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Stetter'00

* Construct differential operators
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Lercerf’02, Leykin etc.’05,07, Ojika etc.’83,'87



Notations

Consider a polynomial systeme C|x| = C[xy, ...

y

I
o

fl(Xl, - ,XS)
fa(Xq,...,%) = 0,

L fixe,.0%) = 0.

Letl = (f1,..., f;) be the ideal generated by, . ..
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* AnidealQis primaryif, for any f,g € C|x|,
fgeQ=fcQor ImeN, g"eQ
* Everyideal has an irredundant primary decomposition
| =Ni_1Qi, and Qi ¢ Ni£jQ;

Qj is calledprimary component (ideal)f I.

 The minimal nonnegative integers.t../Q" ¢ Qis called
theindexof Q.



Theorem 1. [Van Der Waerden 1970%uppose the polynomial
iIdeal | has an isolated primary componeitwhose associated
prime P is maximal, ana is the index of), |1 is the multiplicity.

* |If 0 <p,then
dim(C[x]/(1,P°~1)) < dim(C[x]/(1,P°))
* If o> p,then
Q= (I,P°) = (1,P%)
Corollary 2. The index Is less than or equal to the multiplicity

p < pu=dim(C[x]/Q)



Coefficient Matrix

F can be written in terms of its coefficient matl‘idéo) as

[ 4\ [0)
d 0

X1 X2
vo | % | _|0
g —
X1 0
Xs 0]




Prolongation
* Successive prolongations yield

FO_—F FO=FuUxFU---UXF,...

Méo) Vg =0, Mél) Vg1 =0,...

wherev; = [x',x"* ... x,1] .



Prolongation

* Successive prolongations yield
FO=F FO=FUxFU---UxF,...

Méo) Vg =0, Mél) Vg1 =0,...

wherev; = [xi,xi—l,...,x,l}T.

e dimF© =dim NuIIspacéMéO))



Geometric Projection
* A single geometric projection is defined as

n(F) = {[xd—l, e ad MO xd T = o}



Geometric Projection
* A single geometric projection is defined as

n(F) = {[xd—l, e ad MO xd T = o}

 dimm(F(9) is the dimension of a linear space spanned by

the null vectors oi\/léo) corresponding to the monomials of
the highest degree being deleted.



Criterion of Involution

Theorem 2. [Zhi and Reid 2004 A zero dimensional polynomial
systent is involutive at prolongation ordem and projected

order ¢ if and only if i’ (F (™) satisfies the projected elimination
test:

dim 7t (F<m>) — dim 1 +s (F<m+1>)

and the symbol involutive test:

dim 1¢ (F<m)) —dimmtt?! (|:<m))
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SNEPSolver in [Zhi and Reid 2004]

e For the tolerance, computedimt (F(™) by SVD.

* Seek the smallesh and largest such thaft' (F(™) is
approximately involutive.

* The number of solutions of polynomial systéms

d = dim(C[x]/1) = dimft(F(M).

* The multiplication matriceMxl, I\/IXS are formed from
the null vectors oft (F (™) andn”l( m)),
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Compute Primary Component |

* Form the prime ideaP = (X3 — X1,...,Xs— Xs).

* Computed, = dim(C[x]/(l,P¥)) by SNEPSolver for a
given tolerance until d, = dy_1, set

p=k—1, p=d,, Q=(I,P").

e Compute the multiplication matricégy, , ..., My, of
C[x]/Q by SNEPSolver.



Example 1 [Ojika 1987]

| = (fi=x§+xo—3, fo =x;+0.125¢% — 1.5)
(1,2) is a3-fold solution. FormP = (x1 — 1, % — 2).



Example 1 [Ojika 1987]
| = (fi =X +%—3, fo=x;+0.1255 — 1.5)

(1,2) is a3-fold solution. FormP = (x; — 1, x> — 2).
-mménzmméa:2:¢MMCXKlﬂ)

) =2
o dimF\Y = dimF{? = 3= dim(C[x]/(1,P%)) = 3
) =3

e dim Fﬁ — dime) = 3= dim(C[x]/(1,P*))



Example 1 [Ojika 1987]

| = (fi =X +%—3, fo=x;+0.1255 — 1.5)

(1,2) is a3-fold solution. FormP =
:mm%a

. disz(l)
. dimF?fl)
. dimFéf'U

:meE
:mmd”

= 2 = dim(C|x

= 3= dim(C|x

= 3= dim(C|x

Indexp = 3, multiplicity p = 3.

(X1 — 1, %2 —2).
1/(1,P))
1/(1,P%))
1/(1,P%)

2
3.
3



Example 1 (continued)
The multiplication matriceggcal ring) w.r.t. {x;,x2, 1}

0 -1 3 6 3 —10
My, = |6 3 —10|,My,=|-8 0 12
1 0 O 0 1 O




Example 1 (continued)
The multiplication matriceggcal ring) w.r.t. {x;,x2, 1}

0 -1 3 6 3 —10
My, = |6 3 —10|,My,=|-8 0 12
1 0 0 0 1 0

The primary component dfassociating ta1,2) is

{X% + Xo — 3, X% + 8X1 — 12, X1 Xo — 6X1 — 3Xo + 10}



Differential Operators

e LetD(a)=D(aq,...,0s) : C[x] — C[x]| denote the
differential operator defined by:
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Differential Operators

e LetD(a)=D(aq,...,0s) : C[x] — C[x]| denote the
differential operator defined by:
1

D(Gl,...,as) — aq!---0gl aX(]]_1°°°aXSS7

e Let® ={D(a), |a| > 0}, we define the space associated to
| andx as

Ng:={L e Span(D)|L(f)|x—x =0, Vf el}



Construct Differential Operators |

* Write Taylor expansion dfi € C[x] atX:

Tp_lh(X]_, 7XS) — Z Ca(Xl—)’zl)al

aeNS |a|<p

(Xs — Xs)“s
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Construct Differential Operators |
* Write Taylor expansion dfi € C|x| atX:

N\

Tp—]_h(X]_,...,XS) — Z Ca(xl_)’zl)dl.“ (XS_XS)CXS
aeNs ja|<p

* ComputeNF(h), and expand it at
B

and find scalars,g € C such thatly = 3 ; a4pCa.

* For eaclp such thats # O, return the operator

_ 1 a1 as_
LB_ZaO(BCXl!“-Gs!axl . ZaaBD

L ={L1....,Ly} is the set of differential operators.



Example 1 (continued)
Write Taylor expansion atl,2) up to degree — 1 = 2,
h(X) = Coo+Cro(x1 — 1) + Co1(X2 — 2) +C20(¥1 — 1)
+e11(Xa — 1) (%2 — 2) + Co2(%e — 2)%.
Obtain the normal form offi by replacingxs, x;xo, x5 with
2
1

X2 = —Xo 4 3,X1X0 = 6x1 + 3% — 10,X5 = —8xq + 12

The differential operators are:

I—l — D(O7O)7
L, — D(0,1)—D(2,0)+2D(1,1) — 4D(0,2),
L3 = D(1,0)—2D(2,0)+4D(1,1) —8D(0,2).



Refine an Approximate Singular Solution |

Example 1 (continued) Given an approximate singular saruti

X = (14 2.5428x 10 %+ 2.4352x 10" 4i,
2+8.4071x 10 *+3.6129x 10 4i).

e Sett = 10 %, the refined root:

(14+9.5829% 10— 1.2762x 10~ /i,
2—2.6679x 10°+3.5569% 10 ).



Refine an Approximate Singular Solution |

Example 1 (continued) Given an approximate singular saruti

X = (14 2.5428x 10 %+ 2.4352x 10" 4i,
2+8.4071x 10 *+3.6129x 10 4i).

e Sett = 10 %, the refined root:

(14+9.5829% 10— 1.2762x 10~ /i,
2—2.6679x 10°+3.5569% 10 ).

e Sett — 10 °, use the refined root as initial, we obtain:

(1—1.0000x 10 1>+ 2.5854x 10 14i, 24 8.4457x 107 14).



Criterion of Involution off
The idealR, = (1, PX) is generated by

S

Fo={T(f1), ..., T(f), (X1 — %)L+ (Xs— Ko, _Zﬂi = k}.

whereT(fi) = 3 qj<k fi.a (X —%X)%. The symbol matrix ofy and
Its prolongations are of full column rank.

Letl\/llg 1) denote the coefficient matnces'ﬁ;t( )W|th (k+s_ )

columns. Leblli I — dim NuIIspac:éMk ).

Theorem 2. R, = (1, P¥) is involutive at prolongation ordem if
and only if

dlEm) _ dlgm—kl)

anddy = dim(C[x]/(1,PX)) = d.™.
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* Form the matri>d\/|l£0) by computing the truncated Taylor
series expansions df, ..., f; atX to orderk. The prolonged
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Compute Primary Component Il

* Form the matri>d\/|l£0) by computing the truncated Taylor

series expansions df, . ... f; atX to orderk. The prolonged

matrix ij) IS computed by shiftin@/llgo) accordingly.

. Computedlij) = dim NuIIspacéMl((j)) for the givent, until
d™ = d™ Y = q.

* If dy =dx_1,thensep =k—1landy = dp.

* Compute the multiplication matricég,,, ..., My, from the

(M)
null vectors ofM; ;.



Example 2 [Leykin etc 2006]
(f1=X4+X+%—1, =X+ +x35—1 f3=xX+x5+x3—1}

has ad-fold solutionx = (1,0,0). Transform it to the origin:
(01 = 332431+ Y3+Y3

{2 = R+ Y3+,

O = VAtV HYE.

has thed-fold solutiony = (0,0,0). Let! = (g1,02,03),
P = (y1,Y2,¥3).
.

T3(01), T3(g2), Ta(g3)] ' = M;(D,O) ¥5,-- 8,1

MY =

R = W
o O O
o O O
_ O =
o O O
O =
N N W
o O O

O O o
O O O,




3 000O0O0O0O0O0O
2 00 O0O0O0O0O0O0O
2 00O0O0O0O0O0OO0O
0O 300O0O0O0O0O0O
0 20000O0O0O0O
0 20000O0O0O0O
003 00O0O0O0O0DO0
O 02 0O0O0O0O0O0O
O 02 0O0O0O0O0O0O®O
3001013000

1 000012000

1 001002000

1)

N——"

™M



Example 2 (continued)
o d\¥ =7,d{" =d{? = 4— d3 = dim(C[y]/(I,P?)) = 4

e d¥ =17,d{" =8,d? =d¥ =4,

— d4 = dim(Cly]/(1,P*)) 4_

* d3 =ds =4, then indexp = 3, multiplicity p= 4.



Example 2 (continued)

The multiplication matriceggcal ring) w.r.t. {y2ys,y2,y3,1}):

MYl —

o O O O

o O O O

o O O O

o O O O

7MY2:

o O O

— O O O

o O O O

O O O O

7MY3:

o O +— O

o O O O

— O O O

o O O O




Example 2 (continued)

The multiplication matriceggcal ring) w.r.t. {y2ys,y2,y3,1}):

MYl — ; MYZ — ; MYB —

o O O O
o O O O
o O O O
o O O O
o O O
— O O O
o O O O
O O O O

The primary component dfassociating t00,0,0) is

{y1, Y5, Y3}-

o O +— O

o O O O

— O O O

o O O O




Construct Differential Operators Il

Theorem 2. LetQ = (I, PP) be an isolated primary component
of | atX andp > 1. Supposé, = T,(F)UPP is involutive after

m prolongations, the null space of the matMém) IS generated
byvi,vo,...,vy. Then differential operators are:

Li=L-vj, forl< )<y,

L = [D(p—1,0,...,0),D(p—2,1,0,...,0),...,D(0,...,0)].



Example 2 (continued)
The indexp = 3, multiplicity p=4, d\” = 7, d{"” = d\” = 4, the
null space of the matrik/lél) IS:
Nél) — [910, €9, €8, 65]7
Multiplying the diff. operators of order less th&@n

{D(0,0,0), D(0,0,1), D(0,1,0), D(0,1,1)}.
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Approximate Singular Solution
* Suppose& is an approximate singular solution l6f

X = 5\(exact‘|‘ f(error-
* Transformx to the origin, and we get a new system
G= {917 - 7gt}’ Wheregi — fi (y1_|')217 " 7yS+)’zS)'

® S\/ — —f(error — (—)217error, c .oy —)’zS’error) |S an exaCt SO|UtIOn Of
the systent.
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e SetXx = X+ Y and run the first two steps for the refined
solution and smaller.



Refining Approximate Singular Solution Il
* For approximate and tolerance, estimateu andp.

* Gp.1 = Tp 1(G)UPPTLis involutive atm, form

My, ..., My, from null vectors oﬂ\/lé@l and compute.

e SetXx = X+ Y and run the first two steps for the refined
solution and smaller.

* |f ¥ converges to the origin, we getwith high accuracy.



Example 2 (continued)

Given an approximate solution= (1.001 —0.002 —0.001i).
Use tolerance = 102, the computed solution is
J = (—0.0009994- 7.5315x 10 19j,

0.002001+ 2.8002x 10~ 8i,
—1.4949x 10~ °+0.0010000).

Apply twice fort = 107,108 respectively, we get:
X = (14 7.0405x 10718 —7.8146x 10719,

1.0307x 10716 —1.9293x 10~ /i,
1.5694x 10~ 1°+7.9336x 107 17i).



Example 2 (continued)

Given an approximate solution= (1.001 —0.002 —0.001i).
Use tolerance = 102, the computed solution is
J = (—0.0009994- 7.5315x 10 19j,

0.002001+ 2.8002x 10~ 8i,
—1.4949x 10~ °+0.0010000).

Apply twice fort = 107,108 respectively, we get:
X = (14 7.0405x 10718 —7.8146x 10719,

1.0307x 10716 —1.9293x 10~ /i,
1.5694x 10~ 1°+7.9336x 107 17i).



Algorithm Performance

System Zero ol 4 |MRRI MRRII
cmbsl  (0,0,0) 5/1113—-8— 16 |3— 11— 15
cmbs2  (0,0,0) 41 8|13—9—16|3— 13— 15
mth19 (0,1,0) 3144—-8—-16|4—9—15
LVZ (0,0,—1) 7|18 5—10— 14
KSS (1,1,1,1,1,1) |5|16 5—-11— 14
Caprasse2, —iv/3,2,iv/3)|3| 4|4 -8 — 14 |4 — 12— 15

Dz1 (0,0,0,0) |11j1315— 14 5—14
Dz2, (0,0,—1) 8|16 4—-7—14
D2 (0,0,0) 5/ 5/5—10—155— 10— 15
Ojikal (1,2) 3] 3|13—46—143—6— 18
Ojika2 (0,1,0) 2| 25—-10—-1585—-10—- 14




Thank you!
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