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Outline 

  Brief overview of Numerical Algebraic Geometry 
  Building blocks for Regeneration 

  Parameter continuation 
  Polynomial-product decomposition 
  Deflation of multiplicity>1 components 

  Description of Regeneration 
  A new equation-by-equation algorithm that can be used to 

find positive dimensional sets and/or isolated solutions 

  Leading alternatives to regeneration 
  Polyhedral homotopy 

  For finding isolated roots of sparse systems 
  Diagonal homotopy 

  An existing equation-by-equation approach 

  Comparison of regeneration to the alternatives 
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Introduction to Continuation 

  Basic idea: to solve F(x)=0   
  (N equations, N unknowns) 
  Define a homotopy H(x,t)=0 such that 

  H(x,1) = G(x) = 0  has known isolated 
solutions, S1 

  H(x,0) = F(x) 
  Example: 

  Track solution paths as t goes from 1 to 0 
  Paths satisfy the Davidenko o.d.e. 

  (dH/dx)(dx/dt) + dH/dt = 0 
  Endpoints of the paths are solutions of F(x)=0 
  Let S0 be the set of path endpoints 
  A good homotopy guarantees that paths are 

nonsingular and S0 includes all isolated points 
of V(F) 

  Many “good homotopies” have been invented 

t=1 t t=0 

S0 S1 
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Basic Total-degree Homotopy 

To find all isolated solutions to the polynomial 
system F: CN CN, i.e., 

form the linear homotopy 
H(x,t) = (1-t)F(x) + tG(x)=0, 

where  
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Polynomial Structures 
- The basis of “good homotopies” 

(A) Start system 
solved with 
linear algebra 

(B) Start system 
solved via 
convex hulls, 
polytope theory 

(C) Start system 
solved via (A) or 
(B) initial run 
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Numerical Algebraic Geometry 

  Extension of polynomial continuation to include 
finding positive dimensional solution components 
and performing algebraic operations on them. 

  First conception 
  Sommese & Wampler, FoCM 1995, Park City, UT 

  Numerical irreducible decomposition and related 
algorithms 
  Sommese, Verschelde, & Wampler, 2000-2004 

  Monograph covering to year 2005 
  Sommese & Wampler, World Scientific, 2005 
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Slicing & Witness Sets 

  Slicing theorem 
  An degree d reduced algebraic 

set hits a general linear space of 
complementary dimension in d 
isolated points 

  Witness generation 
  Slice at every dimension 
  Use continuation to get sets 

that contain all isolated 
solutions at each dimension 

  “Witness supersets” 

  Irreducible decomposition 
  Remove “junk” 
  Monodromy on slices finds 

irreducible components 
  Linear traces verify 

completeness 
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Membership Test 
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Linear Traces 

 Track witness paths as 
slice translates parallel to 
itself. 

 Centroid of witness 
points for an algebraic set 
must move on a line. 
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Real Points on a Complex Curve 

  Go to Griffis-Duffy movie… 
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Further Reading 

World Scientific 
2005 
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Regeneration 

  Building blocks 
  Regeneration algorithm 
  Comparison to pre-existing numerical 

continuation alternatives 
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Building Block 1: Parameter Continuation 

initial 
parameter 

space 

target 
parameter 

space 

  Start system easy in initial parameter space 
  Root count may be much lower in target parameter space 
  Initial run is 1-time investment for cheaper target runs 

Morgan & 
Sommese, 

1989 

To solve: F(x,p)=0 



14 FoCM 2008, Hong Kong 

Kinematic Milestone 

  9-Point Path Generation 
for Four-bars 
  Problem statement 

  Alt, 1923 

  Bootstrap partial solution 
  Roth, 1962 

  Complete solution 
  Wampler, Morgan & 

Sommese, 1992 
  m-homogeneous continuation 
  1442 Robert cognate triples 
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Nine-point Four-bar summary 

  Symbolic reduction 
  Initial total degree    ≈1010 

  Roth & Freudenstein, tot.deg.=5,764,801 
  Our reformulation,     tot.deg.=1,048,576 
  Multihomogenization                  286,720 
  2-way symmetry                        143,360 

  Numerical reduction (Parameter continuation) 
  Nondegenerate solutions   4326 
  Roberts cognate 3-way symmetry  1442 

  Synthesis program follows 1442 paths 
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Parameter Continuation: 9-point problem 

2-homogeneous 
systems with 
symmetry: 

143,360 solution 
pairs  

9-point 
problems*: 

1442 groups of 
2x6 solutions  

*Parameter space of 9-point problems is 18 dimensional (complex) 
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Building Block 2: Product Decomposition 

  To find: isolated roots of system F(x)=0 
  Suppose i-th equation, f(x), has the form: 

  Then, a generic g of the form 

 is a good start function for a linear homotopy. 
  Linear product decomposition = all pjk are 

linear. 
Linear products: Verschelde & Cools 1994 

Polynomial products: Morgan, Sommese & W. 1995 
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Product decomposition 

  For a product decomposition homotopy: 
  Original articles assert:  

  Paths from all nonsingular start roots lead to all 
nonsingular roots of the target system. 

  New result extends this:  
  Paths from all isolated start roots lead to all 

isolated roots of the target system.  
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Building Block 3: Deflation 
  Let X be an irreducible component of 

V(F) with multiplicity > 1. 
  Deflation produces an augmented 

system G(x,y) such that there is a 
component Y in V(G) of multiplicity 1 
that projects generically 1-to-1 onto X. 
  Multiplicity=1 means Newton’s method can 

be used to get quadratic convergence 
Isolated points: Leykin, Verschelde & Zhao 2006, Lecerf 2002 

Positive dimensional components: Sommese & Wampler 2005 

Related work: Dayton & Zeng ’05; Bates, Sommese & Peterson ’06; LVZ, L preprints 
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Regeneration 

  Suppose we have the isolated roots of  
  {F (x),g(x)}=0 

 where F(x) is a system and 
  g(x)=L1(x)L2(x)…Ld(x) 

 is a linear product decomposition of f(x). 
  Then, by product decomposition, 

  H(x,t)={F (x), γt g(x)+(1-t)f(x)}=0 

 is a good homotopy for solving  
  {F (x),f(x)}=0 

  How can we get the roots of {F(x),g(x)}=0? 
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Regeneration 

  Suppose we have the isolated solutions of  
  {F(x),L(x)}=0 

 where L(x) is a linear function. 
  Then, by parameter continuation on the coefficients of 

L(x) we can get the isolated solutions of 
  {F(x),L’(x)}=0.  

 for any other linear function L’(x). 
  Homotopy is H(x,t)={F,γtL(x)+(1-t)L’(x)}=0. 

  Doing this d times, we find all isolated solutions of  
  {F(x), L1(x)L2(x)…Ld(x)} = {F(x),g(x)} = 0. 

  We call this the “regeneration” of {F,g}. 
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Tracking multiplicity > 1 paths 

  For both regenerating {F,g} and tracking to 
{F,f}, we want to track all isolated solutions.   
  Some of these may be multiplicity > 1. 

  In each case, there is a homotopy H(x,t)=0 
  The paths we want to track are curves in V(H) 

  Each curve has a deflation. 
  We track the deflated curves. 
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Working Equation-by-Equation 

  Basic step 
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Regeneration: Step 1 

move 
linear fcn 
dk times 

Union of 
sets 
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Regeneration: Step 2 

Linear 
homotopy 

Repeat for k+1,k+2,…,N 
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Equation-by-Equation Solving 

f1(x)=0  Co-dim 1 

f2(x)=0  Co-dim 1 

f3(x)=0  Co-dim 1 

Intersect 

Co-dim 1,2 

Co-dim 1,2,3 

Co-dim 1,2,...,N-1 

fN(x)=0  Co-dim 1 
Co-dim 1,2,...,min(n,N) 

Final Result 

Similar intersections 

• Special case: 
• N=n 
• nonsingular solutions only 
• results are very promising 

N equations, n variables 

Intersect 

Intersect 

Theory is in place for µ>1 
isolated and for full witness 

set generation. 
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Alternatives 1 

  Polyhedral homotopies (a.k.a., BKK) 
  Finds all isolated solutions 
  Parameter space = coefficients of all monomials 

  Root count = mixed volume (Bernstein’s Theorem) 
  Always ≤ root count for best linear product 

  Especially suited to sparse polynomials 

  Homotopies 
  Verschelde, Verlinden & Cools, ’94; Huber & Sturmfels, ’95  
  T.Y. Li with various co-authors, 1997-present 

  Advantage:  
  Reduction in # of paths 

  Disadvantage:  
  Mixed volume calculation is combinatorial 
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Alternatives 2: Diagonal homotopy 

  Given: 
  WX = Witness set for irreducible X in V(F) 
  WY = Witness set for irreducible Y in V(G) 

  Find: 
  Intersection of X and Y 

  Method: 
  X × Y is an irreducible component of V(F(x),G(y)) 
  WX × WY is its witness set 
  Compute irreducible decomposition of the diagonal, x – y = 0 

restricted to X × Y  

  Can be used to work equation-by-equation 
  Let F be the first k equations & G be the (k+1)st one 

  Sommese, Verschelde, & Wampler 2004, 2008. 
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Other alternatives 

  Numerical 
  Exclusion methods (e.g., interval arithmetic) 

  Symbolic 
  Grobner bases 
  Border bases 
  Resultants 
  Geometric resolution 

  Here, we will compare only to the 
alternatives using numerical homotopy. A 
more complete comparison is a topic for 
future work. 
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Software for polynomial continuation 
  PHC  (first release 1997) 

  J. Verschelde 
  First publicly available implementation of polyhedral method 
  Used in SVW series of papers 
  Isolated points 

  Multihomogeneous & polyhedral method 
  Positive dimensional sets 

  Basics, diagonal homotopy 

  Hom4PS-2.0 (released 2008) 
  T.Y. Li 
  Isolated points:  

  Multihomogeneous & polyhedral method 
  Fastest polyhedral code available 

  Bertini (ver1.0 released Apr.20, 2008) 
  D. Bates, J. Hauenstein, A. Sommese, C. Wampler 
  Isolated points 

  Multihomogeneous, regeneration 
  Positive dimensional sets 

  Basics, diagonal homotopy 
  Automatically adjusts precision: adaptive multiprecision 
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Test Run 1: 6R Robot Inverse Kinematics 

Method* Work Time 

Total-degree 
traditional 

1024 paths 54 s 

Diagonal  
eqn-by-eqn 

649 paths 23 s 

Regeneration 
eqn-by-eqn 

628 paths 
313 linear 

moves 

9 s 

*All runs in Bertini 
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Test Run 2: 9-point Four-bar Problem 

1442 Roberts 
cognates 

Method Work Time 

Polyhedral 
(Hom4PS-2.0) 

Mixed volume 
87,639 paths 

11.7 hrs 

Regeneration 
(Bertini) 

136,296 paths 
66,888 linear 
moves 

8.1 hrs 
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Test Run 3: Lotka-Volterra Systems 

  Discretized (finite differences) population model 
  Order n system has 8n sparse bilinear equations 
  Only 6 monomials in each equation 

+ mixed 
volume 

Work Summary 

Total degree = 28n 

Mixed volume = 24n is exact 
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Lotka-Volterra Systems (cont.) 

  Time Summary 

xx = did not finish 

All runs on a single processor 
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Summary 

  Continuation methods for isolated solutions  
  Highly developed in 1980’s, 1990’s 

  Numerical algebraic geometry 
  Builds on the methods for isolated roots 
  Treats positive-dimensional sets 
  Witness sets (slices) are the key construct 

  Regeneration: equation-by-equation approach 
  Uses moves of linear fcns to regenerate each new equation 

  Based on  
  parameter continuation, product decomposition, & deflation 

  Captures much of the same structure as polytope methods, 
without a mixed volume computation 

  Most efficient method yet for large, sparse systems 
  Bertini software provides regeneration 

  Adaptive multiprecision is important 


