Regeneration:
A New Algorithm in
Numerical Algebraic Geometry

Charles Wampler

General Motors R&D Center
(Adjunct, Univ. Notre Dame)

Including joint work with
Andrew Sommese, University of Notre Dame
Jon Hauenstein, University of Notre Dame
Fol T
Ll o

o [ 1 FoCM 2008, Hong Kong
L. 1°4



Outline

= Brief overview of Numerical Algebraic Geometry

= Building blocks for Regeneration
= Parameter continuation
=« Polynomial-product decomposition
= Deflation of multiplicity>1 components

= Description of Regeneration
= A new equation-by-equation algorithm that can be used to
find positive dimensional sets and/or isolated solutions
= Leading alternatives to regeneration
= Polyhedral homotopy
For finding isolated roots of sparse systems
= Diagonal homotopy
An existing equation-by-equation approach
= Comparison of regeneration to the alternatives
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‘ Introduction to Continuation

= Basic idea: to solve F(x)=0
= (N equations, N unknowns)

= Define a homotopy H(x,t)=0 such that
H(x,1) = G(x) = 0 has known isolated
solutions, S,
H(x,0) = F(x)
Example: H(x,t) =(-0)F(x)+yG(x)

= Track solution paths as t goes from 1 to 0
Paths satisfy the Davidenko o.d.e.

(dH/dx)(dx/dt) + dH/dt = 0

Endpoints of the paths are solutions of F(x)=0
Let S, be the set of path endpoints

A good homotopy guarantees that paths are t=0 t t=1
nonsingular and S, includes all isolated points
of V(F)
Many “good homotopies” have been invented
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‘ Basic Total-degree Homotopy

To find all isolated solutions to the polynomial
system F: CN-> CN, i.e.,

(X Xy ) ]

=0, deg(fi )= d;

iy (X Xy )|
form the linear homotopy

H(x,t) = (1-t)F(x) + tG(x)=0,
where

g.(x)=ax" +b., a,, b, random, complex
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Polynomial Structures

‘ - The basis of "good homotopies”

(C) Start system

i% Coefficient-Parameter 4 solved via (A) or
U S | S S (B) initial run
Polynomial | Newton
Products | Polytopes (B) Start_ System
| » | solved via
B ——U-—- U convex hulls,
. Monomial Products polytope theory
CasIer specificity
Start & —=-—-=-U === (fewer paths)
system : pathis
j% Linear Products

U (A) Start system
Multihomogeneous > solved with
linear algebra
U g
Y Total Degree
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‘ Numerical Algebraic Geometry

= Extension of polynomial continuation to include
finding positive dimensional solution components
and performing algebraic operations on them.

= First conception
= Sommese & Wampler, FOCM 1995, Park City, UT

= Numerical irreducible decomposition and related
algorithms
= Sommese, Verschelde, & Wampler, 2000-2004

= Monograph covering to year 2005
= Sommese & Wampler, World Scientific, 2005
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‘ Slicing & Witness Sets
= Slicing theorem

= An degree d reduced algebraic
set hits a general linear space of
complementary dimension in d
isolated points

= Witness generation

= Slice at every dimension

= Use continuation to get sets
that contain all isolated
solutions at each dimension

“Witness supersets”
= Irreducible decomposition

= Remove “junk”

= Monodromy on slices finds
irreducible components

= Linear traces verify
completeness
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‘ Membership Test




‘ Linear Traces

B Track witness paths as
slice translates parallel to
itself.

mCentroid of witness
points for an algebraic set ~
must move on a line.
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‘ Real Points on a Complex Curve

= GO to Griffis-Duffy movie...
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Further Reading

The Numerical Solution

of Systems of Polynomials
Arising in Engineering and Science

World Scientific
2005

Andrew J. Sommese « Charles W. Wampler, |l
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‘ Regeneration

= Building blocks
= Regeneration algorithm

= Comparison to pre-existing numerical
continuation alternatives
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‘ Building Block 1: Parameter Continuation
To solve: F(x,p)=0

|

|

I

initial |
parameter \ :
|

I

|

space

target |T/—

parameter
space | | 0 y______= o
/7
7/
7/

e Morgan &

Sommese,

= Start system easy in initial parameter space 1989

= Root count may be much lower in target parameter space
= Initial run is 1-time investment for cheaper target runs
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‘ Kinematic Milestone

= 9-Point Path Generation
for Four-bars

= Problem statement
Alt, 1923

= Bootstrap partial solution
Roth, 1962

= Complete solution

Wampler, Morgan &
Sommese, 1992

m-homogeneous continuation
1442 Robert cognate triples
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‘ Nine-point Four-bar summary

= Symbolic reduction

= Initial total degree ~1010
= Roth & Freudenstein, tot.deg.=5,764,801
=« Our reformulation, tot.deg.=1,048,576

= Multihomogenization 286,720
= 2-way symmetry 143,360

= Numerical reduction (Parameter continuation)
= Nondegenerate solutions 4326

= Roberts cognate 3-way symmetry 1442
= Synthesis program follows 1442 paths
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2-homogeneous
systems with
symmetry:

|

|

|

|

|

143,360 solution :
J

|

|

pairs

9-point
problems*:
1442 groups of
2x6 solutions

*Parameter space of 9-point problems is 18 dimensional (complex)
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‘ Building Block 2: Product Decomposition

= 10 find: isolated roots of system F(x)=0
= Suppose i-th equation, f(x), has the form:

f(x)e<{9n,...,plkl }®'“®{9ﬂ»--vpm}

where p ., = p,(x)areall polynomials.
= Then, a generic g of the form

g(x)6<pn,...,p1kl>®---®<pj1,...,pjkj>
IS @ good start function for a linear homotopy.

= Linear product decomposition = all p;, are

Imear' Linear products: Verschelde & Cools 1994

Polynomial products: Morgan, Sommese & W. 1995
Fol Tl
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‘ Product decomposition

= For a product decomposition homotopy:

= Original articles assert:

Paths from all nonsingular start roots lead to all
nonsingular roots of the target system.

= New result extends this:

Paths from all isolated start roots lead to all
Isolated roots of the target system.
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‘ Building Block 3: Deflation

= Let X be an irreducible component of
V(F) with multiplicity > 1.

= Deflation produces an augmented
system G(X,y) such that there is a
component Y in V(G) of multiplicity 1
that projects generically 1-to-1 onto X.

« Multiplicity=1 means Newton’s method can

be used to get quadratic convergence
Isolated points: Leykin, Verschelde & Zhao 2006, Lecerf 2002

Positive dimensional components: Sommese & Wampler 2005
Related work: Dayton & Zeng '05; Bates, Sommese & Peterson '06; LVZ, L preprints
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‘ Regeneration

= Suppose we have the isolated roots of
= {F(x),9(x)}=0
where F(x) is a system and
= g(x)=L;(x)Ly(x)...L4(X)
IS a linear product decomposition of f(x).
= Then, by product decomposition,
= H(Xx,t)={F (x), vt g(x)+(1-t)f(x)}=0
is @ good homotopy for solving
« {F(X),f(x)}=0
= How can we get the roots of {F(x),g(x)}=07?
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‘ Regeneration

= Suppose we have the isolated solutions of
= {F(¥),L(x)}=0
where L(x) is a linear function.

= Then, by parameter continuation on the coefficients of
L(x) we can get the isolated solutions of

« {F(x),L'(x)}=0.
for any other linear function L'(x).
= Homotopy is H(x,t)={F,ytL(x)+(1-t)L'(x)}=0.
= Doing this d times, we find all isolated solutions of
= {F(x), LiOOL(X)...Lg(x)} = {F(x),9(x)} = O.
= We call this the “regeneration” of {F,g}.
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‘ Tracking multiplicity > 1 paths

= For both regenerating {F,g} and tracking to
{F,f}, we want to track all isolated solutions.
= Some of these may be multiplicity > 1.

= In each case, there is a homotopy H(x,t)=0

= The paths we want to track are curves in V(H)
= Each curve has a deflation.
= We track the deflated curves.
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= Basic step
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‘ Working Equation-by-Equation
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‘ Regeneration: Step 1
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‘ Regeneration: Step 2
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‘ Equation-by-Equation Solving

f,(x)=0 > Co-dim 1 N equations, n variables

f,(x)=0 > Co-dim 1

eSpecial case:
eN=n
enonsingular solutions only
eresults are very promising

Co-dim@)2

f3(x)=0 - Co-dim 1

v
Co-dim@®)3 —
Theory is in place for u>1
e S ; isolated and for full witness
! Similar intersections I set generation.
SR [
Co-dim@,N-l Final Result

\ 4

Co-dim @O min(n,N)

fy(x)=0 > Co-dim 1
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‘ Alternatives 1

= Polyhedral homotopies (a.k.a., BKK)
= Finds all isolated solutions

« Parameter space = coefficients of all monomials
Root count = mixed volume (Bernstein’s Theorem)

Always < root count for best linear product
Especially suited to sparse polynomials

= Homotopies
Verschelde, Verlinden & Cools, '94; Huber & Sturmfels, 95
T.Y. Li with various co-authors, 1997-present

= Advantage:
= Reduction in # of paths

= Disadvantage:
= Mixed volume calculation is combinatorial
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‘ Alternatives 2: Diagonal homotopy

= Given:
= W, = Witness set for irreducible X in V(F)
= W, = Witness set for irreducible Y in V(G)

= Find:
= Intersection of Xand Y

= Method:
« X X Y is an irreducible component of V(F(x),G(y))
= W, x W, is its witness set

= Compute irreducible decomposition of the diagonal, x —y = 0
restricted to X x Y

= Can be used to work equation-by-equation
= Let F be the first k equations & G be the (k+1)t one
= Sommese, Verschelde, & Wampler 2004, 2008.
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‘ Other alternatives

= Numerical
« Exclusion methods (e.g., interval arithmetic)

= Symbolic
= Grobner bases
= Border bases
= Resultants
= Geometric resolution

= Here, we will compare only to the
alternatives using numerical homotop?/
more complete comparison is a topic for
future work.
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‘ Software for polynomial continuation
PHC (first release 1997)

= J. Verschelde
= First publicly available implementation of polyhedral method
= Used in SVW series of papers
= Isolated points
Multihomogeneous & polyhedral method
= Positive dimensional sets
Basics, diagonal homotopy
= Hom4PS-2.0 (released 2008)
= T.Y.Li
= Isolated points:

Multihomogeneous & polyhedral method
Fastest polyhedral code available

= Bertini (verl.0 released Apr.20, 2008)

= D. Bates, J. Hauenstein, A. Sommese, C. Wampler
= Isolated points
Multihomogeneous, regeneration
= Positive dimensional sets
Basics, diagonal homotopy
= Automatically adjusts precision: adaptive multiprecision
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‘ Test Run 1: 6R Robot Inverse Kinematics

Method* Work Time

Total-degree | 1024 paths| 54 s
traditional

Diagonal 649 paths | 23 s
egn-by-egn

Regeneration | 628 paths Os
egn-by-egn | 313 linear
moves

*All runs in Bertini
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Method Work Time s

‘ Test Run 2: 9-point Four-bar Problem

s

Polyhedral Mixed volume | 11.7 hrs
(Hom4PS-2.0) | 87,639 paths

1442 Roberts
Regeneration |136,296 paths 8.1 hrs cognates

(Bertini) 66,888 linear
MOoveSs
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Test Run 3: Lotka-Volterra Systems

= Discretized (finite differences) population model
= Order n system has 8n sparse bilinear equations
= Only 6 monomials in each equation

Work Summary

total degree 2-homogeneous | polvhedral regeneration
1 paths paths i—""f)?a_.t_l_l?s"mi paths slices moved
1 256 70 16 60 42
2 65,536 12.870 256 1020 762
3 16,777,216 2,704.156  § 4096 | 16.380 12,282
4 4,294.967,296 601,080.390 ¢ 65.536 1 262,140 196.602
5 | 1.099.511.627,776 | 137.846.528.820 } 1.048.576 | 4.194.300 | 3,145,722
Total degree = 28n | Volume
Mixed volume = 2" is exact SRR
r.cw™
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‘ Lotka-Volterra Systems (cont.)

= [ime Summary

n | PHC polyhedral | HOM4PS-2.0 polyvhedral | Bertini regeneration
1 0.56s 0.06s 0.34s

2 4mb7s 7.33s 17.30s

3| 18d10h18mb56s Om32s 10m3s

4 XX 3d8h28ma30s 5h5mb0s

5 XX XX 9d23h32m40s

xx = did not finish
All runs on a single processor
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‘ Summary

= Continuation methods for isolated solutions
= Highly developed in 1980’s, 1990’s

= Numerical algebraic geometry
= Builds on the methods for isolated roots
= Treats positive-dimensional sets
= Witness sets (slices) are the key construct

= Regeneration: equation-by-equation approach

= Uses moves of linear fcns to regenerate each new equation

Based on
parameter continuation, product decomposition, & deflation

= Captures much of the same structure as polytope methods,
without a mixed volume computation

= Most efficient method yet for large, sparse systems
= Bertini software provides regeneration
= Adaptive multiprecision is important
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