Approximate Algebraic Geometry

for curves and surfaces

B. Mourrain

Grilato
INRIA, BP 93, 06902 Sophia Antipolis
1st October 2003

Symbolic-numeric methods

for curves and surfaces

B. Mourrain

Grilato
INRIA, BP 93, 06902 Sophia Antipolis
1st October 2003

Certified/controlled algorithms

for curves and surfaces

B. Mourrain

Grilato
INRIA, BP 93, 06902 Sophia Antipolis
1st October 2003

Long time ago

Long time ago

\mathbb{Z} : Addition, substraction as geometric operations.

Long time ago

\mathbb{Z} : Addition, substraction as geometric operations.
\mathbb{Q} : Ratio of numbers. Thalès and the pyramids (-620-546).
The multiplication is commutative (Pappus theorem).

Long time ago

\mathbb{Z} : Addition, substraction as geometric operations.
$\mathbb{Q}:$ Ratio of numbers. Thalès and the pyramids (-620-546).
The multiplication is commutative (Pappus theorem).
!! all is number (commensurable) for the Pythagore's school (-585-400).

Long time ago

\mathbb{Z} : Addition, substraction as geometric operations.
$\mathbb{Q}:$ Ratio of numbers. Thalès and the pyramids (-620-546).
The multiplication is commutative (Pappus theorem).
!! all is number (commensurable) for the Pythagore's school (-585-400).
?? No, dare to say Hippase de Métaponte, not $\sqrt{2}$.

Long time ago

\mathbb{Z} : Addition, substraction as geometric operations.
$\mathbb{Q}:$ Ratio of numbers. Thalès and the pyramids (-620-546).
The multiplication is commutative (Pappus theorem).
!! all is number (commensurable) for the Pythagore's school (-585-400).
?? No, dare to say Hippase de Métaponte, not $\sqrt{2}$.
\mathbb{R} : It's not a problem, says Dedekind, the missing numbers are those which are inbetween.

Long time ago

\mathbb{Z} : Addition, substraction as geometric operations.
$\mathbb{Q}:$ Ratio of numbers. Thalès and the pyramids (-620-546).
The multiplication is commutative (Pappus theorem).
!! all is number (commensurable) for the Pythagore's school (-585-400).
?? No, dare to say Hippase de Métaponte, not $\sqrt{2}$.
\mathbb{R} : It's not a problem, says Dedekind, the missing numbers are those which are inbetween.
$\overline{\mathbb{Q}}:$ Yes, but $\sqrt{2}$ is special, says Galois.

Effective Geometric Objects

\square Effective real numbers are such that we can ask:

- algebraic::approximate(int n) a numerical approximation to an arbitrary precision 2^{n},
- compare(algebraic a, algebraic b) with a certified answer.

Effective Geometric Objects

\square Effective real numbers are such that we can ask:

- algebraic::approximate(int n) a numerical approximation to an arbitrary precision 2^{n},
- compare(algebraic a, algebraic b) with a certified answer.
\square Effective points, segments, ...
- defined with effective coordinates,
- or provide directly approximation and queries at the geometric level.

Effective Geometric Objects

\square Effective real numbers are such that we can ask:

- algebraic::approximate(int n) a numerical approximation to an arbitrary precision 2^{n},
- compare(algebraic a, algebraic b) with a certified answer.
\square Effective points, segments, ...
- defined with effective coordinates,
- or provide directly approximation and queries at the geometric level.
\square Effective curved objects
- defined implicitly with algorithms to operate on them,
- combine it with numerical, geometric approximation.

Effective Geometric Objects

\square Effective real numbers are such that we can ask:

- algebraic::approximate(int n) a numerical approximation to an arbitrary precision 2^{n},
- compare(algebraic a, algebraic b) with a certified answer.
\square Effective points, segments, ...
- defined with effective coordinates,
- or provide directly approximation and queries at the geometric level.
\square Effective curved objects
- defined implicitly with algorithms to operate on them,
- combine it with numerical, geometric approximation.

Numbers

Algebraic numbers

Represented as

\square an arithmetic tree $(\sqrt{x+y+2 \sqrt{x y}}-\sqrt{x}-\sqrt{y})$, and/or
\square a (irreducible) polynomial $p(x)=0$ and an isolating interval.

Algebraic numbers

Represented as

\square an arithmetic tree $(\sqrt{x+y+2 \sqrt{x y}}-\sqrt{x}-\sqrt{y})$, and/or
\square a (irreducible) polynomial $p(x)=0$ and an isolating interval.

- Isolation via Descartes, Uspenksy, de Casteljau, Sturm algorithm.

Algebraic numbers

Represented as

\square an arithmetic tree $(\sqrt{x+y+2 \sqrt{x y}}-\sqrt{x}-\sqrt{y})$, and/or
\square a (irreducible) polynomial $p(x)=0$ and an isolating interval.

- Isolation via Descartes, Uspenksy, de Casteljau, Sturm algorithm.
- Queries via Sturm(-Habicht) method, interval arithmetic, numerical approximation and separating bounds.

Algebraic numbers

Represented as

\square an arithmetic tree $(\sqrt{x+y+2 \sqrt{x y}}-\sqrt{x}-\sqrt{y})$, and/or
\square a (irreducible) polynomial $p(x)=0$ and an isolating interval.

- Isolation via Descartes, Uspenksy, de Casteljau, Sturm algorithm.
- Queries via Sturm(-Habicht) method, interval arithmetic, numerical approximation and separating bounds.
- Comparison of two numbers by refinement until a separating bound:

$$
\alpha \neq 0 \Rightarrow|\alpha|>B(\text { Symbolic Expression of } \alpha) .
$$

Subdvision solver

\square Bernstein basis: $f(x)=\sum_{i=0}^{d} b_{i} B_{d}^{i}(x)$, where $B_{d}^{i}(x)=\binom{d}{i} x^{i}(1-$ $x)^{d-i}$.

$$
\mathbf{b}=\left[b_{i}\right]_{i=0, \ldots, d} \text { are called the control coefficients. }
$$

Subdvision solver

\square Bernstein basis: $f(x)=\sum_{i=0}^{d} b_{i} B_{d}^{i}(x)$, where $B_{d}^{i}(x)=\binom{d}{i} x^{i}(1-$ $x)^{d-i}$.
$\mathbf{b}=\left[b_{i}\right]_{i=0, \ldots, d}$ are called the control coefficients.

- $f(0)=b_{0}, f(1)=b_{d}$,

Subdvision solver

\square Bernstein basis: $f(x)=\sum_{i=0}^{d} b_{i} B_{d}^{i}(x)$, where $B_{d}^{i}(x)=\binom{d}{i} x^{i}(1-$ $x)^{d-i}$.

$$
\mathbf{b}=\left[b_{i}\right]_{i=0, \ldots, d} \text { are called the control coefficients. }
$$

- $f(0)=b_{0}, f(1)=b_{d}$,
- $f^{\prime}(x)=\sum_{i=0}^{d-1} \Delta(\mathbf{b})_{i} B_{d-1}^{i}(x)$ where $\Delta(\mathbf{b})_{i}=b_{i+1}-b_{i}$.

Subdvision solver

\square Bernstein basis: $f(x)=\sum_{i=0}^{d} b_{i} B_{d}^{i}(x)$, where $B_{d}^{i}(x)=\binom{d}{i} x^{i}(1-$ $x)^{d-i}$.

$$
\mathbf{b}=\left[b_{i}\right]_{i=0, \ldots, d} \text { are called the control coefficients. }
$$

- $f(0)=b_{0}, f(1)=b_{d}$,
- $f^{\prime}(x)=\sum_{i=0}^{d-1} \Delta(\mathbf{b})_{i} B_{d-1}^{i}(x)$ where $\Delta(\mathbf{b})_{i}=b_{i+1}-b_{i}$.
\square Subdivision by de Casteljau algorithm:

$$
\begin{aligned}
& b_{i}^{0}=b_{i}, i=0, \ldots, d, \\
& b_{i}^{r}(t)=(1-t) b_{i}^{r-1}(t)+t b_{i+1}^{r-1}(t), \quad i=0, \ldots, d-r .
\end{aligned}
$$

Subdvision solver

\square Bernstein basis: $f(x)=\sum_{i=0}^{d} b_{i} B_{d}^{i}(x)$, where $B_{d}^{i}(x)=\binom{d}{i} x^{i}(1-$ $x)^{d-i}$.

$$
\mathbf{b}=\left[b_{i}\right]_{i=0, \ldots, d} \text { are called the control coefficients. }
$$

- $f(0)=b_{0}, f(1)=b_{d}$,
- $f^{\prime}(x)=\sum_{i=0}^{d-1} \Delta(\mathbf{b})_{i} B_{d-1}^{i}(x)$ where $\Delta(\mathbf{b})_{i}=b_{i+1}-b_{i}$.
\square Subdivision by de Casteljau algorithm:

$$
\begin{aligned}
& b_{i}^{0}=b_{i}, i=0, \ldots, d, \\
& b_{i}^{r}(t)=(1-t) b_{i}^{r-1}(t)+t b_{i+1}^{r-1}(t), \quad i=0, \ldots, d-r .
\end{aligned}
$$

- The control coefficients $\mathbf{b}^{-}(t)=\left(b_{0}^{0}(t), b_{0}^{1}(t), \ldots, b_{0}^{d}(t)\right)$ and $\mathbf{b}^{+}(t)=$ ($\left.b_{0}^{d}(t), b_{1}^{d-1}(t), \ldots, b_{d}^{0}(t)\right)$ describe f on $[0, t]$ and $[t, 1]$.

Subdvision solver

\square Bernstein basis: $f(x)=\sum_{i=0}^{d} b_{i} B_{d}^{i}(x)$, where $B_{d}^{i}(x)=\binom{d}{i} x^{i}(1-$ $x)^{d-i}$.

$$
\mathbf{b}=\left[b_{i}\right]_{i=0, \ldots, d} \text { are called the control coefficients. }
$$

- $f(0)=b_{0}, f(1)=b_{d}$,
- $f^{\prime}(x)=\sum_{i=0}^{d-1} \Delta(\mathbf{b})_{i} B_{d-1}^{i}(x)$ where $\Delta(\mathbf{b})_{i}=b_{i+1}-b_{i}$.
\square Subdivision by de Casteljau algorithm:

$$
\begin{aligned}
& b_{i}^{0}=b_{i}, i=0, \ldots, d, \\
& b_{i}^{r}(t)=(1-t) b_{i}^{r-1}(t)+t b_{i+1}^{r-1}(t), \quad i=0, \ldots, d-r .
\end{aligned}
$$

- The control coefficients $\mathbf{b}^{-}(t)=\left(b_{0}^{0}(t), b_{0}^{1}(t), \ldots, b_{0}^{d}(t)\right)$ and $\mathbf{b}^{+}(t)=$ ($\left.b_{0}^{d}(t), b_{1}^{d-1}(t), \ldots, b_{d}^{0}(t)\right)$ describe f on $[0, t]$ and $[t, 1]$.
- For $t=\frac{1}{2}, b_{i}^{r}=\frac{1}{2}\left(b_{i}^{r-1}+b_{i+1}^{r-1}\right)$.; use of adapted arithmetic.
- Number of arithmetic operations bounded by $\mathcal{O}\left(d^{2}\right)$, memory space $\mathcal{O}(d)$. Indeed, asymptotic complexity $\mathcal{O}(d \log (d))$.
\square Isolation of real roots
Proposition: (Descartes rule) $\#\{f(x)=0 ; x \in[0,1]\}=V(\mathbf{b})-2 p, p \in \mathbb{N}$.

\square Isolation of real roots

Proposition: (Descartes rule) $\#\{f(x)=0 ; x \in[0,1]\}=V(\mathbf{b})-2 p, p \in \mathbb{N}$.

Algorithm: isolation of the roots of f on the interval $[a, b]$
INPUT: A representation $(\mathbf{b},[a, b])$ associate with f and ϵ.

- If $V(\mathbf{b})>1$ and $|b-a|>\epsilon$, subdivide;
- If $V(\mathbf{b})=0$, remove the interval.
- If $V(\mathbf{b})=1$, output interval containing one and only one root.
- If $|b-a| \leq \epsilon$ and $V(\mathbf{b})>0$ output the interval and the multiplicity.

OUTPUT: list of isolating intervals in $[a, b]$ for the real roots of f or the ϵ-multiple root.

\square Isolation of real roots

Proposition: (Descartes rule) $\#\{f(x)=0 ; x \in[0,1]\}=V(\mathbf{b})-2 p, p \in \mathbb{N}$.

Algorithm: isolation of the roots of f on the interval $[a, b]$
INPUT: A representation $(\mathbf{b},[a, b])$ associate with f and ϵ.

- If $V(\mathbf{b})>1$ and $|b-a|>\epsilon$, subdivide;
- If $V(\mathbf{b})=0$, remove the interval.
- If $V(\mathbf{b})=1$, output interval containing one and only one root.
- If $|b-a| \leq \epsilon$ and $V(\mathbf{b})>0$ output the interval and the multiplicity.

OUTPUT: list of isolating intervals in $[a, b]$ for the real roots of f or the ϵ-multiple root.

- Multiple roots (and their multiplicity) computed within a precision ϵ.
- $x:=t /(1-t):$ Uspensky method.
- Complexity: $\mathcal{O}\left(\frac{1}{2} d(d+1) r\left(\left\lceil\log _{2}\left(\frac{1+\sqrt{3}}{2 s}\right)\right\rceil-\log _{2}(r)+4\right)\right)[\mathrm{MVY} 02+]$
- Natural extension to B-splines.

Benchmarks

Pentium III 933Mhz.

The number of equations per s. ($\mathrm{C}++$ with 64 -bit floats; $\epsilon=0.000001$):

d	8	9	12	16	18	20
	25000	$20-22000$	$12-13000$	$7.5-8000$	$5.9-6.2000$	5.4000

Equations per s. (precision bits vs. degree; $\epsilon=0.000001$) using GMP library:

d	16	20	30	40	60	80	100
128-bit	96	62.5	25.4	12.5	-	-	-
192-bit	83.3	53.2	21.5	10.8	4.0	-	-
256-bit	73.5	47.2	18.9	9.5	3.6	1.8	-
384-bit	60.2	37.7	15.2	7.6	2.9	1.4	0.8
512-bit	51	31.2	12.2	6.1	2.3	1.2	0.7

Compare favorably with other efficient solvers (Aberth method, mpsolve).
[Demo]

Sweeping a set of (conic) circular arcs

Sweeping a set of (conic) circular arcs

- Arcs represented by the equations of a circle and two lines.
- By resultant computation, it reduces to sign evaluations of algebraic polynomials P_{i} (degree ≤ 12):

$$
P_{4} t^{4}+P_{3} t^{3}+P_{2} t^{2}+P_{1} t+P_{0}=0
$$

- Inputs parameters in a bounded grid; static error bounds.
- Filtering technics can be used easily.
- Efficiency:

Preliminary benchmarks

A: 100, S:23123, V: 1916, E: 6878	Sweep (s)	Incr. (s)
SplCart, ExDFMT, double	0.6	0.7
RefCart, ExDFMT, double	0.8	0.2
SpICart, ExDFMT, ZZraw	9.3	11.0
SCN, ExDFMT, ZZraw	6.0	7.0
SCN, ExDFMT, Gmpz	9.0	6.0
RefCart, ExDFMT, ZZraw	8.2	9.3
SpICart, Naive, Core	23.2	34.7
RefCart, Naive, Core	24.9	36.3
SplCart, Naive, Leda	30.7	21.6
RefCart, Naive, Leda	30.8	21.9
SplCart, ExDFMT, Gmpq	51.7	60.5
RefCart, ExDFMT, Gmpq	57.5	61.2

A:Arcs, S:Seed, V:Vertices, E:Edges. Random data.

A: 400, S: 43123, V: 33653, E: 131402	Sweep (sec)	Incr. (sec)
SplCart, ExDFMT, double	3.5	0.6
RefCart, ExDFMT, double	5.0	1.3
SpICart, ExDFMT, ZZraw	179.5	174.9
RefCart, ExDFMT, ZZraw	156.9	147.2
SCN, ExDFMT, ZZraw	100.0	95.0
SCN, ExDFMT, Gmpz	140.0	25.0
SpICart, Naive, Core	Abort	Abort
RefCart, Naive, Core	Abort	Abort
SpICart, Naive, Leda	520.6	337.7
RefCart, Naive, Leda	523.6	345.6
SpICart, ExDFMT, Gmpq,	989.9	960.3
RefCart, ExDFMT, Gmpq,	1104.0	1009.3

Benchmarks

Times							Exactness	
Data		Naive		Polynomial			Naive	Pol.
		double	Interval + real	double	GMP	$\begin{gathered} \text { static } \\ + \text { semi-static } \\ + \text { Naive Int. } \\ + \text { GMP } \end{gathered}$	double	double
		$\mu \mathrm{s}$	\%	\%				
$l_{1} \leq r_{2} ?$	rnd22	0.60	2.48	0.25	82	0.36	100	100
	rnd16	0.60	2.48	0.25	78	0.41	100	100
	almost	0.60	67.	0.25	115	6.80	99	78
	degenerate	0.60	2170.	0.25	115	128.	8	17
$l_{1} \leq l_{2} ?$	rnd22	0.60	2.45	0.28	107	0.44	100	100
	rnd16	0.60	2.45	0.28	102	0.56	100	100
	almost	0.60	38.1	0.28	130	5.64	99	99
	degenerate	0.60	2180.	0.28	130	144.	7	5

- PC-Linux Pentium-III 500MHz, g++ 2.95.1-02 -mcpu=pentiumpro -march=pentiumpro
- rnda: pick at random in $[-M, M]^{2}, M=2^{a}$, the centers of two cercles and a common point. Arc defined by radical axis and first cercle.
- degenerate: same construction with ending points of same abcissae.
- almost: same construction with one square radius slightly incremented.

Points

Solvers

Solvers

- Analytic solvers: exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.
\square
\square

Solvers

- Analytic solvers: exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.

- Homotopic solvers: deform a system with known roots into the system to solve.

Projective, toric, flat, deformation.
\square
\square
\square

Solvers

- Analytic solvers: exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.

- Homotopic solvers: deform a system with known roots into the system to solve.

Projective, toric, flat, deformation.

- Subdivision solvers: use an exclusion criterion to isolate the roots.

Taylor exclusion function, interval arithmetic, Descartes rule.
\square
\square

Solvers

- Analytic solvers: exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.

- Homotopic solvers: deform a system with known roots into the system to solve.

Projective, toric, flat, deformation.

- Subdivision solvers: use an exclusion criterion to isolate the roots.

Taylor exclusion function, interval arithmetic, Descartes rule.

- Algebraic solvers: exploit the known relation between the unkowns.

Gröbner basis, normal form computations. Reduction to univariate or eigenvalue problems.
\square

Solvers

- Analytic solvers: exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.

- Homotopic solvers: deform a system with known roots into the system to solve.

Projective, toric, flat, deformation.

- Subdivision solvers: use an exclusion criterion to isolate the roots.

Taylor exclusion function, interval arithmetic, Descartes rule.

- Algebraic solvers: exploit the known relation between the unkowns.

Gröbner basis, normal form computations. Reduction to univariate or eigenvalue problems.

- Geometric solvers: project the problem onto a smaller subspace.

Resultant-based methods. Reduction to univariate or eigenvalue problems.

Solvers

- Analytic solvers: exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.

- Homotopic solvers: deform a system with known roots into the system to solve.

Projective, toric, flat, deformation.

- Subdivision solvers: use an exclusion criterion to isolate the roots.

Taylor exclusion function, interval arithmetic, Descartes rule.

- Algebraic solvers: exploit the known relation between the unkowns.

Gröbner basis, normal form computations. Reduction to univariate or eigenvalue problems.

- Geometric solvers: project the problem onto a smaller subspace.

Resultant-based methods. Reduction to univariate or eigenvalue problems.

Multiplication operators

We assume that $\mathcal{Z}(I)=\left\{\zeta_{1}, \ldots, \zeta_{d}\right\} \Leftrightarrow \mathcal{A}=\mathbb{K}[\mathbf{x}] / I$ of finite dimension D over \mathbb{K}.

$$
\left.\begin{array}{rlrl}
M_{a}: \mathcal{A} & \rightarrow \mathcal{A} & M_{a}^{t}: \widehat{\mathcal{A}} & \rightarrow \hat{\mathcal{A}} \\
u & \mapsto a u & & \mapsto
\end{array}\right)
$$

Multiplication operators

We assume that $\mathcal{Z}(I)=\left\{\zeta_{1}, \ldots, \zeta_{d}\right\} \Leftrightarrow \mathcal{A}=\mathbb{K}[\mathbf{x}] / I$ of finite dimension D over \mathbb{K}.

$$
\begin{aligned}
M_{a}: \mathcal{A} & \rightarrow \mathcal{A} & M_{a}^{\mathrm{t}}: \widehat{\mathcal{A}} & \rightarrow \widehat{\mathcal{A}} \\
u & \mapsto a u & \Lambda & \mapsto a \cdot \Lambda=\Lambda \circ M_{a}
\end{aligned}
$$

Theorem:

\square The eigenvalues of M_{a} are $\left\{a\left(\zeta_{1}\right), \ldots, a\left(\zeta_{d}\right)\right\}$.
\square The eigenvectors of all $\left(M_{a}^{\mathrm{t}}\right)_{a \in \mathcal{A}}$ are (up to a scalar) $\mathbf{1}_{\zeta_{i}}: p \mapsto p\left(\zeta_{i}\right)$.

Multiplication operators

We assume that $\mathcal{Z}(I)=\left\{\zeta_{1}, \ldots, \zeta_{d}\right\} \Leftrightarrow \mathcal{A}=\mathbb{K}[\mathbf{x}] / I$ of finite dimension D over \mathbb{K}.

$$
\left.\begin{array}{rlrl}
M_{a}: \mathcal{A} & \rightarrow \mathcal{A} & M_{a}^{\mathrm{t}}: \widehat{\mathcal{A}} & \rightarrow \hat{\mathcal{A}} \\
u & \mapsto a u & & \mapsto
\end{array}\right)
$$

Theorem:
\square The eigenvalues of M_{a} are $\left\{a\left(\zeta_{1}\right), \ldots, a\left(\zeta_{d}\right)\right\}$.
\square The eigenvectors of all $\left(M_{a}^{\mathrm{t}}\right)_{a \in \mathcal{A}}$ are (up to a scalar) $\mathbf{1}_{\zeta_{i}}: p \mapsto p\left(\zeta_{i}\right)$.

Theorem: In a basis of \mathcal{A}, all the matrices $M_{a}(a \in \mathcal{A})$ are of the form

$$
\mathrm{M}_{a}=\left[\begin{array}{ccc}
\mathrm{N}_{a}^{1} & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & \mathrm{~N}_{a}^{d}
\end{array}\right] \text { with } \mathrm{N}_{a}^{i}=\left[\begin{array}{ccc}
a\left(\zeta_{i}\right) & & \star \\
\mathbf{0} & \ddots & a\left(\zeta_{i}\right)
\end{array}\right]
$$

Multiplication operators

We assume that $\mathcal{Z}(I)=\left\{\zeta_{1}, \ldots, \zeta_{d}\right\} \Leftrightarrow \mathcal{A}=\mathbb{K}[\mathbf{x}] / I$ of finite dimension D over \mathbb{K}.

$$
\left.\begin{array}{rlrl}
M_{a}: \mathcal{A} & \rightarrow \mathcal{A} & M_{a}^{\mathrm{t}}: \widehat{\mathcal{A}} & \rightarrow \hat{\mathcal{A}} \\
u & \mapsto a u & & \Lambda
\end{array}\right)
$$

Theorem:

\square The eigenvalues of M_{a} are $\left\{a\left(\zeta_{1}\right), \ldots, a\left(\zeta_{d}\right)\right\}$.
\square The eigenvectors of all $\left(M_{a}^{\mathrm{t}}\right)_{a \in \mathcal{A}}$ are (up to a scalar) $\mathbf{1}_{\zeta_{i}}: p \mapsto p\left(\zeta_{i}\right)$.

Theorem: In a basis of \mathcal{A}, all the matrices $M_{a}(a \in \mathcal{A})$ are of the form

$$
\mathrm{M}_{a}=\left[\begin{array}{ccc}
\mathbb{N}_{a}^{1} & & 0 \\
& \ddots & \\
0 & & \mathrm{~N}_{a}^{d}
\end{array}\right] \text { with } \mathrm{N}_{a}^{i}=\left[\begin{array}{ccc}
a\left(\zeta_{i}\right) & & \star \\
0 & \ddots & a\left(\zeta_{i}\right)
\end{array}\right]
$$

Corollary: (Chow form)
$\Delta(\mathbf{u})=\operatorname{det}\left(u_{0}+u_{1} \mathbb{M}_{x_{1}}+\cdots+u_{n} \mathbb{M}_{x_{n}}\right)=\prod_{\zeta \in \mathcal{Z}(I)}\left(u_{0}+u_{1} \zeta_{1}+\cdots+u_{n} \zeta_{n}\right)^{\mu_{\zeta}}$.

Resultant in one variable

$$
\text { Let } f_{0}=c_{0,0}+\cdots+c_{0, d_{0}} x^{d_{0}}, \quad f_{1}=c_{1,0}+\ldots+c_{1, d_{1}} x^{d_{1}}\left(\text { with } d_{0} \leq d_{1}\right)
$$

Resultant in one variable

Let $f_{0}=c_{0,0}+\cdots+c_{0, d_{0}} x^{d_{0}}, \quad f_{1}=c_{1,0}+\ldots+c_{1, d_{1}} x^{d_{1}}\left(\right.$ with $\left.d_{0} \leq d_{1}\right)$. Sylvester (1840)

Resultant in one variable

Let $f_{0}=c_{0,0}+\cdots+c_{0, d_{0}} x^{d_{0}}, \quad f_{1}=c_{1,0}+\ldots+c_{1, d_{1}} x^{d_{1}}\left(\right.$ with $\left.d_{0} \leq d_{1}\right)$. Sylvester (1840)

$$
\left.\begin{array}{c}
\overbrace{f_{0} \cdots x^{d_{1}-1_{f}}}^{d_{0}+d_{1}} \\
{\left[\begin{array}{ccc|ccc}
f_{1} \cdots & \cdots x_{0}-1_{f_{1}} \\
c_{0,0} & & 0 & c_{1,0} & & 0 \\
\vdots & \ddots & & \vdots & \ddots & \\
\vdots & & c_{0,0} & \vdots & & c_{1,0} \\
c_{0, d_{0}} & & \vdots & c_{1, d_{1}} & & \vdots \\
& \ddots & \vdots & & \ddots & \vdots \\
0 & & c_{0, d_{0}} & 0 & & c_{1, d_{1}}
\end{array}\right]}
\end{array} \begin{array}{l}
1 \\
x \\
x^{d_{1}-1} \\
\\
x^{d_{0}+d_{1}-1}
\end{array}\right\} d_{0}+d_{1}
$$

Bézout (1779)

$\Theta_{f_{0}, f_{1}}(x, y):=\frac{f_{1}(x) f_{0}(y)-f_{1}(y) f_{0}(x)}{y-x}=\sum_{i=0}^{d_{1}-1} \theta_{f_{0}, f_{1}, i}(x) y^{i}=\sum_{i=0}^{d_{1}-1} \sum_{j=0}^{d_{1}-1} \theta_{i, j} x^{i} y^{j}$.
The Bézout matrix is $\mathrm{B}_{f_{0}, f_{1}}=\left(\theta_{i, j}\right)_{0 \leq i, i \leq d_{1}}$.

Resultant in one variable

Let $f_{0}=c_{0,0}+\cdots+c_{0, d_{0}} x^{d_{0}}, \quad f_{1}=c_{1,0}+\ldots+c_{1, d_{1}} x^{d_{1}}\left(\right.$ with $\left.d_{0} \leq d_{1}\right)$. Sylvester (1840)

Bézout (1779)

$\Theta_{f_{0}, f_{1}}(x, y):=\frac{f_{1}(x) f_{0}(y)-f_{1}(y) f_{0}(x)}{y-x}=\sum_{i=0}^{d_{1}-1} \theta_{f_{0}, f_{1}, i}(x) y^{i}=\sum_{i=0}^{d_{1}-1} \sum_{j=0}^{d_{1}-1} \theta_{i, j} x^{i} y^{j}$.
The Bézout matrix is $\mathrm{B}_{f_{0}, f_{1}}=\left(\theta_{i, j}\right)_{0 \leq i, i \leq d_{1}}$.
Theorem : $R\left(c_{i, j}\right):=\operatorname{det}(S)$ vanishes iff $f_{0}=0, f_{1}=0$ has a common root.

Solving $f_{1}=\cdots=f_{n}=0$ by hiding a variable

1. Construct the resultant matrix $\mathrm{S}\left(x_{n}\right)$ of f_{1}, \ldots, f_{n} as polynomials in x_{1}, \ldots, x_{n-1} with coefficients in $\mathbb{K}\left[x_{n}\right]$.
2. Solve $\mathrm{S}\left(x_{n}\right)^{t} \mathbf{w}=0$.

- Either by solving $\operatorname{det}\left(\mathrm{S}\left(x_{n}\right)\right)=0$ and by deducing the corresponding w.
- or by reducing it to an eigenproblem:

$$
\left(\mathrm{S}_{d}^{t} x_{n}^{d}+\mathrm{S}_{d-1}^{t} x_{n}^{d-1}+\cdots+\mathrm{S}_{0}^{t}\right) \mathbf{w}=0
$$

$$
\left(\left[\begin{array}{cccc}
0 & \mathbb{I} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \mathbb{I} \\
\mathrm{~S}_{0}^{t} & \cdots & \mathrm{~S}_{d-2}^{t} & \mathrm{~S}_{d-1}^{t}
\end{array}\right]-x_{n}\left[\begin{array}{cccc}
\mathrm{S}_{d}^{t} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \mathrm{~S}_{d}^{t} & 0 \\
0 & \cdots & 0 & \mathrm{~S}_{d}^{t}
\end{array}\right]\right) \underline{\mathrm{w}}=0
$$

3. Deduce the other coordinates of the roots from \mathbf{w}.

Comparison

Alg. mth.	\# r-roots	deg.	\# x-roots	Time	Sylv. SVD	\# r-roots	deg.	\# x-roots	Time
1	2	4	2	0.02 s	1	2	4	2	0.00 s
2	6	3	6	0.02 s	2	6	3	4	0.00 s
3	6	3	6	0.02 s	3	6	3	1	0.00 s
4	4	2	4	0.02 s	4	4	2	2	0.00 s
5	16	4	8	0.02 s	5	16	4	0	-
6	4	2	4	0.02 s	6	4	2	4	0.00 s
7	8	4	8	0.02 s	7	8	4	3	0.00 s
8	6	3	0	-	8	6	3	2	0.00 s
9	8	4	8	0.03 s	9	8	4	Np	-
10	12	6	12	0.03 s	10	12	6	Np	-
11	10	10	10	0.12 s	11	10	10	Np	-
12	16	6	0	-	12	16	6	10	0.07 s
13	6	5	6	0.02 s	13	6	5	2	0.00 s
14	42	6	42	0.12 s	14	42	6		
Sylv. Eig.	\# r-roots	deg.	\# x-roots	Time	Bez. Eig.	\# r-roots	deg.	\# x-roots	Time
1	2	4	Np	-	1	2	4	Np	-
2	6	3	6	0.00 s	2	6	3	Uc	-
3	6	3	4	0.00 s	3	6	3	3	0.00 s
4	4	2	4	0.00 s	4	4	2	Np	-
5	16	4	16	0.01 s	5	16	4	Np	-
6	4	2	Np	-	6	4	2	Np	-
7	8	4	2	0.00 s	7	8	4	1	0.01 s
8	6	3	0	0.00 s	8	6	3	2	0.01 s
9	8	4	Np	-	9	8	4	6	0.00 s
10	12	6	Np	-	10	12	6	11	0.00 s
11	10	10	3	0.82 s	11	10	10	6	0.19 s
12	16	6	Np	-	12	16	6	Np	-
13	6	5	1	0.00 s	13	6	5	2	0.00 s
14	42	6	Np	-	14	42	6	Np	-

- Subdvision

Example	ε	Evaluation	Number of intervals	Time	Number of real roots
10	10^{-5}	10^{-5}	5	0.030	5
11	10^{-5}	10^{-4}	770	79.188	2
15	10^{-5}	10^{-4}	4	0.016	4

Curves

Curves

Curves

Algorithm: Topology of an implicit curve

- Compute the critical value for the projection along the y-abcisses.
- Above each point, compute the y-value, with their multiplicity.
- Between two critical points, compute the number of branches.
- Connect the points between two consecutive levels by y-order, the multi-branches beeing at the multiple point.

Curves

Algorithm: Topology of an implicit curve

- Compute the critical value for the projection along the y-abcisses.
- Above each point, compute the y-value, with their multiplicity.
- Between two critical points, compute the number of branches.
- Connect the points between two consecutive levels by y-order, the multi-branches beeing at the multiple point.
\Rightarrow Rationnal representation of the singular y in terms of the x.
\Rightarrow Descartes rule to detect the multiple point among the regular ones.

Examples

topology	time execution running
1	0.03 s
2	0.04 s
3	0.04 s
4	0.10 s
5	0.05 s
6	0.05 s
7	0.62 s
8	0.17 s
9	0.02 s
10	0.09 s

Solving by subdivision methods

Rectangular patches: $f(x, y)=\sum_{i=0}^{d_{1}} \sum_{j=0}^{d_{2}} b_{j, i} B_{d_{1}}^{i}(x) B_{d_{2}}^{j}(y)$ associated with the box $[0,1] \times[0,1]$.

Solving by subdivision methods

Rectangular patches: $f(x, y)=\sum_{i=0}^{d_{1}} \sum_{j=0}^{d_{2}} b_{j, i} B_{d_{1}}^{i}(x) B_{d_{2}}^{j}(y)$ associated with the box $[0,1] \times[0,1]$.

- Subdivision by row or by column, similar to the univariate case.
- Arithmetic complexity of a subdivision bounded by $\mathcal{O}\left(d^{3}\right) \quad(d=$ $\left.\max \left(d_{1}, d_{2}\right)\right)$, memory space $\mathcal{O}\left(d^{2}\right)$.

Solving by subdivision methods

Rectangular patches: $f(x, y)=\sum_{i=0}^{d_{1}} \sum_{j=0}^{d_{2}} b_{j, i} B_{d_{1}}^{i}(x) B_{d_{2}}^{j}(y)$ associated with the box $[0,1] \times[0,1]$.

- Subdivision by row or by column, similar to the univariate case.
- Arithmetic complexity of a subdivision bounded by $\mathcal{O}\left(d^{3}\right)(d=$ $\left.\max \left(d_{1}, d_{2}\right)\right)$, memory space $\mathcal{O}\left(d^{2}\right)$.

Triangular patches: $\quad f(x, y)=\sum_{i+j+k=d} b_{i, j, k} \frac{d!}{i!j!k!} x^{i} y^{j}(1-x-y)^{k}$ associated with the representation on the 2 d simplex.

Solving by subdivision methods

Rectangular patches: $f(x, y)=\sum_{i=0}^{d_{1}} \sum_{j=0}^{d_{2}} b_{j, i} B_{d_{1}}^{i}(x) B_{d_{2}}^{j}(y)$ associated with the box $[0,1] \times[0,1]$.

- Subdivision by row or by column, similar to the univariate case.
- Arithmetic complexity of a subdivision bounded by $\mathcal{O}\left(d^{3}\right)(d=$ $\left.\max \left(d_{1}, d_{2}\right)\right)$, memory space $\mathcal{O}\left(d^{2}\right)$.

Triangular patches: $\quad f(x, y)=\sum_{i+j+k=d} b_{i, j, k} \frac{d!}{i!j!k!} x^{i} y^{j}(1-x-y)^{k}$ associated with the representation on the 2 d simplex.

- Subdivision at a new point. Arithmetic complexity $\mathcal{O}\left(d^{3}\right)$, memory space $\mathcal{O}\left(d^{2}\right)$.
- Combined with Delaunay triangulations.
- Extension to A-patches.

Approximating an implicit curve

Algorithm: Representation of the implicit curve $f(x, y)=0$

INPUT: A triangular representation of $f L:=((A, B, C), \mathbf{b})$ and a precision ϵ.

- If at least one of the triangle edges is bigger that ϵ, split the triangle and insert the new triangles in L :
- when the number of sign changes of some row (column or diagonal) is ≥ 2,
- or when the coefficients of f_{x}^{\prime} (or $f_{y}^{\prime}, f_{z}^{\prime}$) have not the same sign.
- Remove the triangle from L if the coefficients of f have the same sign.
- Save it
- when all the edges of the triangle are smaller than ϵ,
- or when the total number of sign changes on the border sides is 2 and f_{x}^{\prime} or $f_{y}^{\prime}, f_{z}^{\prime}$, has a constant sign. Isolate the roots.
OUTPUT: A list of segments approximating the curve $f(x, y)=0$.
- Insertion of the circumcenter (barycenter), in order to break the bad triangle.
- No specific directions/axes used.
- New edges are constructed, no tangency problem.
- Number of triangles related to the complexe local feature size.
- Application to the intersection of curves, surfaces.

Examples

Surfaces

Examples

	nb triangles	nb cellules	temps d'execution
$\mathrm{A} 1--$	8093	$3962+6 \mathrm{nt}$	3.37818 s
$\mathrm{~A} 2+-$	6395	$3134+6 \mathrm{nt}$	2.90356 s
$\mathrm{~A} 2--$	3598	$1768+7 \mathrm{nt}$	1.9934 s
$\mathrm{~A} 3+-$	6179	$3009+10 \mathrm{nt}$	3.01165 s
$\mathrm{~A} 3--$	6290	$6290+6 \mathrm{nt}$	3.14654 s
$\mathrm{~A} 4+-$	5859	$2825+13 \mathrm{nt}$	3.14721 s
$\mathrm{D} 4+-$	4035	$1975+6 \mathrm{nt}$	1.84261 s
$\mathrm{D} 4--$	8937	$4340+12 \mathrm{nt}$	4.29918 s
$\mathrm{D} 4-$ - unfold 1	7291	$3577+10 \mathrm{nt}$	3.53391 s
$\mathrm{D} 4-$ - unfold 2	8269	$4019+31 \mathrm{nt}$	3.86696 s
D4 - unfold 3	9633	$4615+14 \mathrm{nt}$	4.35244 s

	nb triangles	nb cellules	temps d'execution
D5 + -	7407	$3596+6 \mathrm{nt}$	3.61756 s
D5 - -	4254	$2014+9 \mathrm{nt}$	2.23405 s
D6 + -	3925	$1882+12 \mathrm{nt}$	2.1853 s
D6 --	6983	$3364+12 \mathrm{nt}$	3.83701 s
E6 +-	6017	$2920+18 \mathrm{nt}$	3.53177 s
E6 - -	3638	$1751+10 \mathrm{nt}$	2.11355 s
E7	6019	$2927+24 \mathrm{nt}$	3.20513 s
E8	4524	$2182+14 \mathrm{nt}$	2.78838 s
Q1	11634	$4760+185 \mathrm{nt}$	9.04296 s
Q2	8833	$3821+84 \mathrm{nt}$	7.30251 s
Q3	6661	$3074+24 \mathrm{nt}$	6.55459 s
S20	8016	$3498+258 \mathrm{nt}$	2.9955 s
S21	13542	$4848+1962 \mathrm{nt}$	4.16841 s
S22	16722	$6234+792 \mathrm{nt}$	5.3028 s
S23	17757	$6551+1263 \mathrm{nt}$	5.28855 s
S26	8699	$3310+1178 \mathrm{nt}$	4.02468 s

	nb triangles	nb cellules	temps d'execution
D5 + -	7407	$3596+6 \mathrm{nt}$	3.61756 s
D5 - -	4254	$2014+9 \mathrm{nt}$	2.23405 s
D6 + -	3925	$1882+12 \mathrm{nt}$	2.1853 s
D6 --	6983	$3364+12 \mathrm{nt}$	3.83701 s
E6 +-	6017	$2920+18 \mathrm{nt}$	3.53177 s
E6 - -	3638	$1751+10 \mathrm{nt}$	2.11355 s
E7	6019	$2927+24 \mathrm{nt}$	3.20513 s
E8	4524	$2182+14 \mathrm{nt}$	2.78838 s
Q1	11634	$4760+185 \mathrm{nt}$	9.04296 s
Q2	8833	$3821+84 \mathrm{nt}$	7.30251 s
Q3	6661	$3074+24 \mathrm{nt}$	6.55459 s
S20	8016	$3498+258 \mathrm{nt}$	2.9955 s
S21	13542	$4848+1962 \mathrm{nt}$	4.16841 s
S22	16722	$6234+792 \mathrm{nt}$	5.3028 s
S23	17757	$6551+1263 \mathrm{nt}$	5.28855 s
S26	8699	$3310+1178 \mathrm{nt}$	4.02468 s

Thanks for your attention.

