Balls, sticks, TRIANGLES AND MOLECULES

Frederic.Cazals@sophia.inria.fr

Algorithms - Biology - Structure project-team
 INRIA Sophia Antipolis France

Structure to Function:

Challenges in Structural Bioinformatics

\triangleright Protein complexes are ubiquitous

Stability and specificity of macro-molecular complexes?

Prediction ?
(with little/no structural information)
\triangleright Structural information is scarce
\# non redundant sequences ~ 100 \# structures
\triangleright Computer science perspective: improving the prediction of complexes

- How does bio-physics constrain macro-molecular geometry?
- How does one integrate suitable parameters into learning procedures?
\triangleright Ref: Janin, Bahadur, Chakrabarti; Quart. reviews of biophysics; 2008

Why should we get involved?

\triangleright Computational Structural Biology, key features

- $O\left(10^{8}\right)$ (unique) genes $\gg O\left(10^{6}\right)$ structures $\gg O\left(10^{3}\right)$ biological complexes
- Known structures are mainly static. . .
but the entropic contribution to the free energy if often key
- Size of large molecular machines : up to millions of atoms
- Experimental insights : a zoo of experimental techniques
\triangleright Physics versus geometry
- Physical model are mainly borrowed from Newtonian mechanics:
balls, sticks - springs
\triangleright Contributions from a Computer Scientist
- Go faster - Be more accurate

Joint work with S. Loriot, M. Teillaud, S. Sachdeva

- Think differently

Joint work with R. Gruenberg, J. Janin, C. Prevost

- Change the (modeling) paradigm

Joint work with T. Dreyfus

Why should we get involved?

> Go FASTER - BE MORE ACCURATE
> THINK DIFFERENTLY
> CHANGE THE (MODELING) PARADIGM

On the Volume of Union of Balls (Algorithms)

\triangleright Context: discriminating native vs non-native states

- Describing the packing properties of atoms: surfaces and volumes
- Application: scoring functions

Voronoi region of atoms

Restricted Voronoi region

\triangleright STAR

- Monte Carlo estimates: slow
- Fixed precisions floating-point calculations: not robust
\triangleright Ref: Gerstein, Richards; Crystallography Int'l Tables; 2002
\triangleright Ref: McConkey, Sobolev, Edelman; Bioinformatics; 2002
\triangleright Ref: McConkey, Sobolev, Edelman; PNAS 100; 2003

On the Volume of Union of Balls Cont'd (Algorithms)

\triangleright Strategy developed: certified volume calculation

- Proved a simple formula for computing the volume of a restriction
- Analyzed the predicates and constructions involved
- Interval arithmetic implementation: certified range $\left[V_{i}^{-}, V_{i}^{+}\right] \ni V_{i}$
\triangleright Observation: Robustness requires mastering the sign of expressions

$$
a+b \sqrt{\gamma_{1}}+c \sqrt{\gamma_{2}}+d \sqrt{\gamma_{1} \gamma_{2}}
$$

with $\gamma_{1} \neq \gamma_{2}$ algebraic extensions.

\triangleright Assessment

- 1st certified algorithm for volumes/surfaces of balls and restrictions
- certified volume estimates (versus crude estimates)
- (correct classification of atoms (exposed, buried; cf misclassification))
- 10x overhead w.r.t. to calculations using doubles
\triangleright Ref: Cazals, Loriot, Machado, Teillaud; The 3dSK; CGAL 3.5; 2009
\triangleright Ref: Cazals, Kanhere, Loriot; ACM Trans. Math. Software; Submitted

Why should we get involved?

> GO FASTER - BE MORE ACCURATE THINK DIFFERENTLY CHANGE THE (MODELING) PARADIGM

Conformer Selection for Docking (Proof-of-concept)

\triangleright Context: mean-field theory based docking algorithms

- Select a diverse subset of s conformers out of a pool of n conformers

Conformer selection, Monod-Wyman-Changeux, 1965

Complex
\triangleright STAR: RMSD-based or energy based conformer selection strategies
\triangleright Conformational diversity: RMSD vs geometric optimization

n conformers pool to choose from

10 conformers: diverse selection

10 conformers: redundant selection

Conformer Selection for Docking Cont'd (Proof-of-concept)

\triangleright Strategy developed: shape matters

- Choose the selection occupying the biggest possible volume
-

\triangleright Contributions

- Geometric versions of max-k-cover (NP-complete) + greedy strategy
- Computation of cell decompositions to run the optimizations
- Coarse-grain docking validations

\triangleright Assessment
- Significant improvement for geometric and topological diversity
- Moderate for coarse-grain docking

DRef: Cazals, Loriot; CGTA 42; 2009
\triangleright Ref: Cazals, Loriot, Machado, Teillaud; CGTA 42; 2009
\triangleright Ref: Loriot, Sachdeva, Bastard, Prevost, Cazals; ACM TCBB; 2011

Mining Protein - Protein Interfaces (Structural studies)

\triangleright Context: key interface residues; key properties / correlations?

\triangleright STAR
Energy Directed mutagenesis / point-wise $\Delta \Delta G$; incomplete Free energy calculations; biological time scale beyond reach
Evolution Conserved residues;
may not apply, database dependent,conserved res. not at interface
Structure Shape, size, position of atoms; some general facts
\triangleright Ref: Bahadur, Chakrabarti, Rodier, Janin; JMB 336; 2004
\triangleright Ref: Reichmann et al.; PNAS 102; 2005
\triangleright Ref: Guharoy, Chakrabarti; PNAS 102; 2005
\triangleright Ref: Mihalek, Lichtarge; JMB 369; 2007

About Interface Models

\triangleright Distance threshold
(geometric footprint)

\triangleright Contacts between Voronoi restrictions
 Tile dual of pair $\left(a_{1}, w_{1}\right)$: AW interface

\triangleright The Voronoi interface model

- A parameter free interface model
- Singles out a single layer of atoms
- Is amenable to geometric and topological calculations
\triangleright More applications
- Shelling and depth orders
- Discrete level sets, contour tree, partial shape matching
\triangleright Ref: Cazals; Conf. on Pattern Recognition in Bioinformatics; 2010

Mining Protein - Protein Interfaces Cont'd (Structural Studies)

\triangleright Strategy developed: discrete interface parameterization

- Voronoi Shelling Order: interface partitioning into concentric shells
- Integer valued depth of atoms at interface (vs core - rim)
- Statistics (P-values, Fisher meta analysis) for various correlations

\triangleright Conservation vs dryness vs polarity

\triangleright Assessment: statements from global \rightarrow per-complex
- depth and water dynamics: significant per-complex
- conservation vs core/rim: global trend
- polarity and depth : global trend
\triangleright Ref: Cazals, Proust, Bahadur, Janin; Protein Science 15; 2006
\triangleright Ref: Bouvier, Gruenberg, Nilges, Cazals; Proteins 76; 2009

Why should we get involved?

> Go FASTER - BE MORE ACCURATE THINK DIFFERENTLY
> CHANGE THE (MODELING) PARADIGM

Structural Dynamics of Macromolecular Processes

Reconstructing Large Macro-molecular Assemblies

\triangleright Difficulties
Modularity
Flexibility

Reconstruction / animation Integration of (various) experimental data
Coherence model vs experimental data
\triangleright Ref: Russel et al, Current Opinion in Cell Biology, 2009

The Zoo of curved Voronoi diagrams

\triangleright Power diagram:
$d(S(c, r), p)=\|c-p\|^{2}-r^{2}$

\triangleright Apollonius diagram: $d(S(c, r), p)=\|c-p\|-r$

\triangleright Mobius diagram:

$$
d(S(c, \mu, \alpha), p)=\mu\|c-p\|^{2}-\alpha^{2}
$$

\triangleright Compoundly Weighted Voronoi diagram:
$d(S(c, \mu, \alpha), p)=\mu\|c-p\|-\alpha$

Prologue; I; II; III-A; III-b; Epilogue

Reconstruction of large assemblies: GLOBAL - QUALITATIVE MODELS

VERSUS
LOCAL - ATOMIC-RESOLUTION MODELS

Alber et al; Nature; 450; 2007
Blobel et al; Nature SMB; 2009

Reconstructing Large Assemblies: a NMR-like Data Integration Process

\triangleright Four ingredients

- Experimental data
- Model: collection of balls
- Scoring function: sum of restraints restraint : function measuring the agreement

```
<model vs exp. data>
```


- Optimization method (simulated annealing,...)
\triangleright Restraints, experimental data and ... ambiguities:

Assembly	: shape	cryo-EM	fuzzy envelopes
Assembly	: symmetry	cryo-EM	idem
Complexes: $:$ interactions	TAP (Y2H, overlay assays)	stoichiometry	
Instance:	: shape	Ultra-centrifugation	rough shape (ellipsoids)
Instances:	: locations	Immuno-EM	positional uncertainties

\triangleright Ref: Alber et al, Ann. Rev. Biochem. 2008 + Structure 2005

The Nuclear Pore Complex: Structure and Reconstruction

\triangleright NPC: overview

- Eight-fold axial + planar symmetry
- 456 protein instances of 30 protein types $(456=8 \times(28+29))$
\triangleright Reconstruction results: $N=1000$ optimized structures (balls):
(i) blending the balls of all the instances of one type over the N structures: one 3D probability density map per protein type
(ii) superimposing these maps provides a global fuzzy model \triangleright Qualitative results:

Our map is sufficient to determine the relative positions within NPC ...limited precision; not to be mistaken with the density map from EM The localization volumes ... allow a visual interpretation of proximities
\triangleright Ref: Alber et al; Nature; 450; 2007

Putative Models of Sub-complexes: the Y-complex

\triangleright Symmetric core of the NPC

\triangleright Ref: Blobel et al; Cell; 2007
\triangleright The Y-complex: pairwise contacts

\triangleright Ref: Blobel et al; Nature SMB; 2009
\triangleright Y-based head-to-tail ring vs. upward-downward pointing

\triangleright Ref: Seo et al; PNAS; 2009
\triangleright Ref: Brohawn, Schwarz; Nature MSB; 2009
\Rightarrow BRidging The gap between both classes of models?

Prologue; I; II; III-A; III-b; Epilogue

Building toleranced models (Embracing the geometric noise.)

Uncertain Data and Toleranced Models: the Example of Molecular Probability Density Maps

\triangleright Probability Density Map of a Flexible Complex:

- Each point of the probability density map: probability of being covered by a conformation
\triangleright Question:
accommodating high/low density regions?
\triangleright Toleranced ball $\overline{S_{i}}$
- Two concentric balls of radius $r_{i}^{-}<r_{i}^{+}$: inner ball $\bar{S}_{i}\left[r_{i}^{-}\right]$: high confidence region outer ball $\overline{S_{i}}\left[r_{i}^{+}\right]$: low confidence region
\triangleright Space-filling diagram \mathcal{F}_{λ} : a continuum of models
- Radius interpolation: $r_{i}(\lambda)=r_{i}^{-}+\lambda\left(r_{i}^{+}-r_{i}^{-}\right)$
\triangleright Multiplicative weights required
\triangleright Ref: Cazals, Dreyfus; Symp. Geom. Processing; 2010

Toleranced Models for the NPC

\triangleright Input: 30 probability density maps from Sali et al.
\triangleright Output: 456 toleranced proteins
\triangleright Rationale:
\rightarrow assign protein instances to pronounced local maxima of the maps
\triangleright Geometry of instances:
four canonical shapes...

(i) Canonical shapes
(ii) NPC at $\lambda=0$
(iii) NPC at $\lambda=1$

Prologue; I; II; III-A; III-b; Epilogue

Growing toleranced models and

 ENUMERATINGTHEIR FINITE SET OF TOPOLOGIES (Spotting stable structures.)

VIDEO/ashape-two-cc-cycle-video.mpeg

Multi-scale Analysis of Toleranced Models: Finite Set of Topologies and Hasse Diagram

Skeleton graphs

\triangleright Red-blue bicolor setting: red proteins are types singled out (e.g. TAP)
\triangleright Complexes and skeleton graphs: Hasse diagram
\triangleright Finite set of topologies: encoded into a Hasse diagram

- Birth and death of a complex
- Topological stability of a complex $s(c)=\lambda_{d}(C)-\lambda_{b}(C)$
\triangleright Computation: via intersection of Voronoi restrictions

Prologue; I; II; III-A; III-B; Epilogue

Assessing A TOLERANCED MODEL W.R.T. A SET OF PROTEIN TYPES

Y-complex : protein types
Y-complex: instance

Assessment w.r.t. a Set of Protein Types:
 Geometry, Topology, Biochemistry

\triangleright Input:

- Toleranced model
- T : set of proteins types, the red proteins (TAP, types involved in sub-complex) \triangleright Output, overall assembly:
- Geometry - biochemistry:
number of copies - symmetry analysis
TAP data: complex or mixture?
- Topological stability: death date - birth date (cf α-shape demo)
\triangleright Output, per complex:
- Biochemistry: stoichiometry of protein instances
- Geometry: volume occupied vs. expected volume

Prologue; I; II; III-A; III-b; Epilogue

Assessing a toleranced model W.R.T
A HIGH-RESOLUTION STRUCTURAL MODEL

Assembly
Complex: skeleton graph Template: skeleton graph

Assessment w.r.t. a High-resolution Structural Model: Contact Analysis

- Input: two skeleton graphs
- template G_{t}, the red proteins : contacts within an atomic resolution model
- complex G_{C} : skeleton graph of a complex of a node of the Hasse diagram
\triangleright Output: graph comparison, complex G_{C} versus template G_{t} : (common/missing/extra) \times (proteins/contacts)

\triangleright Ref: Cazals, Karande; Theoretical Computer Science; 349 (3), 2005
\triangleright Ref: Koch; Theoretical Computer Science; 250 (1-2), 2001

Prologue; I; II; III-A; III-B; Epilogue

Insights on the NPC. . .

Y-complex
T-complex

CW Voronoi : algorithms

\triangleright Ref: Cazals, Dreyfus; SGP; 2010

The Zoo of curved Voronoi diagrams

\triangleright Power diagram:
$d(S(c, r), p)=\|c-p\|^{2}-r^{2}$

\triangleright Apollonius diagram: $d(S(c, r), p)=\|c-p\|-r$

\triangleright Mobius diagram:

$$
d(S(c, \mu, \alpha), p)=\mu\|c-p\|^{2}-\alpha^{2}
$$

\triangleright Compoundly Weighted Voronoi diagram:
$d(S(c, \mu, \alpha), p)=\mu\|c-p\|-\alpha$

Voronoi Diagram : Topological Complications

\triangleright Partition of the space:

$$
\operatorname{Vor}\left(\overline{S_{i}}\right)=\left\{p \in \mathbb{R}^{3} / \lambda\left(\overline{S_{i}}, p\right) \leq \lambda\left(\overline{S_{j}}, p\right)\right\}
$$

\triangleright Voronoi region in generality:

- Neither connected: collection of faces
- Nor simply connected
\triangleright Dual complex:

- Apollonius complication:

Lens sand-witched region.
Exple (Top): $\Delta_{1}(0,1,2)$ and $\Delta_{2}(0,1,2)$

- CW Diagram complications:

Edges without triangles.
Exple (Top): $\Delta(1,3)$
\neq triangles that share the same edges.
Exple (Bottom): $\Delta_{1}(1,4,5)$ and $\Delta_{2}(1,4,5)$

Toleranced Tangent and Conflict Free Balls

\triangleright Rationale. Delaunay triangulation:

- Conflict Free ball
- Smallest Circumscribed ball empty: Gabriel simplex
\triangleright Generalization to the CW case:
- Toleranced tangent ball $B(p, \lambda)$:

$$
\begin{equation*}
\left\|p c_{i}\right\|-r_{i}^{-}-\lambda \delta_{i}=0 \tag{1}
\end{equation*}
$$

- Conflict Free ball $B(p, \lambda)$:
$\left\|p c_{i}\right\|-r_{i}^{-}-\lambda \delta_{i}>0$.

\triangleright Remark: Conditions (1) and (2) are parametrized by δ_{i}

Bisector of Two Toleranced Balls

\triangleright Bisector $\zeta_{i, j}$: set of centers of balls toleranced tangent to $\overline{S_{i}}$ and $\overline{S_{j}}$.
\triangleright Existence of $\zeta_{i, j}: \overline{S_{i}}$ is trivial wrt $\overline{S_{j}}$ iff

$$
\begin{equation*}
\delta_{i} \leq \delta_{j} \text { and } \lambda\left(\overline{S_{j}}, c_{i}\right)<-\frac{r_{i}^{-}}{\delta_{i}} \tag{3}
\end{equation*}
$$

\triangleright Geometry of $\zeta_{i, j}$. Four cases:

- Apollonius

Hyperboloid
Hyperplane
Half straight line

- CW Voronoi

Four degree bounded curve
\Rightarrow Two extremal Toleranced Tangent balls minimal: $\overline{S_{i}}$ and $\overline{S_{j}}$ are tangent maximal: $\delta_{i} \leq \delta_{j} \Rightarrow \overline{S_{i}}$ included in $\overline{S_{j}}$

Representation of the dual as a Hasse diagram

\triangleright Focus is on:
on the intersection between Voronoi regions rather than the embedding of the dual
\triangleright Several faces for a tuple $T_{k}\left(\overline{S_{i_{0}}}, \ldots, \overline{S_{i_{k}}}\right)$:
$-\Delta_{1}\left(T_{k}\right), \Delta_{2}\left(T_{k}\right), \ldots$
\triangleright Gray box:

- Smallest Toleranced Tangent ball is Conflict Free
\triangleright Red box:
- Largest Toleranced Tangent ball is Conflict Free

Classification of simplices in the λ-complex:

Two New Cases wrt the Affine Setting

\triangleright Notations:

- $\underline{\rho}_{T_{k}}$: smallest Toleranced Tangent weight
$-\underline{\mu}_{\Delta\left(T_{k}\right)}:$ min of $\underline{\rho}_{T_{k}}$ among co-faces
$-\bar{\mu}_{\Delta\left(T_{k}\right)}$: max of $\underline{\rho}_{T_{k}}$ among co-faces
$-\bar{\rho}_{T_{k}}$: largest Toleranced Tangent weight
\triangleright Classification:

	Singular	Regular	Interior
$\Delta\left(T_{k}\right) \in \partial(C H(\overline{\mathcal{S}}))$,Gabriel, non Dominated	$\left(\underline{\rho}_{T_{k}}, \underline{\mu}_{\Delta\left(T_{k}\right)}\right]$	$\left(\underline{\mu} \Delta\left(T_{k}\right),+\infty\right]$	
$\Delta\left(T_{k}\right) \in \partial(C H(\overline{\mathcal{S}}))$,non Gabriel, non Dominated		$\left(\underline{\mu}_{\Delta\left(T_{k}\right)},+\infty\right]$	
$\Delta\left(T_{k}\right) \notin \partial(C H(\overline{\mathcal{S}}))$, Gabriel, non Dominated	$\left(\underline{\rho}_{T_{k}}, \underline{\mu}_{\Delta\left(T_{k}\right)}\right]$	$\left(\underline{\mu}_{\Delta\left(T_{k}\right)}, \bar{\mu}_{\Delta\left(T_{k}\right)}\right]$	$\left(\bar{\mu}_{\Delta\left(T_{k}\right)},+\infty\right]$
$\Delta\left(T_{k}\right) \notin \partial(C H(\overline{\mathcal{S}}))$,non Gabriel, non Dominated		$\left(\underline{\mu}_{\Delta\left(T_{k}\right)}, \bar{\mu}_{\Delta\left(T_{k}\right)}\right]$	$\left(\bar{\mu}_{\Delta\left(T_{k}\right)},+\infty\right]$
$\Delta\left(T_{k}\right) \notin \partial(C H(\overline{\mathcal{S}}))$ Gabriel, Dominated	$\left(\underline{\rho}_{T_{k}}, \underline{\mu}_{\Delta\left(T_{k}\right)}\right]$	$\left(\underline{\mu}_{\Delta\left(T_{k}\right)}, \bar{\rho}_{T_{k}}\right]$	$\left(\bar{\rho}_{T_{k}},+\infty\right]$
$\Delta\left(T_{k}\right) \notin \partial(C H(\overline{\mathcal{S}}))$,non Gabriel, Dominated		$\left(\underline{\mu}_{\Delta\left(T_{k}\right)}, \bar{\rho}_{T_{k}}\right]$	$\left(\bar{\rho}_{T_{k}},+\infty\right]$

Our Vision

\triangleright Experiments and Modeling

Structure-to-Function

- Improved descriptions
- Improved predictions
- atomic models (small complexes) - coarse models (PPI networks)

Docking (and Folding)

