\mathbb{C}^{*}-actions and Kinematics

S. Di Rocco ${ }^{a}$, D. Eklund ${ }^{a}$, A. J. Sommese ${ }^{b}$ and C. Wampler ${ }^{c}$
${ }^{a}$ KTH, Mathematics, Stockholm, Sweden
${ }^{b}$ U. of Notre Dame, Department of Mathematics, Notre Dame, IN, USA
${ }^{c}$ General Motors R\&D, Warren, Michigan, USA and U. of Notre Dame, Notre Dame, IN, USA
Let X be a nonsingular algebraic variety with a \mathbb{C}^{*}-action having a finite fixed point set. It is a classical result of Bialynicki-Birula that the action induces two decompositions of X in invariant (Zariski) locally closed subsets, called the "plus" and "minus" decomposition, in short the B-B-decompositions. The invariant factors form a basis for the Chow ring of X. Thus the intersection of factors of complementary dimension determines the intersection of two subvarieties of X, of complementary dimension.

An algorithm (the intersection algorithm) to compute intersections of certain subvarieties of X will be presented. The method uses homotopy continuation to conveniently move the factors coming from the two B-B-decompositions, and track back the intersection points.

Kinematics problems are typically concerned with finding solutions consisting of "special Euclidean transforms in 3-space". Such transforms are in one to one correspondence with points on a non singular quadric hypersurface in \mathbb{P}^{7}, called the Study Quadric. This variety has a large choice of \mathbb{C}^{*}-actions.

The Inverse Kinematics Problem (IKP) of a general 6R can be reduced to finding the intersection points of two 3 -dimensional subvarieties of the Study Quadric. Thus the intersection algorithm provides a new algorithm to solve the IKP of a general 6R.

