ]

P2[λ]

P2[λ]

P3[λ]

P3[λ]

λ = 0

λC ∼ .9

λB ∼ .4

P1 P2 P3

λA ∼ .1

(iC)

(iB)

(iA)

λ = 1

λ

P1 P2

P3

P1 P2

P3

P1 P2

Skeleton graphs

P3P1

. Red-blue bicolor setting: red proteins are types singled out (e.g. TAP)

. Complexes and skeleton graphs: Hasse diagram

. Finite set of topologies: encoded into a Hasse diagram
– Birth and death of a complex
– Topological stability of a complex s(c) = λd(C)− λb(C)

. Computation: via intersection of Voronoi restrictions



Prologue; I; II; III-a; III-b; Epilogue

Assessing a toleranced model
w.r.t. a set of protein types

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Y -complex : protein types Y -complex : instance



Assessment w.r.t. a Set of Protein Types:
Geometry, Topology, Biochemistry

. Input:
– Toleranced model
– T : set of proteins types, the red proteins (TAP, types involved in sub-complex)

. Output, overall assembly:
– Geometry - biochemistry:

number of copies – symmetry analysis
TAP data: complex or mixture?

– Topological stability: death date - birth date (cf α-shape demo)
. Output, per complex:

– Biochemistry: stoichiometry of protein instances
– Geometry: volume occupied vs. expected volume

Y-complex
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Prologue; I; II; III-a; III-b; Epilogue

Assessing a toleranced model w.r.t
a high-resolution structural model

Assembly Complex: skeleton graph

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Template: skeleton graph



Assessment w.r.t. a High-resolution Structural Model:
Contact Analysis

. Input: two skeleton graphs
– template Gt , the red proteins : contacts within an atomic resolution model
– complex GC : skeleton graph of a complex of a node of the Hasse diagram

. Output: graph comparison, complex GC versus template Gt :
(common/missing/extra) × (proteins/contacts)

GC GC

p2

p3

p4

c1

c2

c3

c4

c1 c2

(p1, c1) (p2, c2)

p3

p4

GC

Gt|C

p1

p2

(p4, c1) (p3, c2)

p1

(p2, c2)

(p4, c4)
(p3, c3)

p1

(p2, c2)

(p1, c1)

p2

p3

p4

A

A′

A
A

c1

c2

c3

c4

(p4, c4)

(p3, c3)

Perfect Matching Missing Protein Types Missing and Extra Contacts

Gt|C
Gt|C

.Ref: Cazals, Karande; Theoretical Computer Science; 349 (3), 2005

.Ref: Koch; Theoretical Computer Science; 250 (1-2), 2001



Prologue; I; II; III-a; III-b; Epilogue

Insights on the NPC. . .

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Cytoplasm

Nucleus

Spoke

Half-spoke

Y -complex

Nic96

Nsp1

Nup49 Nup57

T -complex



CW Voronoi : algorithms

.Ref: Cazals, Dreyfus; SGP; 2010



The Zoo of curved Voronoi diagrams

. Power diagram:
d(S(c, r), p) = ‖c−p‖2−r 2

. Mobius diagram:
d(S(c, µ, α), p) = µ‖c − p‖2 − α2

. Apollonius diagram:
d(S(c, r), p) = ‖c − p‖ − r

V or(S7)

V or(S5)

V or(S6)

V or(S2)
V or(S4)

V or(S3)

V or(S1)

c1

c3

c4

c2

c6

c5

c7

. Compoundly Weighted Voronoi diagram:
d(S(c, µ, α), p) = µ‖c − p‖ − α



Voronoi Diagram : Topological Complications

. Partition of the space:

Vor(Si ) = {p ∈ R3/λ(Si , p) ≤ λ(Sj , p)}
. Voronoi region in generality:

– Neither connected : collection of faces
– Nor simply connected

. Dual complex:

– Apollonius complication:
Lens sand-witched region.

Exple (Top): ∆1(0, 1, 2) and ∆2(0, 1, 2)
– CW Diagram complications:

Edges without triangles.
Exple (Top): ∆(1, 3)

6= triangles that share the same edges.
Exple (Bottom): ∆1(1, 4, 5) and ∆2(1, 4, 5)
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Toleranced Tangent and Conflict Free Balls

. Rationale. Delaunay triangulation:

– Conflict Free ball
– Smallest Circumscribed ball

empty: Gabriel simplex

. Generalization to the CW case:
– Toleranced tangent ball B(p, λ):

|| pci || −r−i − λδi = 0. (1)

ci

ri(λ)

B(p, λδi)

– Conflict Free ball B(p, λ):

|| pci || −r−i − λδi > 0. (2)

S1 S2

S3

p

. Remark: Conditions (1) and (2) are parametrized by δi



Bisector of Two Toleranced Balls

. Bisector ζi,j : set of centers of balls toleranced tangent to Si and Sj .

. Existence of ζi,j : Si is trivial wrt Sj iff

δi ≤ δj and λ(Sj , ci ) < −
r−i
δi

(3)

. Geometry of ζi,j . Four cases:

– Apollonius
Hyperboloid
Hyperplane
Half straight line

– CW Voronoi
Four degree bounded curve
⇒ Two extremal Toleranced Tangent balls

minimal: Si and Sj are tangent

maximal: δi ≤ δj ⇒ Si included in Sj

Si
Sj

ζi,j



Representation of the dual as a Hasse diagram
. Focus is on:

on the intersection between Voronoi regions
rather than the embedding of the dual

. Several faces for a tuple Tk(Si0 , . . . , Sik ):
– ∆1(Tk),∆2(Tk), . . .

. Gray box:
– Smallest Toleranced Tangent ball is Conflict Free

. Red box:
– Largest Toleranced Tangent ball is Conflict Free
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Classification of simplices in the λ-complex:
Two New Cases wrt the Affine Setting

. Notations:

– ρ
Tk

: smallest Toleranced Tangent weight

– µ
∆(Tk )

: min of ρ
Tk

among co-faces

– µ∆(Tk ): max of ρ
Tk

among co-faces

– ρTk
: largest Toleranced Tangent weight

. Classification:

Singular Regular Interior

∆(Tk ) ∈ ∂(CH(S)),Gabriel, non Dominated (ρ
Tk
, µ

∆(Tk )
] (µ

∆(Tk )
,+∞]

∆(Tk ) ∈ ∂(CH(S)),non Gabriel, non Dominated (µ
∆(Tk )

,+∞]

∆(Tk ) 6∈ ∂(CH(S)), Gabriel, non Dominated (ρ
Tk
, µ

∆(Tk )
] (µ

∆(Tk )
, µ∆(Tk )] (µ∆(Tk ),+∞]

∆(Tk ) 6∈ ∂(CH(S)),non Gabriel, non Dominated (µ
∆(Tk )

, µ∆(Tk )] (µ∆(Tk ),+∞]

∆(Tk ) 6∈ ∂(CH(S)) Gabriel, Dominated (ρ
Tk
, µ

∆(Tk )
] (µ

∆(Tk )
, ρTk

] (ρTk
,+∞]

∆(Tk ) 6∈ ∂(CH(S)),non Gabriel, Dominated (µ
∆(Tk )

, ρTk
] (ρTk

,+∞]



Our Vision

. Experiments and Modeling

Geometry

Topology Statistics

Combinatorics
Optimization

Biochemistry

Biophysics

Improved descriptions

σ1

σ2

m

M

Structure-to-Function

Docking (and Folding)

Improved predictions

– atomic models (small complexes)

– coarse models (PPI networks)

. Questions

– Modeling protein complexes
– Modeling the flexibility of proteins
– Bridging the gap to

systems biology

. Partial answers from

– Geometric - topological modeling
stability analysis

– Graph theory
matching algorithms

– Statistical testing
– Dimensionality reduction

investigating correlations


