Regeneration: A New Algorithm in Numerical Algebraic Geometry

Charles Wampler

General Motors R&D Center (Adjunct, Univ. Notre Dame)

Including joint work with Andrew Sommese, University of Notre Dame Jon Hauenstein, University of Notre Dame

Outline

- Brief overview of Numerical Algebraic Geometry
- Building blocks for Regeneration
 - Parameter continuation
 - Polynomial-product decomposition
 - Deflation of multiplicity>1 components
- Description of Regeneration
 - A new equation-by-equation algorithm that can be used to find positive dimensional sets and/or isolated solutions
- Leading alternatives to regeneration
 - Polyhedral homotopy
 - For finding isolated roots of sparse systems
 - Diagonal homotopy
 - An existing equation-by-equation approach
- Comparison of regeneration to the alternatives

Introduction to Continuation

- Basic idea: to solve F(x)=0
 - (N equations, N unknowns)
 - Define a homotopy H(x,t)=0 such that
 - H(x,1) = G(x) = 0 has known isolated solutions, S_1
 - H(x,0) = F(x)
 - Example: $H(x,t) = (1-t)F(x) + \gamma t G(x)$
 - Track solution paths as t goes from 1 to 0
 - Paths satisfy the Davidenko o.d.e.
 - (dH/dx)(dx/dt) + dH/dt = 0
 - Endpoints of the paths are solutions of F(x)=0
 - Let S₀ be the set of path endpoints
 - A good homotopy guarantees that paths are nonsingular and S₀ includes all isolated points of V(F)
 - Many "good homotopies" have been invented

GN

Basic Total-degree Homotopy

To find all isolated solutions to the polynomial system F: $C^N \rightarrow C^N$, i.e.,

$$\begin{bmatrix} \mathbf{f}_1(x_1,...,x_N) \\ \vdots \\ \mathbf{f}_N(x_1,...,x_N) \end{bmatrix} = 0, \quad \deg(\mathbf{f}_i) = d_i$$

form the linear homotopy

$$H(x,t) = (1-t)F(x) + tG(x)=0,$$

where

 $g_i(x) = a_i x_i^{d_i} + b_i, a_i, b_i$ random, complex

Polynomial Structures

- The basis of "good homotopies"

Numerical Algebraic Geometry

- Extension of polynomial continuation to include finding positive dimensional solution components and performing algebraic operations on them.
- First conception
 - Sommese & Wampler, FoCM 1995, Park City, UT
- Numerical irreducible decomposition and related algorithms
 - Sommese, Verschelde, & Wampler, 2000-2004
- Monograph covering to year 2005
 - Sommese & Wampler, World Scientific, 2005

Slicing & Witness Sets

- Slicing theorem
 - An degree *d* reduced algebraic set hits a general linear space of complementary dimension in *d* isolated points
- Witness generation
 - Slice at every dimension
 - Use continuation to get sets that contain all isolated solutions at each dimension
 - "Witness supersets"
- Irreducible decomposition
 - Remove "junk"
 - Monodromy on slices finds irreducible components
 - Linear traces verify completeness

GM

Track witness paths as slice translates parallel to itself.

Centroid of witness points for an algebraic set must move on a line.

Real Points on a Complex Curve

Go to Griffis-Duffy movie...

Further Reading

The Numerical Solution of Systems of Polynomials Arising in Engineering and Science

World Scientific 2005

Regeneration

- Building blocks
- Regeneration algorithm
- Comparison to pre-existing numerical continuation alternatives

Kinematic Milestone

- 9-Point Path Generation for Four-bars
 - Problem statement
 - Alt, 1923
 - Bootstrap partial solution
 - Roth, 1962
 - Complete solution
 - Wampler, Morgan & Sommese, 1992
 - m-homogeneous continuation
 - 1442 Robert cognate triples

Nine-point Four-bar summary

- Symbolic reduction
 - Initial total degree $\approx 10^{10}$
 - Roth & Freudenstein, tot.deg.=5,764,801
 - Our reformulation, tot.deg.=1,048,576
 - Multihomogenization
 - 2-way symmetry
 143,360
- Numerical reduction (Parameter continuation)

286,720

- Nondegenerate solutions
 4326
- Roberts cognate 3-way symmetry 1442
- Synthesis program follows 1442 paths

*Parameter space of 9-point problems is 18 dimensional (complex)

Building Block 2: Product Decomposition

- To find: isolated roots of system F(x)=0
 - Suppose i-th equation, f(x), has the form:

$$f(x) \in \left\langle \left\{ p_{11}, \dots, p_{1k_1} \right\} \otimes \dots \otimes \left\{ p_{j1}, \dots, p_{jk_j} \right\} \right\rangle$$

where $p_{jk} = p_{jk}(x)$ are all polynomials.

- Then, a generic g of the form
 - $g(x) \in \langle p_{11}, ..., p_{1k_1} \rangle \otimes \cdots \otimes \langle p_{j1}, ..., p_{jk_j} \rangle$ is a good start function for a linear homotopy.
- Linear product decomposition = all p_{jk} are linear.

Linear products: Verschelde & Cools 1994

Polynomial products: Morgan, Sommese & W. 1995

Product decomposition

- For a product decomposition homotopy:
 - Original articles assert:
 - Paths from all *nonsingular* start roots lead to all nonsingular roots of the target system.
 - New result extends this:
 - Paths from all *isolated* start roots lead to all *isolated* roots of the target system.

Building Block 3: Deflation

- Let X be an irreducible component of V(F) with multiplicity > 1.
- Deflation produces an augmented system G(x,y) such that there is a component Y in V(G) of multiplicity 1 that projects generically 1-to-1 onto X.
 - Multiplicity=1 means Newton's method can be used to get quadratic convergence

Isolated points: Leykin, Verschelde & Zhao 2006, Lecerf 2002 Positive dimensional components: Sommese & Wampler 2005 Related work: Dayton & Zeng '05; Bates, Sommese & Peterson '06; LVZ, L preprints

Regeneration

- Suppose we have the isolated roots of
 - $\{F(x),g(x)\}=0$

where F(x) is a system and

• $g(x) = L_1(x)L_2(x)...L_d(x)$

is a linear product decomposition of f(x).

- Then, by product decomposition,
 - $H(x,t) = \{F(x), \gamma t g(x) + (1-t)f(x)\} = 0$

is a good homotopy for solving

• $\{F(x),f(x)\}=0$

How can we get the roots of {F(x),g(x)}=0?

Regeneration

- Suppose we have the isolated solutions of
 - $\{F(x),L(x)\}=0$

where L(x) is a linear function.

Then, by *parameter continuation* on the coefficients of L(x) we can get the isolated solutions of

 {F(x),L'(x)}=0.

for any other linear function L'(x).

- Homotopy is $H(x,t) = \{F,\gamma tL(x) + (1-t)L'(x)\} = 0.$
- Doing this d times, we find all isolated solutions of
 - {F(x), $L_1(x)L_2(x)...L_d(x)$ } = {F(x),g(x)} = 0.
- We call this the "regeneration" of {F,g}.

Tracking multiplicity > 1 paths

- For both regenerating {F,g} and tracking to {F,f}, we want to track all isolated solutions.
 - Some of these may be multiplicity > 1.
- In each case, there is a homotopy H(x,t)=0
- The paths we want to track are curves in V(H)
 - Each curve has a *deflation*.
 - We track the deflated curves.

Equation-by-Equation Solving

Alternatives 1

- Polyhedral homotopies (a.k.a., BKK)
 - Finds all isolated solutions
 - Parameter space = coefficients of all monomials
 - Root count = mixed volume (Bernstein's Theorem)
 - Always \leq root count for best linear product
 - Especially suited to sparse polynomials
 - Homotopies
 - Verschelde, Verlinden & Cools, '94; Huber & Sturmfels, '95
 - T.Y. Li with various co-authors, 1997-present
- Advantage:
 - Reduction in # of paths
- Disadvantage:
 - Mixed volume calculation is combinatorial

Alternatives 2: Diagonal homotopy

- Given:
 - W_X = Witness set for irreducible X in V(F)
 - W_Y = Witness set for irreducible Y in V(G)
- Find:
 - Intersection of X and Y
- Method:
 - X × Y is an irreducible component of V(F(x),G(y))
 - $W_X \times W_Y$ is its witness set
 - Compute irreducible decomposition of the diagonal, x y = 0 restricted to X × Y
- Can be used to work equation-by-equation
 - Let F be the first k equations & G be the (k+1)st one
- Sommese, Verschelde, & Wampler 2004, 2008.

Other alternatives

- Numerical
 - Exclusion methods (e.g., interval arithmetic)
- Symbolic
 - Grobner bases
 - Border bases
 - Resultants
 - Geometric resolution
- Here, we will compare only to the alternatives using numerical homotopy. A more complete comparison is a topic for future work.

Software for polynomial continuation

- PHC (first release 1997)
 - J. Verschelde
 - First publicly available implementation of polyhedral method
 - Used in SVW series of papers
 - Isolated points
 - Multihomogeneous & polyhedral method
 - Positive dimensional sets
 - Basics, diagonal homotopy
- Hom4PS-2.0 (released 2008)
 - T.Y. Li
 - Isolated points:
 - Multihomogeneous & polyhedral method
 - Fastest polyhedral code available
- Bertini (ver1.0 released Apr.20, 2008)
 - D. Bates, J. Hauenstein, A. Sommese, C. Wampler
 - Isolated points
 - Multihomogeneous, regeneration
 - Positive dimensional sets
 - Basics, diagonal homotopy
 - Automatically adjusts precision: adaptive multiprecision

Test Run 1: 6R Robot Inverse Kinematics

Method*	Work	Time	
Total-degree traditional	1024 paths	54 s	
Diagonal eqn-by-eqn	649 paths	23 s	
Regeneration eqn-by-eqn	628 paths 313 linear moves	9 s	

*All runs in Bertini

Test Run 2: 9-point Four-bar Problem

Method	Work	Time
Polyhedral (Hom4PS-2.0)	Mixed volume 87,639 paths	11.7 hrs
Regeneration (Bertini)	136,296 paths 66,888 linear moves	8.1 hrs

1442 Roberts cognates

Test Run 3: Lotka-Volterra Systems

Discretized (finite differences) population model

- Order n system has 8n sparse bilinear equations
- Only 6 monomials in each equation

Work Summary

total degree 2-homogeneous		polyhedral	regeneration		
n	paths	paths	paths	paths	slices moved
1	256	70	16	60	42
2	$65,\!536$	12,870	256	1020	762
3	16,777,216	2,704,156	4096	$16,\!380$	12,282
4	4,294,967,296	$601,\!080,\!390$	$65{,}536$	262,140	196,602
5	1,099,511,627,776	137,846,528,820	1,048,576	4,194,300	3,145,722
Total degree = 2^{8n}		+ mixed volume			

Mixed volume = 2^{4n} is exact

Lotka-Volterra Systems (cont.)

Time Summary

n	PHC polyhedral	HOM4PS-2.0 polyhedral	Bertini regeneration
1	$0.56 \mathrm{s}$	0.06s	$0.34\mathrm{s}$
2	$4\mathrm{m}57\mathrm{s}$	$7.33\mathrm{s}$	$17.30\mathrm{s}$
3	$18\mathrm{d}10\mathrm{h}18\mathrm{m}56\mathrm{s}$	$9\mathrm{m}32\mathrm{s}$	$10 \mathrm{m}3 \mathrm{s}$
4	XX	3d8h28m30s	$5\mathrm{h}5\mathrm{m}50\mathrm{s}$
5	XX	XX	9d23h32m40s

xx = did not finish

All runs on a single processor

Summary

- Continuation methods for isolated solutions
 - Highly developed in 1980's, 1990's
- Numerical algebraic geometry
 - Builds on the methods for isolated roots
 - Treats positive-dimensional sets
 - Witness sets (slices) are the key construct
- Regeneration: equation-by-equation approach
 - Uses moves of linear fcns to regenerate each new equation
 - Based on
 - parameter continuation, product decomposition, & deflation
 - Captures much of the same structure as polytope methods, without a mixed volume computation
 - Most efficient method yet for large, sparse systems
- Bertini software provides regeneration
 - Adaptive multiprecision is important

