Computing the Multiplicity Structure from Geometric Involutive Form

Xiaoli Wu and Lihong Zhi

Key Laboratory of Mathematics Mechanization Chinese Academy of Sciences

Outline

• Compute an isolated primary component Bates etc.'06, Corless etc.'98, Dayton'07, Moller and Stetter'00

Outline

- Compute an isolated primary component Bates etc.'06, Corless etc.'98, Dayton'07, Moller and Stetter'00
- Construct differential operators Damiano etc.'07, Dayton and Zeng'05, Marinari etc.'95,'96, Mourrain'96

Outline

- Compute an isolated primary component Bates etc.'06, Corless etc.'98, Dayton'07, Moller and Stetter'00
- Construct differential operators Damiano etc.'07, Dayton and Zeng'05, Marinari etc.'95,'96, Mourrain'96
- Refine an approximate singular solution Lercerf'02, Leykin etc.'05,'07, Ojika etc.'83,'87

Notations

Consider a polynomial system $F \in \mathbb{C}[\mathbf{x}] = \mathbb{C}[x_1, \dots, x_s]$

$$F: \begin{cases} f_1(x_1,...,x_s) = 0, \\ f_2(x_1,...,x_s) = 0, \\ \vdots \\ f_t(x_1,...,x_s) = 0. \end{cases}$$

Let $I = (f_1, \ldots, f_t)$ be the ideal generated by f_1, \ldots, f_t .

• An ideal Q is *primary* if, for any $f, g \in \mathbb{C}[\mathbf{x}]$,

 $fg \in Q \Longrightarrow f \in Q$ or $\exists m \in \mathbb{N}, g^m \in Q$

• An ideal Q is *primary* if, for any $f, g \in \mathbb{C}[\mathbf{x}]$,

 $fg \in Q \Longrightarrow f \in Q$ or $\exists m \in \mathbb{N}, g^m \in Q$

• Every ideal has an irredundant primary decomposition

 $I = \bigcap_{i=1}^{r} Q_i$, and $Q_i \subsetneq \bigcap_{i \neq j} Q_j$

 Q_j is called *primary component (ideal)* of *I*.

• An ideal Q is *primary* if, for any $f, g \in \mathbb{C}[\mathbf{x}]$,

 $fg \in Q \Longrightarrow f \in Q$ or $\exists m \in \mathbb{N}, g^m \in Q$

• Every ideal has an irredundant primary decomposition

 $I = \bigcap_{i=1}^{r} Q_i$, and $Q_i \subsetneq \bigcap_{i \neq j} Q_j$

 Q_j is called *primary component (ideal)* of *I*.

• The minimal nonnegative integer ρ s.t. $\sqrt{Q}^{\rho} \subset Q$ is called the index of Q.

Theorem 1. [Van Der Waerden 1970] Suppose the polynomial ideal I has an isolated primary component Q whose associated prime P is maximal, and ρ is the index of Q, μ is the multiplicity.

• If $\sigma < \rho$, then

 $\dim(\mathbb{C}[\mathbf{x}]/(I,P^{\sigma-1})) < \dim(\mathbb{C}[\mathbf{x}]/(I,P^{\sigma}))$

• If $\sigma \geq \rho$, then

$$Q = (I, P^{\rho}) = (I, P^{\sigma})$$

Corollary 2. The index is less than or equal to the multiplicity

 $\rho \leq \mu = \dim(\mathbb{C}[\mathbf{x}]/Q)$

Coefficient Matrix

F can be written in terms of its coefficient matrix $M_d^{(0)}$ as

$$M_{d}^{(0)} \cdot \begin{pmatrix} x_{1}^{d} \\ x_{1}^{d-1}x_{2} \\ \vdots \\ x_{s}^{2} \\ x_{1} \\ \vdots \\ x_{s} \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Prolongation

• Successive prolongations yield

$$F^{(0)} = F, \ F^{(1)} = F \cup x_1 F \cup \dots \cup x_s F, \dots$$
$$M_d^{(0)} \cdot \mathbf{v_d} = \mathbf{0}, \ M_d^{(1)} \cdot \mathbf{v_{d+1}} = \mathbf{0}, \dots$$
where $\mathbf{v_i} = [\mathbf{x}^i, \mathbf{x}^{i-1}, \dots, \mathbf{x}, 1]^T$.

Prolongation

• Successive prolongations yield

$$F^{(0)} = F, \quad F^{(1)} = F \cup x_1 F \cup \dots \cup x_s F, \dots$$
$$M_d^{(0)} \cdot \mathbf{v_d} = \mathbf{0}, \quad M_d^{(1)} \cdot \mathbf{v_{d+1}} = \mathbf{0}, \dots$$
where $\mathbf{v_i} = [\mathbf{x}^i, \mathbf{x}^{i-1}, \dots, \mathbf{x}, 1]^T$.

• dim $F^{(0)}$ = dim Nullspace $(M_d^{(0)})$

Geometric Projection

• A single geometric projection is defined as

$$\boldsymbol{\pi}(F) = \left\{ [\mathbf{x}^{d-1}, \dots, 1] \in \mathbb{C}^{N_{d-1}} \mid \exists \mathbf{x}^d, M_d^{(0)} \cdot [\mathbf{x}^d, \dots, 1]^T = \mathbf{0} \right\}$$

Geometric Projection

• A single geometric projection is defined as

$$\boldsymbol{\pi}(F) = \left\{ [\mathbf{x}^{d-1}, \dots, 1] \in \mathbb{C}^{N_{d-1}} \mid \exists \mathbf{x}^d, M_d^{(0)} \cdot [\mathbf{x}^d, \dots, 1]^T = \mathbf{0} \right\}$$

• $\dim \pi(F^{(0)})$ is the dimension of a linear space spanned by the null vectors of $M_d^{(0)}$ corresponding to the monomials of the highest degree *d* being deleted.

Criterion of Involution

Theorem 2. [*Zhi and Reid* 2004] A zero dimensional polynomial system \mathbf{F} is involutive at prolongation order \mathbf{m} and projected order ℓ if and only if $\pi^{\ell}(\mathbf{F}^{(m)})$ satisfies the projected elimination test:

$$\dim \pi^{\ell}\left(F^{(m)}\right) = \dim \pi^{\ell+1}\left(F^{(m+1)}\right)$$

and the symbol involutive test:

$$\dim \pi^{\ell}\left(F^{(m)}\right) = \dim \pi^{\ell+1}\left(F^{(m)}\right)$$

• For the tolerance τ , compute dim $\hat{\pi}^{\ell}(F^{(m)})$ by SVD.

- For the tolerance τ , compute dim $\hat{\pi}^{\ell}(F^{(m)})$ by SVD.
- Seek the smallest *m* and largest ℓ such that $\hat{\pi}^{\ell}(F^{(m)})$ is approximately involutive.

- For the tolerance τ , compute dim $\hat{\pi}^{\ell}(F^{(m)})$ by SVD.
- Seek the smallest *m* and largest ℓ such that $\hat{\pi}^{\ell}(F^{(m)})$ is approximately involutive.
- The number of solutions of polynomial system *F* is $d = \dim(\mathbb{C}[\mathbf{x}]/I) = \dim \hat{\pi}^{\ell}(F^{(m)}).$

- For the tolerance τ , compute dim $\hat{\pi}^{\ell}(F^{(m)})$ by SVD.
- Seek the smallest *m* and largest ℓ such that $\hat{\pi}^{\ell}(F^{(m)})$ is approximately involutive.
- The number of solutions of polynomial system *F* is $d = \dim(\mathbb{C}[\mathbf{x}]/I) = \dim \hat{\pi}^{\ell}(F^{(m)}).$
- The multiplication matrices M_{x_1}, \ldots, M_{x_s} are formed from the null vectors of $\hat{\pi}^{\ell}(F^{(m)})$ and $\hat{\pi}^{\ell+1}(F^{(m)})$.

• Form the prime ideal $P = (x_1 - \hat{x}_1, \dots, x_s - \hat{x}_s)$.

- Form the prime ideal $P = (x_1 \hat{x}_1, \dots, x_s \hat{x}_s)$.
- Compute $d_k = \dim(\mathbb{C}[\mathbf{x}]/(I, P^k))$ by SNEPSolver for a given tolerance τ until $d_k = d_{k-1}$, set

$$\rho = k - 1, \ \mu = d_{\rho}, \ Q = (I, P^{\rho}).$$

- Form the prime ideal $P = (x_1 \hat{x}_1, \dots, x_s \hat{x}_s)$.
- Compute $d_k = \dim(\mathbb{C}[\mathbf{x}]/(I, P^k))$ by SNEPSolver for a given tolerance τ until $d_k = d_{k-1}$, set

$$\rho = k - 1, \ \mu = d_{\rho}, \ Q = (I, P^{\rho}).$$

• Compute the multiplication matrices M_{x_1}, \ldots, M_{x_s} of $\mathbb{C}[\mathbf{x}]/Q$ by SNEPSolver.

Example 1 [Ojika 1987]

$$I = (f_1 = x_1^2 + x_2 - 3, f_2 = x_1 + 0.125x_2^2 - 1.5)$$

(1,2) is a 3-fold solution. Form $P = (x_1 - 1, x_2 - 2)$.

Example 1 [Ojika 1987]

$$I = (f_1 = x_1^2 + x_2 - 3, f_2 = x_1 + 0.125x_2^2 - 1.5)$$

(1,2) is a 3-fold solution. Form $P = (x_1 - 1, x_2 - 2)$.

- dim $F_2^{(1)}$ = dim $F_2^{(2)}$ = 2 \Longrightarrow dim $(\mathbb{C}[\mathbf{x}]/(I, P^2))$ = 2.
- dim $F_3^{(1)}$ = dim $F_3^{(2)}$ = 3 \Longrightarrow dim ($\mathbb{C}[\mathbf{x}]/(I, P^3)$) = 3.
- dim $F_4^{(1)}$ = dim $F_4^{(2)}$ = 3 \Longrightarrow dim ($\mathbb{C}[\mathbf{x}]/(I, P^4)$) = 3.

Example 1 [Ojika 1987]

$$I = (f_1 = x_1^2 + x_2 - 3, f_2 = x_1 + 0.125x_2^2 - 1.5)$$

(1,2) is a 3-fold solution. Form $P = (x_1 - 1, x_2 - 2)$.

- dim $F_2^{(1)}$ = dim $F_2^{(2)}$ = 2 \Longrightarrow dim $(\mathbb{C}[\mathbf{x}]/(I, P^2))$ = 2.
- dim $F_3^{(1)}$ = dim $F_3^{(2)}$ = 3 \Longrightarrow dim ($\mathbb{C}[\mathbf{x}]/(I, P^3)$) = 3.
- dim $F_4^{(1)}$ = dim $F_4^{(2)}$ = 3 \Longrightarrow dim ($\mathbb{C}[\mathbf{x}]/(I, P^4)$) = 3.

Index $\rho = 3$, multiplicity $\mu = 3$.

The multiplication matrices(local ring) w.r.t. $\{x_1, x_2, 1\}$:

$$M_{x_1} = \begin{bmatrix} 0 & -1 & 3 \\ 6 & 3 & -10 \\ 1 & 0 & 0 \end{bmatrix}, M_{x_2} = \begin{bmatrix} 6 & 3 & -10 \\ -8 & 0 & 12 \\ 0 & 1 & 0 \end{bmatrix}$$

The multiplication matrices(local ring) w.r.t. $\{x_1, x_2, 1\}$:

$$M_{x_1} = \begin{bmatrix} 0 & -1 & 3 \\ 6 & 3 & -10 \\ 1 & 0 & 0 \end{bmatrix}, M_{x_2} = \begin{bmatrix} 6 & 3 & -10 \\ -8 & 0 & 12 \\ 0 & 1 & 0 \end{bmatrix}$$

The primary component of I associating to (1,2) is

{
$$x_1^2 + x_2 - 3, x_2^2 + 8x_1 - 12, x_1x_2 - 6x_1 - 3x_2 + 10$$
}

Differential Operators

• Let $D(\alpha) = D(\alpha_1, \dots, \alpha_s) : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]$ denote the differential operator defined by:

$$D(\alpha_1,\ldots,\alpha_s)=\frac{1}{\alpha_1!\cdots\alpha_s!}\partial x_1^{\alpha_1}\cdots\partial x_s^{\alpha_s},$$

Differential Operators

• Let $D(\alpha) = D(\alpha_1, \dots, \alpha_s) : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]$ denote the differential operator defined by:

$$D(\alpha_1,\ldots,\alpha_s)=\frac{1}{\alpha_1!\cdots\alpha_s!}\partial x_1^{\alpha_1}\cdots\partial x_s^{\alpha_s},$$

• Let $\mathfrak{D} = \{D(\alpha), |\alpha| \ge 0\}$, we define the space associated to *I* and $\hat{\mathbf{x}}$ as

 $\triangle_{\hat{\mathbf{x}}} := \{ L \in Span_{\mathbb{C}}(\mathfrak{D}) | L(f) |_{\mathbf{x} = \hat{\mathbf{x}}} = 0, \forall f \in I \}$

Construct Differential Operators I

• Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$T_{\rho-1}h(x_1,\ldots,x_s) = \sum_{\alpha\in\mathbb{N}^s, |\alpha|<\rho} c_{\alpha}(x_1-\hat{x}_1)^{\alpha_1}\cdots(x_s-\hat{x}_s)^{\alpha_s}$$

Construct Differential Operators I

• Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$T_{\rho-1}h(x_1,\ldots,x_s) = \sum_{\alpha\in\mathbb{N}^s, |\alpha|<\rho} c_{\alpha}(x_1-\hat{x}_1)^{\alpha_1}\cdots(x_s-\hat{x}_s)^{\alpha_s}$$

• Compute NF(h), and expand it at $\hat{\mathbf{x}}$

$$NF(h(x)) = \sum_{\beta} d_{\beta} (\mathbf{x} - \hat{\mathbf{x}})^{\beta}$$

and find scalars $a_{\alpha\beta} \in \mathbb{C}$ such that $d_{\beta} = \sum_{\alpha} a_{\alpha\beta} c_{\alpha}$.

Construct Differential Operators I

• Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$T_{\rho-1}h(x_1,\ldots,x_s) = \sum_{\alpha\in\mathbb{N}^s, |\alpha|<\rho} c_{\alpha}(x_1-\hat{x}_1)^{\alpha_1}\cdots(x_s-\hat{x}_s)^{\alpha_s}$$

• Compute NF(h), and expand it at $\hat{\mathbf{x}}$

$$NF(h(x)) = \sum_{\beta} d_{\beta} (\mathbf{x} - \hat{\mathbf{x}})^{\beta}$$

and find scalars $a_{\alpha\beta} \in \mathbb{C}$ such that $d_{\beta} = \sum_{\alpha} a_{\alpha\beta} c_{\alpha}$.

• For each β such that $d_{\beta} \neq 0$, return the operator

$$L_{\beta} = \sum_{\alpha} a_{\alpha\beta} \frac{1}{\alpha_1! \cdots \alpha_s!} \partial x_1^{\alpha_1} \cdots \partial x_s^{\alpha_s} = \sum_{\alpha} a_{\alpha\beta} D(\alpha).$$

 $L = \{L_1, \ldots, L_{\mu}\}$ is the set of differential operators.

Write Taylor expansion at (1, 2) up to degree $\rho - 1 = 2$,

$$h(\mathbf{x}) = c_{0,0} + c_{1,0}(x_1 - 1) + c_{0,1}(x_2 - 2) + c_{2,0}(x_1 - 1)^2 + c_{1,1}(x_1 - 1)(x_2 - 2) + c_{0,2}(x_2 - 2)^2.$$

Obtain the normal form of *h* by replacing x_1^2, x_1x_2, x_2^2 with

$$x_1^2 = -x_2 + 3, x_1x_2 = 6x_1 + 3x_2 - 10, x_2^2 = -8x_1 + 12.$$

The differential operators are:

$$\begin{cases} L_1 = D(0,0), \\ L_2 = D(0,1) - D(2,0) + 2D(1,1) - 4D(0,2), \\ L_3 = D(1,0) - 2D(2,0) + 4D(1,1) - 8D(0,2). \end{cases}$$

Example 1 (continued) Given an approximate singular solution:

$$\hat{\mathbf{x}} = (1 + 2.5428 \times 10^{-4} + 2.4352 \times 10^{-4} i, 2 + 8.4071 \times 10^{-4} + 3.6129 \times 10^{-4} i).$$

• Set $\tau = 10^{-4}$, the refined root:

 $(1+9.5829 \times 10^{-8} - 1.2762 \times 10^{-7} i,$ $2-2.6679 \times 10^{-6} + 3.5569 \times 10^{-7} i).$

Example 1 (continued) Given an approximate singular solution:

$$\hat{\mathbf{x}} = (1 + 2.5428 \times 10^{-4} + 2.4352 \times 10^{-4} i, 2 + 8.4071 \times 10^{-4} + 3.6129 \times 10^{-4} i).$$

• Set $\tau = 10^{-4}$, the refined root:

$$(1+9.5829 \times 10^{-8} - 1.2762 \times 10^{-7} i,$$

 $2-2.6679 \times 10^{-6} + 3.5569 \times 10^{-7} i).$

• Set $\tau = 10^{-6}$, use the refined root as initial, we obtain:

 $(1 - 1.0000 \times 10^{-15} + 2.5854 \times 10^{-14} i, 2 + 8.4457 \times 10^{-14}).$

Criterion of Involution of F_k

The ideal $F_k = (I, P^k)$ is generated by

$$F_k = \{ \mathbf{T}_k(f_1), \dots, \mathbf{T}_k(f_t), \ (x_1 - \hat{x}_1)^{\alpha_1} \cdots (x_s - \hat{x}_s)^{\alpha_s}, \ \sum_{i=1}^s \alpha_i = k \}.$$

where $T_k(f_i) = \sum_{|\alpha| < k} f_{i,\alpha} (\mathbf{x} - \hat{\mathbf{x}})^{\alpha}$. The symbol matrix of F_k and its prolongations are of full column rank.

Let $M_k^{(j)}$ denote the coefficient matrices of $T_k(F^{(j)})$ with $\binom{k+s-1}{s}$ columns. Let $d_k^{(j)} = \dim \operatorname{Nullspace}(M_k^{(j)})$.

Theorem 2. $F_k = (I, P^k)$ is involutive at prolongation order *m* if and only if

$$d_k^{(m)} = d_k^{(m+1)}$$

and $d_k = \dim(\mathbb{C}[\mathbf{x}]/(I, P^k)) = d_k^{(m)}$.

• Form the matrix $M_k^{(0)}$ by computing the truncated Taylor series expansions of f_1, \ldots, f_t at \hat{x} to order k. The prolonged matrix $M_k^{(j)}$ is computed by shifting $M_k^{(0)}$ accordingly.

- Form the matrix $M_k^{(0)}$ by computing the truncated Taylor series expansions of f_1, \ldots, f_t at \hat{x} to order k. The prolonged matrix $M_k^{(j)}$ is computed by shifting $M_k^{(0)}$ accordingly.
- Compute $d_k^{(j)} = \dim \operatorname{Nullspace}(M_k^{(j)})$ for the given τ , until $d_k^{(m)} = d_k^{(m+1)} = d_k$.

- Form the matrix $M_k^{(0)}$ by computing the truncated Taylor series expansions of f_1, \ldots, f_t at \hat{x} to order k. The prolonged matrix $M_k^{(j)}$ is computed by shifting $M_k^{(0)}$ accordingly.
- Compute $d_k^{(j)} = \dim \operatorname{Nullspace}(M_k^{(j)})$ for the given τ , until $d_k^{(m)} = d_k^{(m+1)} = d_k$.
- If $d_k = d_{k-1}$, then set $\rho = k 1$ and $\mu = d_{\rho}$.

- Form the matrix $M_k^{(0)}$ by computing the truncated Taylor series expansions of f_1, \ldots, f_t at \hat{x} to order k. The prolonged matrix $M_k^{(j)}$ is computed by shifting $M_k^{(0)}$ accordingly.
- Compute $d_k^{(j)} = \dim \operatorname{Nullspace}(M_k^{(j)})$ for the given τ , until $d_k^{(m)} = d_k^{(m+1)} = d_k$.
- If $d_k = d_{k-1}$, then set $\rho = k 1$ and $\mu = d_{\rho}$.
- Compute the multiplication matrices M_{x_1}, \ldots, M_{x_s} from the null vectors of $M_{\rho+1}^{(m)}$.

Example 2 [Leykin etc 2006]

 $\{f_1 = x_1^3 + x_2^2 + x_3^2 - 1, f_2 = x_1^2 + x_2^3 + x_3^2 - 1, f_3 = x_1^2 + x_2^2 + x_3^3 - 1\}$

has a 4-fold solution $\hat{\mathbf{x}} = (1, 0, 0)$. Transform it to the origin:

$$\begin{cases} g_1 = y_1^3 + 3y_1^2 + 3y_1 + y_2^2 + y_3^2, \\ g_2 = y_1^2 + 2y_1 + y_2^3 + y_3^2, \\ g_3 = y_1^2 + 2y_1 + y_2^2 + y_3^3. \end{cases}$$

has the 4-fold solution $\hat{\mathbf{y}} = (0, 0, 0)$. Let $I = (g_1, g_2, g_3)$, $P = (y_1, y_2, y_3)$.

$$\mathbf{T}_{3}(g_{1}), \mathbf{T}_{3}(g_{2}), \mathbf{T}_{3}(g_{3})]^{T} = \mathbf{M}_{3}^{(0)} \cdot \begin{bmatrix} y_{1}^{2}, \dots, y_{3}, 1 \end{bmatrix}^{T},$$
$$\mathbf{M}_{3}^{(0)} = \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 1 & 3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

•
$$d_3^{(0)} = 7, d_3^{(1)} = d_3^{(2)} = 4 \Longrightarrow d_3 = \dim(\mathbb{C}[\mathbf{y}]/(I, P^3)) = 4.$$

•
$$d_4^{(0)} = 17, d_4^{(1)} = 8, d_4^{(2)} = d_4^{(3)} = 4,$$

 $\implies d_4 = \dim(\mathbb{C}[\mathbf{y}]/(I, P^4)) = 4.$

• $d_3 = d_4 = 4$, then index $\rho = 3$, multiplicity $\mu = 4$.

The multiplication matrices(local ring) w.r.t. $\{y_2y_3, y_2, y_3, 1\}$):

The multiplication matrices(local ring) w.r.t. $\{y_2y_3, y_2, y_3, 1\}$):

The primary component of I associating to (0,0,0) is

 $\{y_1, y_2^2, y_3^2\}.$

Construct Differential Operators II

Theorem 2. Let $Q = (I, P^{\rho})$ be an isolated primary component of I at $\hat{\mathbf{x}}$ and $\mu \ge 1$. Suppose $F_{\rho} = \mathbf{T}_{\rho}(F) \cup P^{\rho}$ is involutive after m prolongations, the null space of the matrix $M_{\rho}^{(m)}$ is generated by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{\mu}$. Then differential operators are:

 $L_j = \mathbf{L} \cdot \mathbf{v}_j, \quad for \ 1 \leq j \leq \mu,$

 $\mathbf{L} = [D(\rho - 1, 0, \dots, 0), D(\rho - 2, 1, 0, \dots, 0), \dots, D(0, \dots, 0)].$

The index $\rho = 3$, multiplicity $\mu = 4$, $d_3^{(0)} = 7$, $d_3^{(1)} = d_3^{(2)} = 4$, the null space of the matrix $M_3^{(1)}$ is:

$$N_3^{(1)} = [e_{10}, e_9, e_8, e_5],$$

Multiplying the diff. operators of order less than 3:

{D(0,0,0), D(0,0,1), D(0,1,0), D(0,1,1)}.

Approximate Singular Solution

• Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F:

 $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{\text{exact}} + \hat{\mathbf{x}}_{\text{error}}.$

Approximate Singular Solution

• Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F:

 $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{\text{exact}} + \hat{\mathbf{x}}_{\text{error}}.$

• Transform $\hat{\mathbf{x}}$ to the origin, and we get a new system $G = \{g_1, \dots, g_t\}$, where $g_i = f_i(y_1 + \hat{x}_1, \dots, y_s + \hat{x}_s)$.

Approximate Singular Solution

• Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F:

 $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{\text{exact}} + \hat{\mathbf{x}}_{\text{error}}.$

- Transform $\hat{\mathbf{x}}$ to the origin, and we get a new system $G = \{g_1, \dots, g_t\}$, where $g_i = f_i(y_1 + \hat{x}_1, \dots, y_s + \hat{x}_s)$.
- $\hat{\mathbf{y}} = -\hat{\mathbf{x}}_{error} = (-\hat{x}_{1,error}, \dots, -\hat{x}_{s,error})$ is an exact solution of the system *G*.

• For approximate $\hat{\mathbf{x}}$ and tolerance $\boldsymbol{\tau}$, estimate $\boldsymbol{\mu}$ and $\boldsymbol{\rho}$.

- For approximate $\hat{\mathbf{x}}$ and tolerance $\boldsymbol{\tau}$, estimate $\boldsymbol{\mu}$ and $\boldsymbol{\rho}$.
- $G_{\rho+1} = T_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at *m*, form M_{x_1}, \dots, M_{x_s} from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.

- For approximate $\hat{\mathbf{x}}$ and tolerance $\boldsymbol{\tau}$, estimate $\boldsymbol{\mu}$ and $\boldsymbol{\rho}$.
- $G_{\rho+1} = T_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at *m*, form M_{x_1}, \dots, M_{x_s} from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.
- Set $\hat{\mathbf{x}} = \hat{\mathbf{x}} + \hat{\mathbf{y}}$ and run the first two steps for the refined solution and smaller τ .

- For approximate $\hat{\mathbf{x}}$ and tolerance $\boldsymbol{\tau}$, estimate $\boldsymbol{\mu}$ and $\boldsymbol{\rho}$.
- $G_{\rho+1} = T_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at *m*, form M_{x_1}, \dots, M_{x_s} from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.
- Set $\hat{\mathbf{x}} = \hat{\mathbf{x}} + \hat{\mathbf{y}}$ and run the first two steps for the refined solution and smaller τ .
- If $\hat{\mathbf{y}}$ converges to the origin, we get $\hat{\mathbf{x}}$ with high accuracy.

Given an approximate solution $\hat{\mathbf{x}} = (1.001, -0.002, -0.001 i)$. Use tolerance $\tau = 10^{-2}$, the computed solution is $\hat{\mathbf{y}} = (-0.0009994 - 7.5315 \times 10^{-10} i,$ $0.002001 + 2.8002 \times 10^{-8} i,$ $-1.4949 \times 10^{-6} + 0.0010000 i).$

Apply twice for $\tau = 10^{-5}$, 10^{-8} respectively, we get: $\hat{\mathbf{x}} = (1 + 7.0405 \times 10^{-18} - 7.8146 \times 10^{-19} i, 1.0307 \times 10^{-16} - 1.9293 \times 10^{-17} i, 1.5694 \times 10^{-16} + 7.9336 \times 10^{-17} i).$

Given an approximate solution $\hat{\mathbf{x}} = (1.001, -0.002, -0.001 i)$. Use tolerance $\tau = 10^{-2}$, the computed solution is $\hat{\mathbf{y}} = (-0.0009994 - 7.5315 \times 10^{-10} i,$ $0.002001 + 2.8002 \times 10^{-8} i,$ $-1.4949 \times 10^{-6} + 0.0010000 i).$

Apply twice for $\tau = 10^{-5}$, 10^{-8} respectively, we get: $\hat{\mathbf{x}} = (1 + 7.0405 \times 10^{-18} - 7.8146 \times 10^{-19} i, 1.0307 \times 10^{-16} - 1.9293 \times 10^{-17} i, 1.5694 \times 10^{-16} + 7.9336 \times 10^{-17} i).$

Algorithm Performance

System	Zero	ρ	μ	MRRI	MRRII
cmbs1	(0, 0, 0)	5	11	$3 \rightarrow 8 \rightarrow 16$	$3 \rightarrow 11 \rightarrow 15$
cmbs2	(0, 0, 0)	4	8	$3 \rightarrow 9 \rightarrow 16$	$3 \rightarrow 13 \rightarrow 15$
mth191	(0, 1, 0)	3	4	$4 \rightarrow 8 \rightarrow 16$	$4 \rightarrow 9 \rightarrow 15$
LVZ	(0, 0, -1)	7	18		$5 \rightarrow 10 \rightarrow 14$
KSS	(1, 1, 1, 1, 1, 1)	5	16		$5 \rightarrow 11 \rightarrow 14$
Caprasse	$(2, -i\sqrt{3}, 2, i\sqrt{3})$	3	4	$4 \rightarrow 8 \rightarrow 14$	$4 \rightarrow 12 \rightarrow 15$
DZ1	(0, 0, 0, 0)	11	131	$5 \rightarrow 14$	$5 \rightarrow 14$
DZ2	(0, 0, -1)	8	16		$4 \rightarrow 7 \rightarrow 14$
D2	(0, 0, 0)	5	5	$5 \rightarrow 10 \rightarrow 15$	$5 \rightarrow 10 \rightarrow 15$
Ojika1	(1,2)	3	3	$3 \rightarrow 6 \rightarrow 14$	$3 \rightarrow 6 \rightarrow 18$
Ojika2	(0, 1, 0)	2	2	$5 \rightarrow 10 \rightarrow 15$	$5 \rightarrow 10 \rightarrow 14$

Thank you !