
Shortest Cut Graph of a Surface
with Prescribed Vertex Set

Éric Colin de Verdière
École normale supérieure, CNRS

Paris

The Problem

Σ: compact surface without boundary;
cut graph of Σ: graph embedded on Σ that cuts Σ into a
topological disk.

Goal: Given a finite point set P on Σ, compute the shortest cut
graph with vertex set exactly P .

Why Cut a Surface into a Disk?
Applications

Cutting a surface (into one or several planar pieces), to
parameterize, put a texture, remesh, or compress it;
sometimes, one needs to cut along lines of high curvature.
The “length” function can be chosen arbitrarily, e.g., in relation
to curvature.

[Favreau, Ph.D. thesis, 2009]

Theory
Algorithms for nearly-planar graphs: separators, tree
decompositions;
building block for many algorithms to compute shortest graphs
on surfaces:

shortest splitting cycle [Chambers et al., 2006],
shortest curves within a given homotopy class [CdV and Erickson,
2006],
minimum cut [Chambers, Erickson, Nayyeri, 2009],
shortest non-crossing walks [Erickson and Nayyeri, 2011],
edgewidth and facewidth parameters [Cabello, CdV, Lazarus, 2010].

Why Cut a Surface into a Disk?
Applications

Cutting a surface (into one or several planar pieces), to
parameterize, put a texture, remesh, or compress it;
sometimes, one needs to cut along lines of high curvature.
The “length” function can be chosen arbitrarily, e.g., in relation
to curvature.

Theory
Algorithms for nearly-planar graphs: separators, tree
decompositions;
building block for many algorithms to compute shortest graphs
on surfaces:

shortest splitting cycle [Chambers et al., 2006],
shortest curves within a given homotopy class [CdV and Erickson,
2006],
minimum cut [Chambers, Erickson, Nayyeri, 2009],
shortest non-crossing walks [Erickson and Nayyeri, 2011],
edgewidth and facewidth parameters [Cabello, CdV, Lazarus, 2010].

Comparison with Previous Work
Previous work

[Erickson and Har-Peled, 2004]:
computing the shortest cut graph (without fixing vertices) is
NP-hard;
O(log2 g)-approximation in small polynomial time.

[Erickson and Whittlesey, 2006]: fast algorithm to compute the
shortest cut graph with one single (given) vertex.
[CdV, 2003]: polynomial-time algorithm to compute the shortest
graph isotopic (with fixed vertices) to a given graph.

This talk

Generalization of the algorithm by [Erickson and Whittlesey]

arbitrary finite set of vertices,
possibly non-orientable surfaces.

More natural proof
The algorithm is greedy.
(Most) optimal greedy algorithms fall within the matroid
framework.
I show that this is indeed the case here (via homology).
Proof is therefore more natural and simpler.

Algorithm Description

Simultaneously grow a disk around each point in P. Compute the
“Voronoi diagram” V of P, i.e., the set of points where these disks
collide.
A P-path is a path whose endpoints are in P.
For each edge e of V, let δ(e) be the dual “Delaunay edge”: the
shortest P-path crossing only edge e. Let the weight of e be the
length of δ(e).
Compute a maximum spanning tree T of V w.r.t. these weights.
Return {δ(e) | e ∈ V \ T}.

Algorithm Description

Simultaneously grow a disk around each point in P. Compute the
“Voronoi diagram” V of P, i.e., the set of points where these disks
collide.
A P-path is a path whose endpoints are in P.
For each edge e of V, let δ(e) be the dual “Delaunay edge”: the
shortest P-path crossing only edge e. Let the weight of e be the
length of δ(e).
Compute a maximum spanning tree T of V w.r.t. these weights.
Return {δ(e) | e ∈ V \ T}.

Algorithm Description

Simultaneously grow a disk around each point in P. Compute the
“Voronoi diagram” V of P, i.e., the set of points where these disks
collide.
A P-path is a path whose endpoints are in P.
For each edge e of V, let δ(e) be the dual “Delaunay edge”: the
shortest P-path crossing only edge e. Let the weight of e be the
length of δ(e).
Compute a maximum spanning tree T of V w.r.t. these weights.
Return {δ(e) | e ∈ V \ T}.

Algorithm Description

Simultaneously grow a disk around each point in P. Compute the
“Voronoi diagram” V of P, i.e., the set of points where these disks
collide.
A P-path is a path whose endpoints are in P.
For each edge e of V, let δ(e) be the dual “Delaunay edge”: the
shortest P-path crossing only edge e. Let the weight of e be the
length of δ(e).
Compute a maximum spanning tree T of V w.r.t. these weights.
Return {δ(e) | e ∈ V \ T}.

Algorithm Description

Simultaneously grow a disk around each point in P. Compute the
“Voronoi diagram” V of P, i.e., the set of points where these disks
collide.
A P-path is a path whose endpoints are in P.
For each edge e of V, let δ(e) be the dual “Delaunay edge”: the
shortest P-path crossing only edge e. Let the weight of e be the
length of δ(e).
Compute a maximum spanning tree T of V w.r.t. these weights.
Return {δ(e) | e ∈ V \ T}.

Trivial Example: The Case of the Sphere

Problem reformulation

Σ = Euclidean plane R2 with point at ∞ (sphere);
We actually want to compute the minimum spanning tree of P .

Well-known: MST(P) ⊆ Gab(P) ⊆ Del(P).

What does the algorithm?
computes a maximum spanning tree of the
Voronoi diagram, where the weight of a
Voronoi edge is the length of its dual
“Delaunay” edge;
the dual of the complement is the
minimum spanning tree of the Delaunay
triangulation, i.e., the minimum spanning
tree of P .

Trivial Example: The Case of the Sphere

Problem reformulation

Σ = Euclidean plane R2 with point at ∞ (sphere);
We actually want to compute the minimum spanning tree of P .

Well-known: MST(P) ⊆ Gab(P) ⊆ Del(P).

What does the algorithm?
computes a maximum spanning tree of the
Voronoi diagram, where the weight of a
Voronoi edge is the length of its dual
“Delaunay” edge;
the dual of the complement is the
minimum spanning tree of the Delaunay
triangulation, i.e., the minimum spanning
tree of P .

Trivial Example: The Case of the Sphere

Problem reformulation

Σ = Euclidean plane R2 with point at ∞ (sphere);
We actually want to compute the minimum spanning tree of P .

Well-known: MST(P) ⊆ Gab(P) ⊆ Del(P).

What does the algorithm?
computes a maximum spanning tree of the
Voronoi diagram, where the weight of a
Voronoi edge is the length of its dual
“Delaunay” edge;
the dual of the complement is the
minimum spanning tree of the Delaunay
triangulation, i.e., the minimum spanning
tree of P .

Trivial Example: The Case of the Sphere

Problem reformulation

Σ = Euclidean plane R2 with point at ∞ (sphere);
We actually want to compute the minimum spanning tree of P .

Well-known: MST(P) ⊆ Gab(P) ⊆ Del(P).

What does the algorithm?
computes a maximum spanning tree of the
Voronoi diagram, where the weight of a
Voronoi edge is the length of its dual
“Delaunay” edge;
the dual of the complement is the
minimum spanning tree of the Delaunay
triangulation, i.e., the minimum spanning
tree of P .

Metric: Combinatorial Surfaces

A fixed weighted graph G on the surface gives the metric.
The P-paths of the cut graph are restricted to lie in G and to
be non-crossing. (All the δ(e) are non-crossing.)

Metric: Combinatorial Surfaces

A fixed weighted graph G on the surface gives the metric.
The P-paths of the cut graph are restricted to lie in G and to
be non-crossing. (All the δ(e) are non-crossing.)

Metric: Combinatorial Surfaces

A fixed weighted graph G on the surface gives the metric.
The P-paths of the cut graph are restricted to lie in G and to
be non-crossing. (All the δ(e) are non-crossing.)

Metric: Combinatorial Surfaces

A fixed weighted graph G on the surface gives the metric.
The P-paths of the cut graph are restricted to lie in G and to
be non-crossing. (All the δ(e) are non-crossing.)

Metric: Combinatorial Surfaces

A fixed weighted graph G on the surface gives the metric.
The P-paths of the cut graph are restricted to lie in G and to
be non-crossing. (All the δ(e) are non-crossing.)

Metric: Combinatorial Surfaces

A fixed weighted graph G on the surface gives the metric.
The P-paths of the cut graph are restricted to lie in G and to
be non-crossing. (All the δ(e) are non-crossing.)

Running-time

O(n log n) plus size of the output: O((g + |P|)n)
where g is the genus of Σ and n is the complexity of G .

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Greedy View of the Algorithm begin end

Lemma
Alternate way of computing the same result: iteratively add to a
set S the shortest non-disconnecting Delaunay P-path p such that
S ∪ {p} leaves Σ connected.

To compute a maximum spanning tree of V: iteratively
remove minimum-weight non-disconnecting edges in V.
Each time we remove an edge e to V, we add the dual
Delaunay edge δ(e) to a set S .
Σ \ S is connected ⇔ V is connected.

Preliminaries on Matroids and Greedy Algorithms

Minimum-weight basis of a vector space
Let V be a vector space; let w : V → Z+ be a weight function.
The greedy algorithm computes a minimum-weight basis of V :

start with A = ∅;
whenever possible, iteratively add to A a minimum-weight
element linearly independent with A.

Preliminaries on Matroids and Greedy Algorithms

Minimum-weight basis of a vector space
Let V be a vector space; let w : V → Z+ be a weight function.
The greedy algorithm computes a minimum-weight basis of V :

start with A = ∅;
whenever possible, iteratively add to A a minimum-weight
element linearly independent with A.

Proof
Greedy basis G = {g1, . . . , gk} in increasing order of weight,
optimal basis O = {o1, . . . , ok} in increasing order of weight.

If w(O) < w(G), then w(oi) < w(gi) for some i :
G = { g1 ≤ g2 ≤ . . . ≤ gi−1 ≤ gi ≤ . . . ≤ gk }>

O = { o1 ≤ o2 ≤ . . . ≤ oi−1 ≤ oi ≤ . . . ≤ ok }.
At the ith step, one of {o1, . . . , oi} would be chosen instead of gi ,
contradiction!

Preliminaries on Matroids and Greedy Algorithms

Minimum-weight basis of a vector space
Let V be a vector space; let w : V → Z+ be a weight function.
The greedy algorithm computes a minimum-weight basis of V :

start with A = ∅;
whenever possible, iteratively add to A a minimum-weight
element linearly independent with A.

More generally. . .

A matroid is a pair (V , I) where V is a set and I is a non-empty set
of finite subsets of V such that:

if A ⊆ B ∈ I , then A ∈ I ;
if A,B ∈ I and |A| < |B|, then A∪{z} ∈ I for some z ∈ B \A.

Given w : V → Z+, the greedy algorithm finds a minimum-weight,
inclusionwise maximal element of I .

Strategy of the Proof: the Hidden Matroid

Formally: 1-dimensional singular homology on surfaces, over Z/2Z, relatively to P.

Rough sketch of proof (simplification)

1 We exhibit a matroid with base space the set of P-paths.
2 Let S be a set of non-crossing P-paths. Then S is an

independent set iff it does not disconnect Σ.
(In general, an independent set may contain crossing P-paths.)

3 Let S be an independent set, and p be the shortest P-path
such that S ∪ {p} is independent. Then p is Delaunay.

This proves the result. . .
The shortest maximal independent set can be computed
greedily;
the paths computed are Delaunay, and therefore non-crossing;
thus the algorithm is identical to the previous one, and
computes a shortest cut graph.

Strategy of the Proof: the Hidden Matroid

Formally: 1-dimensional singular homology on surfaces, over Z/2Z, relatively to P.

Rough sketch of proof (simplification)

1 We exhibit a matroid with base space the set of P-paths.
2 Let S be a set of non-crossing P-paths. Then S is an

independent set iff it does not disconnect Σ.
(In general, an independent set may contain crossing P-paths.)

3 Let S be an independent set, and p be the shortest P-path
such that S ∪ {p} is independent. Then p is Delaunay.

This proves the result. . .
The shortest maximal independent set can be computed
greedily;
the paths computed are Delaunay, and therefore non-crossing;
thus the algorithm is identical to the previous one, and
computes a shortest cut graph.

Strategy of the Proof: the Hidden Matroid

Formally: 1-dimensional singular homology on surfaces, over Z/2Z, relatively to P.

Rough sketch of proof (simplification)

1 We exhibit a matroid with base space the set of P-paths.
2 Let S be a set of non-crossing P-paths. Then S is an

independent set iff it does not disconnect Σ.
(In general, an independent set may contain crossing P-paths.)

3 Let S be an independent set, and p be the shortest P-path
such that S ∪ {p} is independent. Then p is Delaunay.

This proves the result. . .
The shortest maximal independent set can be computed
greedily;
the paths computed are Delaunay, and therefore non-crossing;
thus the algorithm is identical to the previous one, and
computes a shortest cut graph.

1 The Matroid

Z : Z/2Z-vector space of all sets of P-paths.
B ⊆ Z : p1 + . . .+ pk ∈ B iff there exist P-paths q1, . . . , q`
such that the concatenation of the paths

{p1, . . . , pk , q1, q1, q2, q2, . . . , q`, q`},
in some order, possibly after replacing some paths by their
reversals, is a contractible cycle.
B is a vector space included in Z .
z1, . . . , zm ∈ Z are dependent if some non-trivial linear
combination (sum) among the zi is in B .
Z is a matroid!

1 The Matroid

Z : Z/2Z-vector space of all sets of P-paths.
B ⊆ Z : p1 + . . .+ pk ∈ B iff there exist P-paths q1, . . . , q`
such that the concatenation of the paths

{p1, . . . , pk , q1, q1, q2, q2, . . . , q`, q`},
in some order, possibly after replacing some paths by their
reversals, is a contractible cycle.
B is a vector space included in Z .
z1, . . . , zm ∈ Z are dependent if some non-trivial linear
combination (sum) among the zi is in B .
Z is a matroid!

1 The Matroid

Z : Z/2Z-vector space of all sets of P-paths.
B ⊆ Z : p1 + . . .+ pk ∈ B iff there exist P-paths q1, . . . , q`
such that the concatenation of the paths

{p1, . . . , pk , q1, q1, q2, q2, . . . , q`, q`},
in some order, possibly after replacing some paths by their
reversals, is a contractible cycle.
B is a vector space included in Z .
z1, . . . , zm ∈ Z are dependent if some non-trivial linear
combination (sum) among the zi is in B .
Z is a matroid!

1 The Matroid

Z : Z/2Z-vector space of all sets of P-paths.
B ⊆ Z : p1 + . . .+ pk ∈ B iff there exist P-paths q1, . . . , q`
such that the concatenation of the paths

{p1, . . . , pk , q1, q1, q2, q2, . . . , q`, q`},
in some order, possibly after replacing some paths by their
reversals, is a contractible cycle.
B is a vector space included in Z .
z1, . . . , zm ∈ Z are dependent if some non-trivial linear
combination (sum) among the zi is in B .
Z is a matroid!

2 Independent = Non-Disconnecting
Lemma
Let {p1, . . . , pk} be a set of non-crossing P-paths. Then
{p1, . . . , pk} is an independent set iff it does not disconnect Σ.

Proof of ⇒ by contraposition.

Recall:
{z1, . . . , zm} ⊆ Z are dependent iff some non-trivial sum is in B.

p1 + . . .+ pk ∈ B iff there exist P-paths q1, . . . , q` such that the
concatenation of the paths {p1, . . . , pk , q1, q1, q2, q2, . . . , q`, q`} in
some order, possibly after replacing some paths by their reversals, is a
contractible cycle.

2 Independent = Non-Disconnecting
Lemma
Let {p1, . . . , pk} be a set of non-crossing P-paths. Then
{p1, . . . , pk} is an independent set iff it does not disconnect Σ.

Proof of ⇒ by contraposition.

Recall:
{z1, . . . , zm} ⊆ Z are dependent iff some non-trivial sum is in B.

p1 + . . .+ pk ∈ B iff there exist P-paths q1, . . . , q` such that the
concatenation of the paths {p1, . . . , pk , q1, q1, q2, q2, . . . , q`, q`} in
some order, possibly after replacing some paths by their reversals, is a
contractible cycle.

2 Independent = Non-Disconnecting
Lemma
Let {p1, . . . , pk} be a set of non-crossing P-paths. Then
{p1, . . . , pk} is an independent set iff it does not disconnect Σ.

Proof of ⇒ by contraposition.

Recall:
{z1, . . . , zm} ⊆ Z are dependent iff some non-trivial sum is in B.

p1 + . . .+ pk ∈ B iff there exist P-paths q1, . . . , q` such that the
concatenation of the paths {p1, . . . , pk , q1, q1, q2, q2, . . . , q`, q`} in
some order, possibly after replacing some paths by their reversals, is a
contractible cycle.

3 Delaunay Property
Lemma
Let S be an independent set, and z be the shortest set of P-paths
such that S ∪{z} is independent. Then z is a single Delaunay path.

Proof: Linear algebra!
Recall: T dependent ⇔ some non-trivial linear combination of
elements in T is in the vector space B .
Thus S ∪ {y} is independent ⇔ y is not a linear combination
of elements in S and B .

Single path: Assume z = p1 + . . .+ pk . Then for some i ,
S ∪ {pi} is independent. Since pi is no longer than z , we have
z = pi .
Single Delaunay path: Similar, using the fact that δ(ei) is the
shortest path crossing ei :
Assume z crosses the edges e1, . . . , ek of V. Then
z − (δ(e1) + . . .+ δ(ek)) is in B. So for some i , S ∪ {δ(ei)} is
independent. Since δ(ei) is no longer than z , we have z = δ(ei).

3 Delaunay Property
Lemma
Let S be an independent set, and z be the shortest set of P-paths
such that S ∪{z} is independent. Then z is a single Delaunay path.

Proof: Linear algebra!
Recall: T dependent ⇔ some non-trivial linear combination of
elements in T is in the vector space B .
Thus S ∪ {y} is independent ⇔ y is not a linear combination
of elements in S and B .

Single path: Assume z = p1 + . . .+ pk . Then for some i ,
S ∪ {pi} is independent. Since pi is no longer than z , we have
z = pi .
Single Delaunay path: Similar, using the fact that δ(ei) is the
shortest path crossing ei :
Assume z crosses the edges e1, . . . , ek of V. Then
z − (δ(e1) + . . .+ δ(ek)) is in B. So for some i , S ∪ {δ(ei)} is
independent. Since δ(ei) is no longer than z , we have z = δ(ei).

3 Delaunay Property
Lemma
Let S be an independent set, and z be the shortest set of P-paths
such that S ∪{z} is independent. Then z is a single Delaunay path.

Proof: Linear algebra!
Recall: T dependent ⇔ some non-trivial linear combination of
elements in T is in the vector space B .
Thus S ∪ {y} is independent ⇔ y is not a linear combination
of elements in S and B .

Single path: Assume z = p1 + . . .+ pk . Then for some i ,
S ∪ {pi} is independent. Since pi is no longer than z , we have
z = pi .
Single Delaunay path: Similar, using the fact that δ(ei) is the
shortest path crossing ei :
Assume z crosses the edges e1, . . . , ek of V. Then
z − (δ(e1) + . . .+ δ(ek)) is in B. So for some i , S ∪ {δ(ei)} is
independent. Since δ(ei) is no longer than z , we have z = δ(ei).

3 Delaunay Property
Lemma
Let S be an independent set, and z be the shortest set of P-paths
such that S ∪{z} is independent. Then z is a single Delaunay path.

Proof: Linear algebra!
Recall: T dependent ⇔ some non-trivial linear combination of
elements in T is in the vector space B .
Thus S ∪ {y} is independent ⇔ y is not a linear combination
of elements in S and B .

Single path: Assume z = p1 + . . .+ pk . Then for some i ,
S ∪ {pi} is independent. Since pi is no longer than z , we have
z = pi .
Single Delaunay path: Similar, using the fact that δ(ei) is the
shortest path crossing ei :
Assume z crosses the edges e1, . . . , ek of V. Then
z − (δ(e1) + . . .+ δ(ek)) is in B. So for some i , S ∪ {δ(ei)} is
independent. Since δ(ei) is no longer than z , we have z = δ(ei).

Conclusion
Remark
Every output P-path is:

a shortest homotopic path, and
the concatenation of two shortest paths plus an edge.

Extensions
This algorithm also solves the following problem: Given a
surface with boundary, compute the shortest set of simple
disjoint arcs that cut the surface into a disk.
Extension to PL surfaces (non-crossing paths) and smooth
(Riemannian) surfaces.

Conclusion
Remark
Every output P-path is:

a shortest homotopic path, and
the concatenation of two shortest paths plus an edge.

Extensions
This algorithm also solves the following problem: Given a
surface with boundary, compute the shortest set of simple
disjoint arcs that cut the surface into a disk.
Extension to PL surfaces (non-crossing paths) and smooth
(Riemannian) surfaces.

Naïve question (or open problem???)

How to compute the shortest (=minimum-weight) triangulation of
a surface with given vertex set? This is NP-hard in the Euclidean
plane [Mulzer, Rote, 2006]; how hard is it in the combinatorial surface
model?

