Moment Matrices, Trace Matrices and the Radical of Ideals

Agnes Szanto North Carolina State University

In collaboration with

Itnuit Janovitz-Freireich (North Carolina State University)

Bernard Mourrain (GALAAD, INRIA),

Lajos Rónyai (Hungarian Academy of Sciences and Budapest University of Technology and Economics)

- 4 周 ト 4 戸 ト 4 戸 ト

Introduction

The problem

Given: $f_1, \ldots, f_s \in \mathbb{C}[\mathbf{x}]$ polynomials in $\mathbf{x} = (x_1, \ldots, x_m)$ generating an ideal *I*. Assume that *I* has finitely many roots in \mathbb{C}^m . Suppose *I* either has roots with multiplicities or form clusters with radius $\varepsilon > 0$.

The problem

Given: $f_1, \ldots, f_s \in \mathbb{C}[\mathbf{x}]$ polynomials in $\mathbf{x} = (x_1, \ldots, x_m)$ generating an ideal *I*. Assume that *I* has finitely many roots in \mathbb{C}^m . Suppose *I* either has roots with multiplicities or form clusters with radius $\varepsilon > 0$.

We compute an **approximate radical** of *I*, an ideal which has exactly one root for each cluster, corresponding to the arithmetic mean of the cluster, up to an error term asymptotically bound by ε^2 .

The problem

Given: $f_1, \ldots, f_s \in \mathbb{C}[\mathbf{x}]$ polynomials in $\mathbf{x} = (x_1, \ldots, x_m)$ generating an ideal *I*. Assume that *I* has finitely many roots in \mathbb{C}^m . Suppose *I* either has roots with multiplicities or form clusters with radius $\varepsilon > 0$.

We compute an **approximate radical** of *I*, an ideal which has exactly one root for each cluster, corresponding to the arithmetic mean of the cluster, up to an error term asymptotically bound by ε^2 .

The method's computationally most expensive part is computing a **matrix** of traces.

The problem

Given: $f_1, \ldots, f_s \in \mathbb{C}[\mathbf{x}]$ polynomials in $\mathbf{x} = (x_1, \ldots, x_m)$ generating an ideal *I*. Assume that *I* has finitely many roots in \mathbb{C}^m . Suppose *I* either has roots with multiplicities or form clusters with radius $\varepsilon > 0$.

We compute an **approximate radical** of *I*, an ideal which has exactly one root for each cluster, corresponding to the arithmetic mean of the cluster, up to an error term asymptotically bound by ε^2 .

The method's computationally most expensive part is computing a **matrix** of traces.

We propose a simple method using **Sylvester matrices** to compute matrices of traces.

Related previous work

- Global methods for approximate square-free factorization (univariate case): Sasaki and Noda (1989), Hribernig and Stetter (1997), Kaltofen and May (2003), Zeng (2003), Corless, Watt and Zhi (2004).
- Exact radical computation using trace matrices: Dickson (1923), González-Vega and Trujillo (1994,1995), Armendáriz and Solernó (1995), Becker and Wörmann (1996)
- Local methods to handle near root multiplicities
 - Using eigenvalue computations: Manocha and Demmel (1995), Corless, Gianni and Trager (1997).
 - Using Newton method or deflation: Ojica, Watanabe and Mitsui (1983), Ojica (1987), Lecerf (2002), Giusti, Lecerf, Salvy and Yakoubsohn (2004), Leykin, Verschelde and Zhao (2005).
 - ► Using dual bases: Stetter (1996) and (2004), Dayton and Zeng (2005), Zhi (2008).

Multiplication matrices

Definition

Let $I = \langle f_1, \ldots, f_s \rangle$ be and ideal for which $A = \mathbb{C}[\mathbf{x}]/I$ is finite dimensional. Let $B = [b_1, \ldots, b_n]$ be a basis of A. The multiplication matrix M_h is the transpose of the matrix of the map

$$m_h$$
 : $A \rightarrow A$, $[g] \mapsto [hg]$

written in the basis B.

- 3

< 日 > < 同 > < 三 > < 三 >

Let $\mathbf{z}_1, \ldots, \mathbf{z}_n \in \mathbb{C}^m$ be the roots of I and $B = [b_1, \ldots, b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. Define the Vandermonde matrix

$$V := [b_j(\mathbf{z}_i)]_{i,j=1}^n \in \mathbb{C}^{n \times n}.$$

Let $\mathbf{z}_1, \ldots, \mathbf{z}_n \in \mathbb{C}^m$ be the roots of I and $B = [b_1, \ldots, b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. Define the Vandermonde matrix

$$V := [b_j(\mathbf{z}_i)]_{i,j=1}^n \in \mathbb{C}^{n \times n}.$$

Fact

If V is invertible then

$$M_h = V \operatorname{diag}(h(\mathbf{z}_1), \ldots, h(\mathbf{z}_n)) V^{-1},$$

i.e. he multiplication matrices M_h are simultaneously diagonalizable with $h(\mathbf{z}_1), \ldots, h(\mathbf{z}_n)$ eigenvalues.

Let $\mathbf{z}_1, \ldots, \mathbf{z}_n \in \mathbb{C}^m$ be the roots of I and $B = [b_1, \ldots, b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. Define the Vandermonde matrix

$$V := [b_j(\mathbf{z}_i)]_{i,j=1}^n \in \mathbb{C}^{n \times n}.$$

Fact

If V is invertible then

$$M_h = V \operatorname{diag}(h(\mathbf{z}_1), \ldots, h(\mathbf{z}_n)) V^{-1},$$

i.e. he multiplication matrices M_h are simultaneously diagonalizable with $h(\mathbf{z}_1), \ldots, h(\mathbf{z}_n)$ eigenvalues.

<u>Note:</u> If I has multiple roots then M_h is not diagonalizable. Also, its entries are not continuous near root multiplicites.

Let $\mathbf{z}_1, \ldots, \mathbf{z}_n \in \mathbb{C}^m$ be the roots of I and $B = [b_1, \ldots, b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. Define the Vandermonde matrix

$$V := [b_j(\mathbf{z}_i)]_{i,j=1}^n \in \mathbb{C}^{n \times n}.$$

Fact

If V is invertible then

$$M_h = V \operatorname{diag}(h(\mathbf{z}_1), \ldots, h(\mathbf{z}_n)) V^{-1},$$

i.e. he multiplication matrices M_h are simultaneously diagonalizable with $h(\mathbf{z}_1), \ldots, h(\mathbf{z}_n)$ eigenvalues.

<u>Note:</u> If *I* has multiple roots then M_h is not diagonalizable. Also, its entries are not continuous near root multiplicites.

<u>Goal</u>: Compute multiplication matrices for the radical \sqrt{I} .

Matrix of traces

Definition

Let $B = [b_1, ..., b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. The matrix of traces is the $n \times n$ symmetric matrix:

$$R = [Tr(b_i b_j)]_{i,j=1}^n$$

where $Tr(b_i b_j)$ is the trace of the multiplication matrix $M_{b_i b_i}$.

- 4 同 6 4 日 6 4 日 6

- 3

Matrix of traces

Definition

Let $B = [b_1, ..., b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. The matrix of traces is the $n \times n$ symmetric matrix:

$$R = [Tr(b_i b_j)]_{i,j=1}^n$$

where $Tr(b_i b_j)$ is the trace of the multiplication matrix $M_{b_i b_j}$.

Fact

$$R = V \cdot V^{T},$$

where $V := [b_i(\mathbf{z}_j)]_{i,j=1}^n$ is the Vandermonde matrix for the roots $\mathbf{z}_1, \ldots, \mathbf{z}_n \in \mathbb{C}^m$ of *I*. Moreover

$$\operatorname{rank}(R) = \#\{ \text{ distinct roots of } I \} = \dim \mathbb{C}[\mathbf{x}]/\sqrt{I}.$$

Matrix of traces

Definition

Let $B = [b_1, ..., b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. The matrix of traces is the $n \times n$ symmetric matrix:

$$R = [Tr(b_i b_j)]_{i,j=1}^n$$

where $Tr(b_i b_j)$ is the trace of the multiplication matrix $M_{b_i b_j}$.

Fact

$$R = V \cdot V^{T},$$

where $V := [b_i(\mathbf{z}_j)]_{i,j=1}^n$ is the Vandermonde matrix for the roots $\mathbf{z}_1, \ldots, \mathbf{z}_n \in \mathbb{C}^m$ of *I*. Moreover

$$\operatorname{rank}(R) = \#\{ \text{ distinct roots of } I \} = \dim \mathbb{C}[\mathbf{x}]/\sqrt{I}.$$

<u>Note:</u> R is continuous around root multiplicities. We will use a maximal non-singular submatrix of R to eliminate multiplicities.

Agnes Szanto (NCSU)

Trace Matrices

FOCM, June 2008 6 / 23

Dickson's Lemma

Theorem (Dickson (1923))

Let $B = [b_1, \dots, b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. An element

$$r=\sum_{k=1}^{n}c_{k}b_{k}$$

is in $\operatorname{Rad}(A) = \sqrt{I}/I$ if and only if $[c_1, \ldots, c_n]$ is in the nullspace of the matrix of traces R.

- 4 同 6 4 日 6 4 日 6 - 日

Dickson's Lemma

Theorem (Dickson (1923))

Let $B = [b_1, \dots, b_n]$ be a basis of $A = \mathbb{C}[\mathbf{x}]/I$. An element

$$r=\sum_{k=1}^{n}c_{k}b_{k}$$

is in $\operatorname{Rad}(A) = \sqrt{I}/I$ if and only if $[c_1, \ldots, c_n]$ is in the nullspace of the matrix of traces R.

Corollary

Let $R = [Tr(b_i b_j)]_{i,j=1}^n$ and define $R_{x_k} := [Tr(x_k b_i b_j)]_{i,j=1}^n$ for k = 1, ..., m. If \tilde{R} is a maximal non-singular submatrix of R, and \tilde{R}_{x_k} is the submatrix of R_{x_k} with the same row and column indices as in \tilde{R} , then the solution \tilde{M}_{x_k} of the linear matrix equation

$$\tilde{R}\tilde{M}_{x_k}=\tilde{R}_{x_k}$$

is a multiplication matrix of x_k for the radical of \sqrt{I} .

Clusters of roots

We consider systems for which the common roots form clusters of roots.

3 × < 3

Image: A matrix and a matrix

э

Clusters of roots

We consider systems for which the common roots form clusters of roots.

Definition

Let $\mathbf{z}_i \in \mathbb{C}^m$ for i = 1, ..., k, and consider k clusters $C_1, ..., C_k$ of size $|C_i| = n_i$ such that $\sum_{i=1}^k n_i = n$, each of radius proportional to the parameter ε around $\mathbf{z}_1, ..., \mathbf{z}_k$:

$$C_i = \{\mathbf{z}_i + \delta_{i,1}\varepsilon, \ldots, \mathbf{z}_i + \delta_{i,n_i}\varepsilon\},\$$

where all the coordinates of $\delta_{i,j}$ are less than 1 for all i, j.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Clusters of roots

We consider systems for which the common roots form clusters of roots.

Definition

Let $\mathbf{z}_i \in \mathbb{C}^m$ for i = 1, ..., k, and consider k clusters $C_1, ..., C_k$ of size $|C_i| = n_i$ such that $\sum_{i=1}^k n_i = n$, each of radius proportional to the parameter ε around $\mathbf{z}_1, ..., \mathbf{z}_k$:

$$C_i = \{\mathbf{z}_i + \delta_{i,1}\varepsilon, \ldots, \mathbf{z}_i + \delta_{i,n_i}\varepsilon\},\$$

where all the coordinates of $\delta_{i,j}$ are less than 1 for all i, j.

In this setting we will use trace matrices to define an approximate radical.

イロト イポト イヨト イヨト 三日

GECP and SVD for the matrix of traces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

GECP and SVD for the matrix of traces

Proposition

The U_k be the matrix obtained after k steps of the Gaussian Elimination with Complete Pivoting (GECP) on R for a system with k clusters is of the form

$$\begin{bmatrix} [U_k]_{1,1} & \cdots & \cdots & [U_k]_{1,n} \\ 0 & \ddots & \cdots & \cdots & \vdots \\ & [U_k]_{k,k} & \cdots & \cdots & [U_k]_{k,n} \\ \vdots & 0 & c_{k+1,k+1}\varepsilon^2 & \cdots & c_{k+1,n}\varepsilon^2 \\ & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & c_{n,k+1}\varepsilon^2 & \cdots & c_{n,n}\varepsilon^2 \end{bmatrix} + h.o.t.(\varepsilon).$$

/□ ▶ < 글 ▶ < 글

GECP and SVD for the matrix of traces

Proposition

The U_k be the matrix obtained after k steps of the Gaussian Elimination with Complete Pivoting (GECP) on R for a system with k clusters is of the form

$$\begin{bmatrix} [U_k]_{1,1} & \cdots & \cdots & [U_k]_{1,n} \\ 0 & \ddots & \cdots & \cdots & \vdots \\ & [U_k]_{k,k} & \cdots & \cdots & [U_k]_{k,n} \\ \vdots & 0 & c_{k+1,k+1}\varepsilon^2 & \cdots & c_{k+1,n}\varepsilon^2 \\ & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & c_{n,k+1}\varepsilon^2 & \cdots & c_{n,n}\varepsilon^2 \end{bmatrix} + h.o.t.(\varepsilon).$$

Proposition

Let $\sigma_1 \geq \cdots \geq \sigma_n$ be the singular values of *R*. Then

$$\sigma_{k+1} = C \varepsilon^2 + h.o.t.(\varepsilon).$$

Multiplication matrices for the approximate radical

Definition

Let \tilde{R} be a maximal numerically non-singular submatrix of R, and \tilde{R}_{x_i} is the submatrix of R_{x_i} with the same row and column indices as in \tilde{R} . Then the solution \tilde{M}_{x_i} of the linear matrix equation

$$\tilde{R}\tilde{M}_{x_i}=\tilde{R}_{x_i}$$

is the multiplication matrix of x_i defining the approximate radical.

Multiplication matrices for the approximate radical

Definition

Let \tilde{R} be a maximal numerically non-singular submatrix of R, and \tilde{R}_{x_i} is the submatrix of R_{x_i} with the same row and column indices as in \tilde{R} . Then the solution \tilde{M}_{x_i} of the linear matrix equation

$$\tilde{R}\tilde{M}_{x_i}=\tilde{R}_{x_i}$$

is the multiplication matrix of x_i defining the approximate radical.

Theorem

Modulo ε^2 the multiplication matrices $\tilde{M}_{x_1}, \ldots, \tilde{M}_{x_m}$ form a pairwise commuting system of matrices for the roots ξ_1, \ldots, ξ_k satisfying

$$\xi_s = \mathbf{z}_s + rac{\sum_{r=1}^{n_s} \delta_{s,r}}{n_s} \varepsilon \pmod{\varepsilon^2}.$$

Consider the polynomial system:

$$\begin{split} f_1 &= x_1^2 + 3.99980x_1x_2 - 5.89970x_1 + 3.81765x_2^2 - 11.25296x_2 \\ &\quad + 8.33521 \\ f_2 &= x_1^3 + 12.68721x_1^2x_2 - 2.36353x_1^2 + 81.54846x_1x_2^2 - 177.31082x_1x_2 \\ &\quad + 73.43867x_1 - x_2^3 + 6x_2^2 + x_2 + 5 \\ f_3 &= x_1^3 + 8.04041x_1^2x_2 - 2.16167x_1^2 + 48.83937x_1x_2^2 - 106.72022x_1x_2 \\ &\quad + 44.00210x_1 - x_2^3 + 4x_2^2 + x_2 + 3 \end{split}$$

3

<ロ> <同> <同> < 同> < 同>

Consider the polynomial system:

$$\begin{split} f_1 &= x_1^2 + 3.99980 x_1 x_2 - 5.89970 x_1 + 3.81765 x_2^2 - 11.25296 x_2 \\ &\quad + 8.33521 \\ f_2 &= x_1^3 + 12.68721 x_1^2 x_2 - 2.36353 x_1^2 + 81.54846 x_1 x_2^2 - 177.31082 x_1 x_2 \\ &\quad + 73.43867 x_1 - x_2^3 + 6 x_2^2 + x_2 + 5 \\ f_3 &= x_1^3 + 8.04041 x_1^2 x_2 - 2.16167 x_1^2 + 48.83937 x_1 x_2^2 - 106.72022 x_1 x_2 \\ &\quad + 44.00210 x_1 - x_2^3 + 4 x_2^2 + x_2 + 3 \end{split}$$

Roots: [0.8999, 1], [1, 1], [1, 0.8999] and [-1, 2], [-1.0999, 2]. $\varepsilon = 0.1.$

- 3

(日) (同) (三) (三)

Basis: $[1, x_1, x_2, x_1x_2, x_1^2]$.

Basis: $[1, x_1, x_2, x_1x_2, x_1^2]$. The matrix of traces:

	5	0.79999	6.89990	-1.40000	5.01960]
	0.79999	5.01960	-1.40000	7.12928	0.39812
R =	6.89990	-1.40000	10.80982	-5.68988	7.12928
	-1.40000	7.12928	-5.68988	11.45876	-2.03262
	5.01960	0.39812	7.12928	-2.03262	5.11937

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basis: $[1, x_1, x_2, x_1x_2, x_1^2]$. The matrix of traces:

	5	0.79999	6.89990	-1.40000	5.01960
	0.79999	5.01960	-1.40000	7.12928	0.39812
R =	6.89990	-1.40000	10.80982	-5.68988	7.12928
	-1.40000	7.12928	-5.68988	11.45876	-2.03262
	5.01960	0.39812	7.12928	-2.03262	5.11937

After 2 steps of GECP:

	11.45876	-5.68988	7.12928	-1.40000	-2.03262]
	0	7.98449	2.14006	6.20472	6.11998
$U_2 =$	0	0	0.01039	0.00799	0.02243
	0	0	0.00799	0.00728	0.01544
	0	0	0.02243	0.01544	0.06796

Agnes Szanto (NCSU)

- 4 🗗 ▶

э

•

From the matrix of traces R we compute the matrix \tilde{R} , with columns indexed by 1 and x_1 and rows indexed by 1 and x_2 :

$$ilde{R} := \left[egin{array}{ccc} 5 & 0.79999 \ 6.89990 & -1.40000 \end{array}
ight].$$

3

- 4 同 6 4 日 6 4 日 6

From the matrix of traces R we compute the matrix \tilde{R} , with columns indexed by 1 and x_1 and rows indexed by 1 and x_2 :

$$ilde{R} := \left[egin{array}{cc} 5 & 0.79999 \ 6.89990 & -1.40000 \end{array}
ight].$$

We now solve the system:

$$\begin{split} \tilde{\mathsf{R}}\tilde{M}_{x_i} &= \tilde{R}_{x_i}, \text{ with} \\ \tilde{R}_{x_1} &= \begin{bmatrix} 0.79999 & 5.01960002 \\ -1.40000 & 7.12928003 \end{bmatrix}, \\ \tilde{R}_{x_2} &= \begin{bmatrix} 6.8999 & -1.4000 \\ 10.80982 & -5.68988 \end{bmatrix} \end{split}$$

We obtain the *approximate multiplication matrices*, in the basis $\{1, x_1\}$:

$$\begin{split} \tilde{M}_{x_1} &= \left[\begin{array}{cc} 0 & 1.01685 \\ 1 & -0.08080 \end{array} \right], \quad \text{with eigenvalues } 0.96880 \text{ and } -1.04960, \\ \tilde{M}_{x_2} &= \left[\begin{array}{cc} 1.46229 & -0.52012 \\ -0.51442 & 1.50078 \end{array} \right], \quad \text{with eigenvalues } 0.96391 \text{ and } 1.99915. \end{split}$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We obtain the *approximate multiplication matrices*, in the basis $\{1, x_1\}$:

$$\begin{split} \tilde{M}_{x_1} &= \left[\begin{array}{cc} 0 & 1.01685 \\ 1 & -0.08080 \end{array} \right], \quad \text{with eigenvalues } 0.96880 \text{ and } -1.04960, \\ \tilde{M}_{x_2} &= \left[\begin{array}{cc} 1.46229 & -0.52012 \\ -0.51442 & 1.50078 \end{array} \right], \quad \text{with eigenvalues } 0.96391 \text{ and } 1.99915. \end{split}$$

The roots of the approximate radical are then [0.96880, 0.96391] and [-1.0460, 1.99915].

Note: the arithmetic means of the roots of the clusters are [0.96663, 0.96663] and [-1.04995, 2].

・ 同 ト ・ ヨ ト ・ ヨ ト

We obtain the *approximate multiplication matrices*, in the basis $\{1, x_1\}$:

$$\begin{split} \tilde{M}_{x_1} &= \left[\begin{array}{cc} 0 & 1.01685 \\ 1 & -0.08080 \end{array} \right], \quad \text{with eigenvalues } 0.96880 \text{ and } -1.04960, \\ \tilde{M}_{x_2} &= \left[\begin{array}{cc} 1.46229 & -0.52012 \\ -0.51442 & 1.50078 \end{array} \right], \quad \text{with eigenvalues } 0.96391 \text{ and } 1.99915. \end{split}$$

The roots of the approximate radical are then [0.96880, 0.96391] and [-1.0460, 1.99915].

Note: the arithmetic means of the roots of the clusters are [0.96663, 0.96663] and [-1.04995, 2].

The commutator of the multiplication matrices is

$$\begin{bmatrix} -0.00296 & -0.00289 \\ 0.00307 & 0.00296 \end{bmatrix}$$

∃ ► < ∃ ►</p>

Image: A matrix and a matrix

э

From the definition

Compute a basis $[b_1, \ldots, b_n]$ for $\mathbb{C}[\mathbf{x}]/I$ and the multiplication matrices $M_{b_i b_j}$ of I to compute the traces $Tr(M_{b_i b_j})$ for all $b_i, b_j \in B$.

・ 同 ト ・ ヨ ト ・ ヨ ト

From the definition

Compute a basis $[b_1, \ldots, b_n]$ for $\mathbb{C}[\mathbf{x}]/I$ and the multiplication matrices $M_{b_i b_j}$ of I to compute the traces $Tr(M_{b_i b_j})$ for all $b_i, b_j \in B$.

Newton Sums

Let
$$f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = \prod_{i=1}^n (x - \xi_i)$$
. We have $R = [s_{i+j}]_{i,j=0}^{n-1}$ where $s_k := \sum_{t=1}^n \xi_t^k$.

From the definition

Compute a basis $[b_1, \ldots, b_n]$ for $\mathbb{C}[\mathbf{x}]/I$ and the multiplication matrices $M_{b_i b_j}$ of I to compute the traces $Tr(M_{b_i b_j})$ for all $b_i, b_j \in B$.

Newton Sums

Let
$$f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = \prod_{i=1}^n (x - \xi_i)$$
. We have $R = [s_{i+j}]_{i,j=0}^{n-1}$ where $s_k := \sum_{t=1}^n \xi_t^k$. We find s_1, \dots, s_{2n-2} from:

$$s_1 + a_1 = 0$$

 $s_2 + a_1 s_1 + 2a_2 = 0$

$$s_{2n-2} + a_1 s_{2n-3} + \cdots + a_n s_{n-3} = 0.$$

Note that this has generalizations to the multivariate case, but complicated.

Agnes Szanto (NCSU)

Trace Matrices

Computing Matrices of Traces

Computation of multiplication matrices (and a basis of $\mathbb{C}[\mathbf{x}]/I$):

- resultant and subresultant matrices: Manocha and Demmel (1995), Chardin (1995), Szanto (2001),
- Gröbner bases: Corless (1996),
- Lazard's Algorithm: Lazard (1981), Corless, Gianni and Trager (1995),
- methods combining the above: Mourrain and Trébuchet (2005)
- moment matrices: Lasserre, Laurent and Rostalski (2007).

- 4 同 6 4 日 6 4 日 6 - 日

Computing Matrices of Traces

Computation of multiplication matrices (and a basis of $\mathbb{C}[\mathbf{x}]/I$):

- resultant and subresultant matrices: Manocha and Demmel (1995), Chardin (1995), Szanto (2001),
- Gröbner bases: Corless (1996),
- Lazard's Algorithm: Lazard (1981), Corless, Gianni and Trager (1995),
- methods combining the above: Mourrain and Trébuchet (2005)
- moment matrices: Lasserre, Laurent and Rostalski (2007).

It is however also possible to compute matrices of traces directly

- using Newton sums: Díaz-Toca and Gónzalez-Vega (2001), Briand and Gónzalez-Vega (2001)
- using residues: Becker, Cardinal, Roy, Szafraniec (1996), Cardinal and Mourrain (1996), Cattani, Dickenstein and Sturmfels (1996) and (1998)
- using resultants: D'Andrea and Jeronimo (2005)
- using reduced Bezoutians: Mourrain and Pan (2000), Mourrain (2005)

Sylvester Matrix

Let $\mathbf{f} = \{f_1, \dots, f_s\} \subset \mathbb{C}[\mathbf{x}]$ generating an ideal I and $A = \mathbb{C}[\mathbf{x}]/I$.

Sylvester Matrix

Let $\mathbf{f} = \{f_1, \dots, f_s\} \subset \mathbb{C}[\mathbf{x}]$ generating an ideal I and $A = \mathbb{C}[\mathbf{x}]/I$.

Definition

We define the Sylvester matrix ${\rm Syl}_\Delta(f)$ of degree Δ as the transpose of the matrix of the map

$$\bigoplus_{i=1}^{s} \mathbb{C}[\mathbf{x}]_{\Delta-d_i} \longrightarrow \mathbb{C}[\mathbf{x}]_{\Delta}$$
$$(g_1, \dots, g_s) \mapsto \sum_{i=1}^{s} f_i g_i$$

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Sylvester Matrix

Let $\mathbf{f} = \{f_1, \dots, f_s\} \subset \mathbb{C}[\mathbf{x}]$ generating an ideal I and $A = \mathbb{C}[\mathbf{x}]/I$.

Definition

We define the Sylvester matrix ${\rm Syl}_\Delta(f)$ of degree Δ as the transpose of the matrix of the map

$$igglegical{eq:split} igglegical{eq:split} igglegical{eq:split} \mathbb{C}[\mathbf{x}]_{\Delta-d_i} \longrightarrow \mathbb{C}[\mathbf{x}]_{\Delta} \ (g_1,\ldots,g_s) \mapsto \sum_{i=1}^s f_i g_i$$

Fact: If Δ is large enough, a basis $B = [b_1, \ldots, b_n]$ for A can be computed using $Syl_{\Delta}(\mathbf{f})$. Bounds for Δ given if I has finite *projective roots* using Lazard (1981).

Moment Matrix

We fix a random element of the Nullspace of the Sylvester matrix

$$\mathbf{y} = [\mathbf{y}_{\alpha} : \alpha \in \mathbb{N}^{m}, \ |\alpha| \le \Delta]^{T} \in \mathrm{Null}(\mathrm{Syl}_{\Delta}(\mathbf{f})).$$

э

< ロ > < 同 > < 回 > < 回 >

Moment Matrix

We fix a random element of the Nullspace of the Sylvester matrix

$$\mathbf{y} = [y_{\alpha} : \alpha \in \mathbb{N}^{m}, \ |\alpha| \le \Delta]^{T} \in \mathrm{Null}(\mathrm{Syl}_{\Delta}(\mathbf{f})).$$

Definition

Let $B = [b_1, \ldots, b_n]$ be a basis for A. The $n \times n$ moment matrix $\mathfrak{M}_B(\mathbf{y})$ is defined by

$$\mathfrak{M}_B(\mathbf{y}) = [y_{b_i b_j}]_{i,j=1}^n.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Moment Matrix

We fix a random element of the Nullspace of the Sylvester matrix

$$\mathbf{y} = [y_{\alpha} : \alpha \in \mathbb{N}^{m}, \ |\alpha| \le \Delta]^{T} \in \mathrm{Null}(\mathrm{Syl}_{\Delta}(\mathbf{f})).$$

Definition

Let $B = [b_1, \ldots, b_n]$ be a basis for A. The $n \times n$ moment matrix $\mathfrak{M}_B(\mathbf{y})$ is defined by

$$\mathfrak{M}_B(\mathbf{y}) = [y_{b_i b_j}]_{i,j=1}^n.$$

Note: We have that

$$\max_{\mathbf{y}\in \operatorname{Null}(\operatorname{Syl}_{\Delta}(\mathbf{f}))} \operatorname{rank}(\mathfrak{M}_{\operatorname{B}}(\mathbf{y})) = \begin{cases} n & \text{if } A \text{ is Gorenstein} \\ \leq n & \text{if } A \text{ is non-Gorenstein} \end{cases}$$

and the maximum is attained with high probability by taking a random element in $\operatorname{Null}(\operatorname{Syl}_{\Delta}(f))$.

Agnes Szanto (NCSU)

Generalized Jacobian

Definition

The dual basis for *B* is defined by $b_i^* := \sum_{j=1}^n c_{ji}b_j$ where $\mathfrak{M}_B^{-1}(\mathbf{y}) =: [c_{ij}]_{i,j=1}^n$.

イロト 不得 とうせい かほとう ほ

Generalized Jacobian

Definition

The dual basis for *B* is defined by $b_i^* := \sum_{j=1}^n c_{ji}b_j$ where $\mathfrak{M}_B^{-1}(\mathbf{y}) =: [c_{ij}]_{i,j=1}^n$.

Definition

We define the generalized Jacobian by

$$J:=\sum_{i=1}^n b_i b_i^* \mod I.$$

Agnes	Szanto ((NCSU)
		()

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ Q @

Generalized Jacobian

Definition

The dual basis for *B* is defined by $b_i^* := \sum_{j=1}^n c_{ji}b_j$ where $\mathfrak{M}_B^{-1}(\mathbf{y}) =: [c_{ij}]_{i,j=1}^n$.

Definition

We define the generalized Jacobian by

$$J:=\sum_{i=1}^n b_i b_i^* \mod I.$$

 $Syl_B(J)$ is then constructed from the map

$$\sum_{i=1}^n c_i b_i \mapsto J \cdot \sum_{i=1}^n c_i b_i \in \mathbb{C}[x]_{\Delta}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Main Theorem

Theorem

Let $B = [b_1, ..., b_n]$ be a basis of A with deg $(b_i) \le \Delta$. With the generalized Jacobian J and $Syl_B(J)$ defined before, we have

$$[Tr(b_i b_j)]_{i,j=1}^n = \operatorname{Syl}_B(J) \cdot \mathfrak{M}'_B(\mathbf{y}),$$

where $\mathfrak{M}'_{B}(\mathbf{y})$ is the unique extension of the square moment matrix $\mathfrak{M}_{B}(\mathbf{y})$ such that $\operatorname{Syl}_{\Delta}(\mathbf{f}) \cdot \mathfrak{M}'_{B}(\mathbf{y}) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let n = 3 and $f = x^3 + a_1x^2 + a_2x + a_3$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let n = 3 and $f = x^3 + a_1x^2 + a_2x + a_3$. Then $\Delta = 4$, $B = [1, x, x^2]$ and

$$\operatorname{Syl}_4(f) := \left[egin{array}{cccccc} a_3 & a_2 & a_1 & 1 & 0 \\ 0 & a_3 & a_2 & a_1 & 1 \end{array}
ight],$$

글 > - < 글 >

Image: A mathematical states of the state

э

Let n = 3 and $f = x^3 + a_1x^2 + a_2x + a_3$. Then $\Delta = 4$, $B = [1, x, x^2]$ and

We take $\mathbf{y} := [0, 0, 1, -a_1, a_1^2 - a_2]^T \in \text{Null}(\text{Syl}_4(f)).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let n = 3 and $f = x^3 + a_1x^2 + a_2x + a_3$. Then $\Delta = 4$, $B = [1, x, x^2]$ and

$$\operatorname{Syl}_4(f) := \left[egin{array}{cccccc} a_3 & a_2 & a_1 & 1 & 0 \\ 0 & a_3 & a_2 & a_1 & 1 \end{array}
ight],$$

We take $\mathbf{y} := [0, 0, 1, -a_1, a_1^2 - a_2]^T \in \text{Null}(\text{Syl}_4(f)).$

The resulting moment matrices $\mathfrak{M}_B(\mathbf{y})$ and $\mathfrak{M}'_B(\mathbf{y})$ are:

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -a_1 \\ 1 & -a_1 & a_1^2 - a_2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -a_1 \\ 1 & -a_1 & a_1^2 - a_2 \\ -a_1 & a_1^2 - a_2 & -a_1^3 + 2a_2a_1 - a_3 \\ a_1^2 - a_2 & -a_1^3 + 2a_2a_1 - a_3 & a_1^4 - 3a_2a_1^2 + 2a_3a_1 + a_2^2 \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Univariate example cont.

The generalized Jacobian in this case is $J := f' = 3x^2 + 2a_1x + a_2$, and its Sylvester matrix is

$$\operatorname{Syl}_{B}(f') = \begin{bmatrix} a_{2} & 2 a_{1} & 3 & 0 & 0 \\ 0 & a_{2} & 2 a_{1} & 3 & 0 \\ 0 & 0 & a_{2} & 2 a_{1} & 3 \end{bmatrix}$$

3

•

イロト 不同 トイヨト イヨト

Univariate example cont.

The generalized Jacobian in this case is $J := f' = 3x^2 + 2a_1x + a_2$, and its Sylvester matrix is

$$\operatorname{Syl}_{B}(f') = \begin{bmatrix} a_{2} & 2a_{1} & 3 & 0 & 0 \\ 0 & a_{2} & 2a_{1} & 3 & 0 \\ 0 & 0 & a_{2} & 2a_{1} & 3 \end{bmatrix}.$$

Finally, we get that $Syl_B(f') \cdot \mathfrak{M}'_B(\mathbf{y})$ is the matrix of traces R:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

THANK YOU!

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >