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Q : Ratio of numbers. Thalès and the pyramids (-620-546).

The multiplication is commutative (Pappus theorem).

!! all is number (commensurable) for the Pythagore’s school (-585-400).

?? No, dare to say Hippase de Métaponte, not
√

2.

R : It’s not a problem, says Dedekind, the missing numbers are those which
are inbetween.

Q : Yes, but
√

2 is special, says Galois.
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2 an arithmetic tree (
√

x + y + 2
√

x y −
√

x−√y), and/or

2 a (irreducible) polynomial p(x) = 0 and an isolating interval.

• Isolation via Descartes, Uspenksy, de Casteljau, Sturm algorithm.

• Queries via Sturm(-Habicht) method, interval arithmetic, numerical ap-
proximation and separating bounds.

• Comparison of two numbers by refinement until a separating bound:

α 6= 0 ⇒ |α| > B(Symbolic Expression of α).
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Subdvision solver

2 Bernstein basis: f(x) =
∑d

i=0 bi B
i
d(x), where Bi

d(x) =
(
d
i

)
xi(1 −

x)d−i.

b = [bi]i=0,...,d are called the control coefficients.
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i (t) + t br−1
i+1 (t), i = 0, . . . , d− r.

• The control coefficients b−(t) = (b0
0(t), b

1
0(t), . . . , b

d
0(t)) and b+(t) =

(bd
0(t), b

d−1
1 (t), . . . , b0

d(t)) describe f on [0, t] and [t, 1].

• For t = 1
2, br

i = 1
2(b

r−1
i + br−1

i+1 ).; use of adapted arithmetic.

• Number of arithmetic operations bounded by O(d2), memory space O(d).
Indeed, asymptotic complexity O(d log(d)).
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• If V (b) = 0, remove the interval.
• If V (b) = 1, output interval containing one and only one root.
• If |b− a| ≤ ε and V (b) > 0 output the interval and the multiplicity.
output: list of isolating intervals in [a, b] for the real roots of f or the
ε-multiple root.

• Multiple roots (and their multiplicity) computed within a precision ε.
• x := t/(1− t) : Uspensky method.

• Complexity: O(1
2d(d + 1) r

(
dlog2

(
1+

√
3

2s

)
e − log2(r) + 4

)
) [MVY02+]

• Natural extension to B-splines.
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Benchmarks

Pentium III 933Mhz.

The number of equations per s. (C++ with 64-bit floats; ε = 0.000001):

d 8 9 12 16 18 20
25 000 20-22 000 12-13 000 7.5-8 000 5.9-6.2 000 5.4 000

Equations per s. (precision bits vs. degree; ε = 0.000001) using GMP
library:

d 16 20 30 40 60 80 100
128-bit 96 62.5 25.4 12.5 – – –
192-bit 83.3 53.2 21.5 10.8 4.0 – –
256-bit 73.5 47.2 18.9 9.5 3.6 1.8 –
384-bit 60.2 37.7 15.2 7.6 2.9 1.4 0.8
512-bit 51 31.2 12.2 6.1 2.3 1.2 0.7

Compare favorably with other efficient solvers (Aberth method, mpsolve).

B. Mourrain 7
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Sweeping a set of (conic) circular arcs
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Sweeping a set of (conic) circular arcs

• Arcs represented by the equations of a circle and two lines.

• By resultant computation, it reduces to sign evaluations of algebraic
polynomials Pi (degree ≤ 12):

P4 t4 + P3 t3 + P2 t2 + P1 t + P0 = 0

• Inputs parameters in a bounded grid; static error bounds.

[DFMT00] 9



• Filtering technics can be used easily.

• Efficiency:

[DFMT00] 10



Preliminary benchmarks

A: 100, S:23123, V: 1916, E: 6878 Sweep (s) Incr. (s)
SplCart, ExDFMT, double 0.6 0.7
RefCart, ExDFMT, double 0.8 0.2
SplCart, ExDFMT, ZZraw 9.3 11.0
SCN, ExDFMT, ZZraw 6.0 7.0
SCN, ExDFMT, Gmpz 9.0 6.0
RefCart, ExDFMT, ZZraw 8.2 9.3
SplCart, Naive, Core 23.2 34.7
RefCart, Naive, Core 24.9 36.3
SplCart, Naive, Leda 30.7 21.6
RefCart, Naive, Leda 30.8 21.9
SplCart, ExDFMT, Gmpq 51.7 60.5
RefCart, ExDFMT, Gmpq 57.5 61.2

A:Arcs, S:Seed, V:Vertices, E:Edges. Random data.

A. Kakargias 11



A: 400, S: 43123, V: 33653, E: 131402 Sweep (sec) Incr. (sec)
SplCart, ExDFMT, double 3.5 0.6
RefCart, ExDFMT, double 5.0 1.3
SplCart, ExDFMT, ZZraw 179.5 174.9
RefCart, ExDFMT, ZZraw 156.9 147.2
SCN, ExDFMT, ZZraw 100.0 95.0
SCN, ExDFMT, Gmpz 140.0 25.0
SplCart, Naive, Core Abort Abort
RefCart, Naive, Core Abort Abort
SplCart, Naive, Leda 520.6 337.7
RefCart, Naive, Leda 523.6 345.6
SplCart, ExDFMT, Gmpq, 989.9 960.3
RefCart, ExDFMT, Gmpq, 1104.0 1009.3

A. Kakargias 12



Benchmarks

Times Exactness
Naive Polynomial Naive Pol.

double Interval double GMP static

+ real + semi-static

Data + Naive Int. double double

+ GMP
µs µs µs µs µs % %

rnd22 0.60 2.48 0.25 82 0.36 100 100
l1 ≤ r2? rnd16 0.60 2.48 0.25 78 0.41 100 100

almost 0.60 67. 0.25 115 6.80 99 78
degenerate 0.60 2170. 0.25 115 128. 8 17
rnd22 0.60 2.45 0.28 107 0.44 100 100

l1 ≤ l2? rnd16 0.60 2.45 0.28 102 0.56 100 100
almost 0.60 38.1 0.28 130 5.64 99 99
degenerate 0.60 2180. 0.28 130 144. 7 5

• PC-Linux Pentium-III 500MHz, g++ 2.95.1-O2 -mcpu=pentiumpro -march=pentiumpro

• rnda: pick at random in [−M, M ]2, M = 2a, the centers of two cercles and a common

point. Arc defined by radical axis and first cercle.

• degenerate: same construction with ending points of same abcissae.

• almost: same construction with one square radius slightly incremented.

A. Kakargias 13
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form

Ma =

 N1
a 0

. . .

0 Nd
a

 with Ni
a =

 a(ζi) ?
. . .

0 a(ζi)


Corollary: (Chow form)
∆(u) = det(u0+u1 Mx1+· · ·+un Mxn) =

∏
ζ∈Z(I)(u0+u1ζ1+· · ·+unζn)µζ .
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Resultant in one variable
Let f0 = c0,0 + · · ·+ c0,d0 xd0, f1 = c1,0 + . . . + c1,d1 xd1 (with d0 ≤ d1).
Sylvester (1840)

d0+d1︷ ︸︸ ︷
f0 · · · xd1−1f0 f1 · · · xd0−1f1

c0,0 0 c1,0 0
...

. . .
...

. . .
... c0,0

... c1,0

c0,d0

... c1,d1

...

. . .
...

. . .
...

0 c0,d0
0 c1,d1
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x
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Bézout (1779)

Θf0,f1
(x, y) :=

f1(x) f0(y)− f1(y) f0(x)

y − x
=

d1−1∑
i=0

θf0,f1,i(x) y
i
=

d1−1∑
i=0

d1−1∑
j=0

θi,j x
i
y

j
.

The Bézout matrix is Bf0,f1 = (θi,j)0≤i,i≤d1.
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=

d1−1∑
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θf0,f1,i(x) y
i
=

d1−1∑
i=0

d1−1∑
j=0

θi,j x
i
y

j
.

The Bézout matrix is Bf0,f1 = (θi,j)0≤i,i≤d1.

Theorem : R(ci,j) := det(S) vanishes iff f0 = 0, f1 = 0 has a common
root.
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Solving f1 = · · · = fn = 0 by hiding a variable

1. Construct the resultant matrix S(xn) of f1, . . . , fn as polynomials in
x1, . . . , xn−1 with coefficients in K[xn].

2. Solve S(xn)tw = 0.

• Either by solving det(S(xn)) = 0 and by deducing the corresponding
w.

• or by reducing it to an eigenproblem:
(St

d xd
n + St

d−1x
d−1
n + · · ·+ St

0) w = 0

or


0 I · · · 0
... . . . . . . ...

0 · · · 0 I
St
0 · · · St

d−2 St
d−1

− xn


St

d 0 · · · 0

0 . . . . . . ...
... . . . St

d 0
0 · · · 0 St

d


 w = 0,

3. Deduce the other coordinates of the roots from w.
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Alg. mth. # r-roots deg. # x-roots Time
1 2 4 2 0.02 s
2 6 3 6 0.02 s
3 6 3 6 0.02 s
4 4 2 4 0.02 s
5 16 4 8 0.02 s
6 4 2 4 0.02 s
7 8 4 8 0.02 s
8 6 3 0 –
9 8 4 8 0.03 s
10 12 6 12 0.03 s
11 10 10 10 0.12 s
12 16 6 0 –
13 6 5 6 0.02 s
14 42 6 42 0.12 s

Sylv. SVD # r-roots deg. # x-roots Time
1 2 4 2 0.00 s
2 6 3 4 0.00 s
3 6 3 1 0.00 s
4 4 2 2 0.00 s
5 16 4 0 –
6 4 2 4 0.00 s
7 8 4 3 0.00 s
8 6 3 2 0.00 s
9 8 4 Np –
10 12 6 Np –
11 10 10 Np –
12 16 6 10 0.07 s
13 6 5 2 0.00 s
14 42 6

Sylv. Eig. # r-roots deg. # x-roots Time
1 2 4 Np –
2 6 3 6 0.00 s
3 6 3 4 0.00 s
4 4 2 4 0.00 s
5 16 4 16 0.01 s
6 4 2 Np –
7 8 4 2 0.00 s
8 6 3 0 0.00 s
9 8 4 Np –
10 12 6 Np –
11 10 10 3 0.82 s
12 16 6 Np –
13 6 5 1 0.00 s
14 42 6 Np –

Bez. Eig. # r-roots deg. # x-roots Time
1 2 4 Np –
2 6 3 Uc –
3 6 3 3 0.00 s
4 4 2 Np –
5 16 4 Np –
6 4 2 Np –
7 8 4 1 0.01 s
8 6 3 2 0.01 s
9 8 4 6 0.00 s
10 12 6 11 0.00 s
11 10 10 6 0.19 s
12 16 6 Np –
13 6 5 2 0.00 s
14 42 6 Np –

A. Labrouzy and A. Salles 20



• Subdvision

Example ε Evaluation Number Time Number
of intervals of real roots

10 10−5 10−5 5 0.030 5

11 10−5 10−4 770 79.188 2

15 10−5 10−4 4 0.016 4

A. Labrouzy and A. Salles 21
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Curves

Algorithm: Topology of an implicit curve

• Compute the critical value for the projection along the y-abcisses.
• Above each point, compute the y-value, with their multiplicity.
• Between two critical points, compute the number of branches.
• Connect the points between two consecutive levels by y-order, the
multi-branches beeing at the multiple point.

23



Curves

Algorithm: Topology of an implicit curve

• Compute the critical value for the projection along the y-abcisses.
• Above each point, compute the y-value, with their multiplicity.
• Between two critical points, compute the number of branches.
• Connect the points between two consecutive levels by y-order, the
multi-branches beeing at the multiple point.

➱ Rationnal representation of the singular y in terms of the x.

➱ Descartes rule to detect the multiple point among the regular ones.
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topology time execution running
1 0.03 s
2 0.04 s
3 0.04 s
4 0.10 s
5 0.05 s
6 0.05 s
7 0.62 s
8 0.17 s
9 0.02 s
10 0.09 s

A. Labrouzy 25



Solving by subdivision methods

Rectangular patches: f(x, y) =
∑d1

i=0

∑d2
j=0 bj,iB

i
d1

(x)Bj
d2

(y) associated
with the box [0, 1]× [0, 1].
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Solving by subdivision methods

Rectangular patches: f(x, y) =
∑d1

i=0

∑d2
j=0 bj,iB

i
d1

(x)Bj
d2

(y) associated
with the box [0, 1]× [0, 1].

• Subdivision by row or by column, similar to the univariate case.

• Arithmetic complexity of a subdivision bounded by O(d3) (d =
max(d1, d2)), memory space O(d2).
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Solving by subdivision methods

Rectangular patches: f(x, y) =
∑d1

i=0

∑d2
j=0 bj,iB

i
d1

(x)Bj
d2

(y) associated
with the box [0, 1]× [0, 1].

• Subdivision by row or by column, similar to the univariate case.

• Arithmetic complexity of a subdivision bounded by O(d3) (d =
max(d1, d2)), memory space O(d2).

Triangular patches: f(x, y) =
∑

i+j+k=d bi,j,k
d!

i!j!k! x
i yj (1 − x − y)k

associated with the representation on the 2d simplex.
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Solving by subdivision methods

Rectangular patches: f(x, y) =
∑d1

i=0

∑d2
j=0 bj,iB

i
d1

(x)Bj
d2

(y) associated
with the box [0, 1]× [0, 1].

• Subdivision by row or by column, similar to the univariate case.

• Arithmetic complexity of a subdivision bounded by O(d3) (d =
max(d1, d2)), memory space O(d2).

Triangular patches: f(x, y) =
∑

i+j+k=d bi,j,k
d!

i!j!k! x
i yj (1 − x − y)k

associated with the representation on the 2d simplex.

• Subdivision at a new point. Arithmetic complexity O(d3), memory space
O(d2).

• Combined with Delaunay triangulations.

• Extension to A-patches.
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Approximating an implicit curve

Algorithm: Representation of the implicit curve f(x, y) = 0

input: A triangular representation of f L := ((A,B, C),b) and a
precision ε.
• If at least one of the triangle edges is bigger that ε, split the triangle
and insert the new triangles in L:
- when the number of sign changes of some row (column or diagonal) is
≥ 2,
- or when the coefficients of f ′x (or f ′y, f ′z) have not the same sign.

• Remove the triangle from L if the coefficients of f have the same sign.

• Save it
- when all the edges of the triangle are smaller than ε,
- or when the total number of sign changes on the border sides is 2 and
f ′x or f ′y, f ′z, has a constant sign. Isolate the roots.
output: A list of segments approximating the curve f(x, y) = 0.

B. Mourrain 27



• Insertion of the circumcenter (barycenter), in order to break the bad
triangle.

• No specific directions/axes used.

• New edges are constructed, no tangency problem.

• Number of triangles related to the complexe local feature size.

• Application to the intersection of curves, surfaces.

B. Mourrain 28



Examples
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Surfaces
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Examples
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nb triangles nb cellules temps d’execution

A1 - - 8093 3962 + 6 nt 3.37818 s
A2 + - 6395 3134 + 6 nt 2.90356 s
A2 - - 3598 1768+ 7 nt 1.9934 s
A3 + - 6179 3009 + 10 nt 3.01165 s
A3 - - 6290 6290 + 6 nt 3.14654 s
A4 + - 5859 2825 + 13 nt 3.14721 s
D4 + - 4035 1975 + 6 nt 1.84261 s
D4 - - 8937 4340 + 12 nt 4.29918 s

D4 - - unfold 1 7291 3577 + 10 nt 3.53391 s
D4 - - unfold 2 8269 4019 + 31 nt 3.86696 s
D4 – unfold 3 9633 4615 + 14 nt 4.35244 s

L. Deschamps 33



nb triangles nb cellules temps d’execution

D5 + - 7407 3596 + 6 nt 3.61756 s
D5 - - 4254 2014 + 9 nt 2.23405 s
D6 + - 3925 1882 +12 nt 2.1853 s
D6 - - 6983 3364 + 12 nt 3.83701 s
E6 + - 6017 2920 + 18 nt 3.53177 s
E6 - - 3638 1751 + 10 nt 2.11355 s

E7 6019 2927 + 24 nt 3.20513 s
E8 4524 2182 + 14 nt 2.78838 s
Q1 11634 4760 + 185 nt 9.04296 s
Q2 8833 3821 + 84 nt 7.30251 s
Q3 6661 3074 + 24 nt 6.55459 s
S20 8016 3498 + 258 nt 2.9955 s
S21 13542 4848 + 1962 nt 4.16841 s
S22 16722 6234 + 792 nt 5.3028 s
S23 17757 6551 + 1263 nt 5.28855 s
S26 8699 3310 + 1178 nt 4.02468 s

34



nb triangles nb cellules temps d’execution

D5 + - 7407 3596 + 6 nt 3.61756 s
D5 - - 4254 2014 + 9 nt 2.23405 s
D6 + - 3925 1882 +12 nt 2.1853 s
D6 - - 6983 3364 + 12 nt 3.83701 s
E6 + - 6017 2920 + 18 nt 3.53177 s
E6 - - 3638 1751 + 10 nt 2.11355 s

E7 6019 2927 + 24 nt 3.20513 s
E8 4524 2182 + 14 nt 2.78838 s
Q1 11634 4760 + 185 nt 9.04296 s
Q2 8833 3821 + 84 nt 7.30251 s
Q3 6661 3074 + 24 nt 6.55459 s
S20 8016 3498 + 258 nt 2.9955 s
S21 13542 4848 + 1962 nt 4.16841 s
S22 16722 6234 + 792 nt 5.3028 s
S23 17757 6551 + 1263 nt 5.28855 s
S26 8699 3310 + 1178 nt 4.02468 s

Thanks for your attention.
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