Regeneration: A New Algorithm in Numerical Algebraic Geometry

Charles Wampler

General Motors R\&D Center
(Adjunct, Univ. Notre Dame)

Including joint work with
Andrew Sommese, University of Notre Dame
Jon Hauenstein, University of Notre Dame

Outline

- Brief overview of Numerical Algebraic Geometry
- Building blocks for Regeneration
- Parameter continuation
- Polynomial-product decomposition
- Deflation of multiplicity>1 components
- Description of Regeneration
- A new equation-by-equation algorithm that can be used to find positive dimensional sets and/or isolated solutions
- Leading alternatives to regeneration
- Polyhedral homotopy
- For finding isolated roots of sparse systems
- Diagonal homotopy
- An existing equation-by-equation approach
- Comparison of regeneration to the alternatives

Introduction to Continuation

- Basic idea: to solve $F(x)=0$
- (N equations, N unknowns)
- Define a homotopy $\mathrm{H}(\mathrm{x}, \mathrm{t})=0$ such that
- $H(x, 1)=G(x)=0$ has known isolated solutions, S_{1}
- $\mathrm{H}(\mathrm{x}, 0)=\mathrm{F}(\mathrm{x})$
- Example: $\quad H(x, t)=(1-t) F(x)+\gamma t G(x)$
- Track solution paths as t goes from 1 to 0
- Paths satisfy the Davidenko o.d.e.
- $(\mathrm{dH} / \mathrm{dx})(\mathrm{dx} / \mathrm{dt})+\mathrm{dH} / \mathrm{dt}=0$
- Endpoints of the paths are solutions of $F(x)=0$
- Let S_{0} be the set of path endpoints
- A good homotopy guarantees that paths are nonsingular and S_{0} includes all isolated points of V(F)
- Many "good homotopies" have been invented

Basic Total-degree Homotopy

To find all isolated solutions to the polynomial system $\mathrm{F}: \mathrm{C}^{\mathrm{N}} \rightarrow \mathrm{C}^{\mathrm{N}}$, i.e.,

$$
\left[\begin{array}{c}
\mathrm{f}_{1}\left(x_{1}, \ldots, x_{N}\right) \\
\vdots \\
\mathrm{f}_{N}\left(x_{1}, \ldots, x_{N}\right)
\end{array}\right]=0, \quad \operatorname{deg}\left(\mathrm{f}_{i}\right)=d_{i}
$$

form the linear homotopy

$$
H(x, t)=(1-t) F(x)+t G(x)=0,
$$

where

$$
g_{i}(x)=a_{i} x_{i}^{d_{i}}+b_{i}, a_{i}, b_{i} \text { random, complex }
$$

Polynomial Structures

- The basis of "good homotopies"

(C) Start system solved via (A) or (B) initial run
(B) Start system solved via convex hulls, polytope theory
(A) Start system solved with linear algebra

5
GM

Numerical Algebraic Geometry

- Extension of polynomial continuation to include finding positive dimensional solution components and performing algebraic operations on them.
- First conception
- Sommese \& Wampler, FoCM 1995, Park City, UT
- Numerical irreducible decomposition and related algorithms
- Sommese, Verschelde, \& Wampler, 2000-2004
- Monograph covering to year 2005
- Sommese \& Wampler, World Scientific, 2005

Slicing \& Witness Sets

Slicing theorem

- An degree d reduced algebraic set hits a general linear space of complementary dimension in d isolated points
- Witness generation
- Slice at every dimension
- Use continuation to get sets that contain all isolated solutions at each dimension - "Witness supersets"
- Irreducible decomposition
- Remove "junk"
- Monodromy on slices finds irreducible components
- Linear traces verify completeness

- Membership Test

Linear Traces

■Track witness paths as slice translates parallel to itself.
-Centroid of witness points for an algebraic set must move on a line.

Real Points on a Complex Curve

- Go to Griffis-Duffy movie...

Further Reading

The Numerical Solution of Systems of Polynomials Arising in Engineering and Science

Regeneration

- Building blocks
- Regeneration algorithm
- Comparison to pre-existing numerical continuation alternatives

Building Block 1: Parameter Continuation

To solve: $\mathrm{F}(\mathrm{x}, \mathrm{p})=0$

initial
parameter
space

target
parameter
space

Morgan \& Sommese,

- Start system easy in initial parameter space
- Root count may be much lower in target parameter space
- Initial run is 1 -time investment for cheaper target runs

Kinematic Milestone

- 9-Point Path Generation for Four-bars
- Problem statement
- Alt, 1923
- Bootstrap partial solution
- Roth, 1962
- Complete solution
- Wampler, Morgan \&
 Sommese, 1992
- m-homogeneous continuation
- 1442 Robert cognate triples

Nine-point Four-bar summary

- Symbolic reduction
- Initial total degree $\approx 10^{10}$
- Roth \& Freudenstein, tot.deg.=5,764,801
- Our reformulation, tot.deg. $=1,048,576$
- Multihomogenization 286,720
- 2-way symmetry 143,360
- Numerical reduction (Parameter continuation)
- Nondegenerate solutions

4326

- Roberts cognate 3-way symmetry 1442
- Synthesis program follows 1442 paths

Parameter Continuation: 9-point problem

*Parameter space of 9-point problems is 18 dimensional (complex)

Building Block 2: Product Decomposition

. To find: isolated roots of system $\mathrm{F}(\mathrm{x})=0$

- Suppose i-th equation, $f(x)$, has the form:

$$
\begin{aligned}
& f(x) \in\left\langle\{ p _ { 1 1 } , \ldots , p _ { 1 k _ { 1 } } \} \otimes \cdots \otimes \left\{\left\{_{j 1}, \ldots, p_{j k_{j}}\right\}\right.\right. \\
& \text { where } p_{j k}=p_{j k}(x) \text { are all polynomials. }
\end{aligned}
$$

- Then, a generic g of the form

$$
g(x) \in\left\langle p_{11}, \ldots, p_{1 k_{1}}\right\rangle \otimes \ldots \otimes\left\langle p_{j 1}, \ldots, p_{j k_{i}}\right\rangle
$$

is a good start function for a linear homotopy.

- Linear product decomposition $=$ all $p_{j k}$ are linear.

Linear products: Verschelde \& Cools 1994
Polynomial products: Morgan, Sommese \& W. 1995

Product decomposition

- For a product decomposition homotopy:
- Original articles assert:
- Paths from all nonsingular start roots lead to all nonsingular roots of the target system.
- New result extends this:
- Paths from all isolated start roots lead to all isolated roots of the target system.

Building Block 3: Deflation

Let X be an irreducible component of $\mathrm{V}(\mathrm{F})$ with multiplicity > 1 .

- Deflation produces an augmented system $G(x, y)$ such that there is a component Y in $\mathrm{V}(\mathrm{G})$ of multiplicity 1 that projects generically 1 -to- 1 onto X .
- Multiplicity=1 means Newton's method can be used to get quadratic convergence

Isolated points: Leykin, Verschelde \& Zhao 2006, Lecerf 2002

Positive dimensional components: Sommese \& Wampler 2005
Related work: Dayton \& Zeng '05; Bates, Sommese \& Peterson '06; LVZ, L preprints

Regeneration

- Suppose we have the isolated roots of
- $\{\mathrm{F}(\mathrm{x}), \mathrm{g}(\mathrm{x})\}=0$
where $F(x)$ is a system and
- $g(x)=L_{1}(x) L_{2}(x) \ldots L_{d}(x)$
is a linear product decomposition of $f(x)$.
- Then, by product decomposition,
- $\mathrm{H}(\mathrm{x}, \mathrm{t})=\{\mathrm{F}(\mathrm{x}), \gamma \mathrm{t} \mathrm{g}(\mathrm{x})+(1-\mathrm{t}) \mathrm{f}(\mathrm{x})\}=0$
is a good homotopy for solving
- $\{\mathrm{F}(\mathrm{x}), \mathrm{f}(\mathrm{x})\}=0$
- How can we get the roots of $\{\mathrm{F}(\mathrm{x}), \mathrm{g}(\mathrm{x})\}=0$?

Regeneration

- Suppose we have the isolated solutions of
- $\{F(x), L(x)\}=0$
where $L(x)$ is a linear function.
- Then, by parameter continuation on the coefficients of $\mathrm{L}(\mathrm{x})$ we can get the isolated solutions of
- $\left\{F(x), L^{\prime}(x)\right\}=0$.
for any other linear function $L^{\prime}(x)$.
- Homotopy is $\mathrm{H}(\mathrm{x}, \mathrm{t})=\left\{\mathrm{F}, \gamma \mathrm{tL}(\mathrm{x})+(1-\mathrm{t}) \mathrm{L}^{\prime}(\mathrm{x})\right\}=0$.
- Doing this d times, we find all isolated solutions of
- $\left\{F(x), L_{1}(x) L_{2}(x) \ldots L_{d}(x)\right\}=\{F(x), g(x)\}=0$.
- We call this the "regeneration" of $\{\mathrm{F}, \mathrm{g}\}$.

Tracking multiplicity > 1 paths

- For both regenerating $\{F, g\}$ and tracking to $\{F, f\}$, we want to track all isolated solutions.
- Some of these may be multiplicity > 1 .
- In each case, there is a homotopy $\mathrm{H}(\mathrm{x}, \mathrm{t})=0$
- The paths we want to track are curves in $\mathrm{V}(\mathrm{H})$
- Each curve has a deflation.
- We track the deflated curves.

Working Equation-by-Equation

- Basic step

$$
V_{0}\left(\left[\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{k-1}(x) \\
L_{k}(x) \\
L_{k+1}(x) \\
\vdots \\
L_{N}(x)
\end{array}\right]\right)
$$

Regeneration: Step 1

[^0]
Regeneration: Step 2

[^1]
Equation－by－Equation Solving

N equations， n variables

－Special case：

－ $\mathrm{N}=\mathrm{n}$
－nonsingular solutions only
－results are very promising
Theory is in place for $\mu>1$ isolated and for full witness set generation．

Final Result

Co－dim $\operatorname{CSO}(n, N)$

Alternatives 1

- Polyhedral homotopies (a.k.a., BKK)
- Finds all isolated solutions
- Parameter space = coefficients of all monomials
- Root count = mixed volume (Bernstein's Theorem)
- Always \leq root count for best linear product
- Especially suited to sparse polynomials
- Homotopies
- Verschelde, Verlinden \& Cools, '94; Huber \& Sturmfels, '95
- T.Y. Li with various co-authors, 1997-present
- Advantage:
- Reduction in \# of paths
- Disadvantage:
- Mixed volume calculation is combinatorial

Alternatives 2: Diagonal homotopy

. Given:

- $W_{x}=$ Witness set for irreducible X in $V(F)$
- $W_{Y}=$ Witness set for irreducible Y in $V(G)$
- Find:
- Intersection of X and Y
- Method:
- $X \times Y$ is an irreducible component of $V(F(x), G(y))$
- $W_{X} \times W_{Y}$ is its witness set
- Compute irreducible decomposition of the diagonal, $x-y=0$ restricted to $\mathrm{X} \times \mathrm{Y}$
- Can be used to work equation-by-equation
- Let F be the first k equations $\& G$ be the $(k+1)^{\text {st }}$ one
- Sommese, Verschelde, \& Wampler 2004, 2008.

Other alternatives

- Numerical
- Exclusion methods (e.g., interval arithmetic)
- Symbolic
- Grobner bases
- Border bases
- Resultants
- Geometric resolution
- Here, we will compare only to the alternatives using numerical homotopy. A more complete comparison is a topic for future work.

Software for polynomial continuation

PHC (first release 1997)

- J. Verschelde
- First publicly available implementation of polyhedral method
- Used in SVW series of papers
- Isolated points
- Multihomogeneous \& polyhedral method
- Positive dimensional sets
- Basics, diagonal homotopy
- Hom4PS-2.0 (released 2008)
- T.Y. Li
- Isolated points:
- Multihomogeneous \& polyhedral method
- Fastest polyhedral code available
- Bertini (ver1.0 released Apr.20, 2008)
- D. Bates, J. Hauenstein, A. Sommese, C. Wampler
- Isolated points
- Multihomogeneous, regeneration
- Positive dimensional sets
- Basics, diagonal homotopy
- Automatically adjusts precision: adaptive multiprecision

Test Run 1: 6R Robot Inverse Kinematics

Method*	Work	Time
Total-degree traditional	1024 paths	54 s
Diagonal eqn-by-eqn	649 paths	23 s
Regeneration eqn-by-eqn	628 paths 313 linear moves	9 s

*All runs in Bertini

-5\%	FoCM 2008, Hong Kon

Test Run 2: 9-point Four-bar Problem

Method	Work	Time		
Polyhedral (Hom4PS-2.0)	Mixed volume 87,639 paths	11.7 hrs		
Regeneration (Bertini)	136,296 paths 66,888 linear moves	8.1 hrs		1442 Roberts
:---:				
cognates				

Test Run 3：Lotka－Volterra Systems

－Discretized（finite differences）population model

－Order n system has 8 n sparse bilinear equations
－Only 6 monomials in each equation
Work Summary

	total degree	2－homogeneous	polyhedral	regeneration	
n	paths	paths	paths	paths	slices moved
1	256	70	16	60	42
2	65,536	12,870	256	1020	762
3	$16,777,216$	$2,704,156$	4096	16,380	12,282
4	$4,294,967,296$	$601,080,390$	65,536	262,140	196,602
5	$1,099,511,627,776$	$137,846,528,820$	$1,048,576$	$4,194,300$	$3,145,722$

Total degree $=\mathbf{2}^{8 n}$
Mixed volume $=\mathbf{2 n}^{4 n}$ is exact

[^2]
Lotka-Volterra Systems (cont.)

- Time Summary

n	PHC polyhedral	HOM4PS-2.0 polyhedral	Bertini regeneration
1	0.56 s	0.06 s	0.34 s
2	4 m 57 s	7.33 s	17.30 s
3	18 d 10 h 18 m 56 s	9 m 32 s	10 m 3 s
4	xx	3 d 8 h 28 m 30 s	5 h 5 m 50 s
5	xx	xx	9 d 23 h 32 m 40 s

$\mathrm{xx}=$ did not finish
All runs on a single processor

Summary

- Continuation methods for isolated solutions
- Highly developed in 1980's, 1990's
- Numerical algebraic geometry
- Builds on the methods for isolated roots
- Treats positive-dimensional sets
- Witness sets (slices) are the key construct
- Regeneration: equation-by-equation approach
- Uses moves of linear fcns to regenerate each new equation
- Based on
- parameter continuation, product decomposition, \& deflation
- Captures much of the same structure as polytope methods, without a mixed volume computation
- Most efficient method yet for large, sparse systems
- Bertini software provides regeneration
- Adaptive multiprecision is important

[^0]:

[^1]:

[^2]: Eoㄲ
 ட゚コローヨ

