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Introduction

The problem

Given: f1, . . . , fs ∈ C[x] polynomials in x = (x1, . . . , xm) generating
an ideal I .
Assume that I has finitely many roots in Cm.
Suppose I either has roots with multiplicities or form clusters
with radius ε > 0.

We compute an approximate radical of I , an ideal which has exactly one
root for each cluster, corresponding to the arithmetic mean of the cluster,
up to an error term asymptotically bound by ε2.

The method’s computationally most expensive part is computing a matrix
of traces.

We propose a simple method using Sylvester matrices to compute
matrices of traces.
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Introduction

Related previous work

Global methods for approximate square-free factorization (univariate case):
Sasaki and Noda (1989), Hribernig and Stetter (1997), Kaltofen and May
(2003), Zeng (2003), Corless, Watt and Zhi (2004).

Exact radical computation using trace matrices: Dickson (1923),
González-Vega and Trujillo (1994,1995), Armendáriz and Solernó (1995),
Becker and Wörmann (1996)

Local methods to handle near root multiplicities

I Using eigenvalue computations: Manocha and Demmel (1995),
Corless, Gianni and Trager (1997).

I Using Newton method or deflation: Ojica, Watanabe and Mitsui
(1983), Ojica (1987), Lecerf (2002), Giusti, Lecerf, Salvy and
Yakoubsohn (2004), Leykin, Verschelde and Zhao (2005).

I Using dual bases: Stetter (1996) and (2004), Dayton and Zeng (2005),
Zhi (2008).
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Radical and the Matrix of Traces

Multiplication matrices

Definition

Let I = 〈f1, . . . , fs〉 be and ideal for which A = C[x]/I is finite dimensional. Let
B = [b1, . . . , bn] be a basis of A. The multiplication matrix Mh is the transpose
of the matrix of the map

mh : A→ A, [g ] 7→ [hg ]

written in the basis B.
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Radical and the Matrix of Traces

Expressions in the roots

Let z1, . . . , zn ∈ Cm be the roots of I and B = [b1, . . . , bn] be a basis of
A = C[x]/I . Define the Vandermonde matrix

V := [bj(zi )]ni ,j=1 ∈ Cn×n.

Fact
If V is invertible then

Mh = V diag(h(z1), . . . , h(zn)) V−1,

i.e. he multiplication matrices Mh are simultaneously diagonalizable with
h(z1), . . . , h(zn) eigenvalues.

Note: If I has multiple roots then Mh is not diagonalizable. Also, its entries are
not continuous near root multiplicites.

Goal: Compute multiplication matrices for the radical
√

I .
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Radical and the Matrix of Traces

Matrix of traces

Definition

Let B = [b1, . . . , bn] be a basis of A = C[x]/I . The matrix of traces is the n × n
symmetric matrix:

R = [Tr(bibj)]ni,j=1

where Tr(bibj) is the trace of the multiplication matrix Mbibj .

Fact

R = V · V T ,

where V := [bi (zj)]ni,j=1 is the Vandermonde matrix for the roots z1, . . . , zn ∈ Cm

of I . Moreover

rank(R) = #{ distinct roots of I} = dim C[x]/
√

I .

Note: R is continuous around root multiplicities. We will use a maximal

non-singular submatrix of R to eliminate multiplicities.
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Radical and the Matrix of Traces

Dickson’s Lemma

Theorem (Dickson (1923))

Let B = [b1, . . . , bn] be a basis of A = C[x]/I . An element

r =
n∑

k=1

ckbk

is in Rad(A) =
√

I/I if and only if [c1, . . . , cn] is in the nullspace of the matrix of
traces R.

Corollary

Let R = [Tr(bibj)]ni,j=1 and define Rxk
:= [Tr(xkbibj)]ni,j=1 for k = 1, . . . ,m.

If R̃ is a maximal non-singular submatrix of R, and R̃xk
is the submatrix of Rxk

with the same row and column indices as in R̃, then the solution M̃xk
of the linear

matrix equation
R̃M̃xk

= R̃xk

is a multiplication matrix of xk for the radical of
√

I .
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Approximate Case

Clusters of roots

We consider systems for which the common roots form clusters of
roots.

Definition

Let zi ∈ Cm for i = 1, . . . , k , and consider k clusters C1, . . . ,Ck of size
|Ci | = ni such that

∑k
i=1 ni = n, each of radius proportional to the

parameter ε around z1, . . . , zk :

Ci = {zi + δi ,1ε, . . . , zi + δi ,ni
ε},

where all the coordinates of δi ,j are less than 1 for all i , j .

In this setting we will use trace matrices to define an approximate
radical.
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Approximate Case

GECP and SVD for the matrix of traces

Proposition

The Uk be the matrix obtained after k steps of the Gaussian Elimination with
Complete Pivoting (GECP) on R for a system with k clusters is of the form

[Uk ]1,1 · · · · · · · · · [Uk ]1,n

0
. . . · · · · · · · · ·

...
[Uk ]k,k · · · · · · [Uk ]k,n

... 0 ck+1,k+1ε
2 · · · ck+1,nε

2

...
...

. . .
...

0 0 cn,k+1ε
2 · · · cn,nε

2


+ h.o.t.(ε).

Proposition

Let σ1 ≥ · · · ≥ σn be the singular values of R. Then

σk+1 = C ε2 + h.o.t.(ε).
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Approximate Case

Multiplication matrices for the approximate radical

Definition

Let R̃ be a maximal numerically non-singular submatrix of R, and R̃xi is
the submatrix of Rxi with the same row and column indices as in R̃. Then
the solution M̃xi of the linear matrix equation

R̃M̃xi = R̃xi

is the multiplication matrix of xi defining the approximate radical.

Theorem

Modulo ε2 the multiplication matrices M̃x1 , . . . , M̃xm form a pairwise
commuting system of matrices for the roots ξ1, . . . , ξk satisfying

ξs = zs +

∑ns
r=1 δs,r

ns
ε (mod ε2).
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Approximate Case

Example

Consider the polynomial system:

f1 = x2
1 + 3.99980x1x2 − 5.89970x1 + 3.81765x2

2 − 11.25296x2

+ 8.33521

f2 = x3
1 + 12.68721x2

1 x2 − 2.36353x2
1 + 81.54846x1x2

2 − 177.31082x1x2

+ 73.43867x1 − x3
2 + 6x2

2 + x2 + 5

f3 = x3
1 + 8.04041x2

1 x2 − 2.16167x2
1 + 48.83937x1x2

2 − 106.72022x1x2

+ 44.00210x1 − x3
2 + 4x2

2 + x2 + 3

Roots: [0.8999, 1], [1, 1], [1, 0.8999] and [−1, 2], [−1.0999, 2].

ε = 0.1.
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Approximate Case

Example

Basis: [1, x1, x2, x1x2, x
2
1 ].

The matrix of traces:

R =


5 0.79999 6.89990 −1.40000 5.01960

0.79999 5.01960 −1.40000 7.12928 0.39812
6.89990 −1.40000 10.80982 −5.68988 7.12928
−1.40000 7.12928 −5.68988 11.45876 −2.03262

5.01960 0.39812 7.12928 −2.03262 5.11937

 .

After 2 steps of GECP:

U2 =


11.45876 −5.68988 7.12928 −1.40000 −2.03262

0 7.98449 2.14006 6.20472 6.11998
0 0 0.01039 0.00799 0.02243
0 0 0.00799 0.00728 0.01544
0 0 0.02243 0.01544 0.06796

 .
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Approximate Case

Example

From the matrix of traces R we compute the matrix R̃, with columns
indexed by 1 and x1 and rows indexed by 1 and x2 :

R̃ :=

[
5 0.79999

6.89990 −1.40000

]
.

We now solve the system:

R̃M̃xi = R̃xi , with

R̃x1 =

[
0.79999 5.01960002
−1.40000 7.12928003

]
,

R̃x2 =

[
6.8999 −1.4000

10.80982 −5.68988

]
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Approximate Case

Example

We obtain the approximate multiplication matrices, in the basis {1, x1}:

M̃x1 =

[
0 1.01685
1 −0.08080

]
, with eigenvalues 0.96880 and − 1.04960,

M̃x2 =

[
1.46229 −0.52012
−0.51442 1.50078

]
, with eigenvalues 0.96391 and 1.99915.

The roots of the approximate radical are then [0.96880, 0.96391] and

[−1.0460, 1.99915].

Note: the arithmetic means of the roots of the clusters are
[0.96663, 0.96663] and [−1.04995, 2].

The commutator of the multiplication matrices is[
−0.00296 −0.00289

0.00307 0.00296

]
.

—
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Computation of Matrices of Traces

Computation of Matrices of Traces

From the definition

Compute a basis [b1, . . . , bn] for C[x]/I and the multiplication matrices
Mbibj

of I to compute the traces Tr(Mbibj
) for all bi , bj ∈ B.

Newton Sums

Let f (x) = xn + a1xn−1 + · · ·+ an−1x + an =
∏n

i=1(x − ξi ). We have

R = [si+j ]
n−1
i ,j=0 where sk :=

∑n
t=1 ξ

k
t . We find s1, . . . , s2n−2 from:

s1 + a1 = 0

s2 + a1s1 + 2a2 = 0

...

s2n−2 + a1s2n−3 + · · · + ansn−3 = 0.

Note that this has generalizations to the multivariate case, but
complicated.
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Computation of Matrices of Traces

Computing Matrices of Traces
Computation of multiplication matrices (and a basis of C[x]/I ):

resultant and subresultant matrices: Manocha and Demmel (1995), Chardin
(1995), Szanto (2001),

Gröbner bases: Corless (1996),

Lazard’s Algorithm: Lazard (1981), Corless, Gianni and Trager (1995),

methods combining the above: Mourrain and Trébuchet (2005)

moment matrices: Lasserre, Laurent and Rostalski (2007).

It is however also possible to compute matrices of traces directly

using Newton sums: D́ıaz-Toca and Gónzalez-Vega (2001), Briand and
Gónzalez-Vega (2001)

using residues: Becker, Cardinal, Roy, Szafraniec (1996), Cardinal and
Mourrain (1996), Cattani, Dickenstein and Sturmfels (1996) and (1998)

using resultants: D’Andrea and Jeronimo (2005)

using reduced Bezoutians: Mourrain and Pan (2000), Mourrain (2005)
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Computation of Matrices of Traces

Sylvester Matrix

Let f = {f1, . . . , fs} ⊂ C[x] generating an ideal I and A = C[x]/I .

Definition

We define the Sylvester matrix Syl∆(f) of degree ∆ as the transpose of
the matrix of the map

s⊕
i=1

C[x]∆−di
−→ C[x]∆

(g1, . . . , gs) 7→
s∑

i=1

figi

Fact: If ∆ is large enough, a basis B = [b1, . . . , bn] for A can be
computed using Syl∆(f). Bounds for ∆ given if I has finite projective
roots using Lazard (1981).
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Computation of Matrices of Traces

Moment Matrix
We fix a random element of the Nullspace of the Sylvester matrix

y = [yα : α ∈ Nm, |α| ≤ ∆]T ∈ Null(Syl∆(f)).

Definition

Let B = [b1, . . . , bn] be a basis for A. The n× n moment matrix MB(y) is
defined by

MB(y) = [ybibj
]ni ,j=1.

Note: We have that

max
y∈Null(Syl∆(f))

rank(MB(y)) =

{
n if A is Gorenstein

≤ n if A is non-Gorenstein

and the maximum is attained with high probability by taking a random
element in Null(Syl∆(f)).
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Computation of Matrices of Traces

Generalized Jacobian

Definition

The dual basis for B is defined by b∗i :=
∑n

j=1 cjibj where

M−1
B (y) =: [cij ]

n
i ,j=1.

Definition

We define the generalized Jacobian by

J :=
n∑

i=1

bib
∗
i mod I .

SylB(J) is then constructed from the map

n∑
i=1

cibi 7→ J ·
n∑

i=1

cibi ∈ C[x ]∆.

Agnes Szanto (NCSU) Trace Matrices FOCM, June 2008 19 / 23



Computation of Matrices of Traces

Generalized Jacobian

Definition

The dual basis for B is defined by b∗i :=
∑n

j=1 cjibj where

M−1
B (y) =: [cij ]

n
i ,j=1.

Definition

We define the generalized Jacobian by

J :=
n∑

i=1

bib
∗
i mod I .

SylB(J) is then constructed from the map

n∑
i=1

cibi 7→ J ·
n∑

i=1

cibi ∈ C[x ]∆.

Agnes Szanto (NCSU) Trace Matrices FOCM, June 2008 19 / 23



Computation of Matrices of Traces

Generalized Jacobian

Definition

The dual basis for B is defined by b∗i :=
∑n

j=1 cjibj where

M−1
B (y) =: [cij ]

n
i ,j=1.

Definition

We define the generalized Jacobian by

J :=
n∑

i=1

bib
∗
i mod I .

SylB(J) is then constructed from the map

n∑
i=1

cibi 7→ J ·
n∑

i=1

cibi ∈ C[x ]∆.

Agnes Szanto (NCSU) Trace Matrices FOCM, June 2008 19 / 23



Computation of Matrices of Traces

Main Theorem

Theorem

Let B = [b1, . . . , bn] be a basis of A with deg(bi ) ≤ ∆. With the
generalized Jacobian J and SylB(J) defined before, we have

[Tr(bibj)]ni ,j=1 = SylB(J) ·M′B(y),

where M′B(y) is the unique extension of the square moment matrix MB(y)
such that Syl∆(f) ·M′B(y) = 0.
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Computation of Matrices of Traces

Univariate example

Let n = 3 and f = x3 + a1x2 + a2x + a3.

Then ∆ = 4, B = [1, x , x2] and

Syl4(f ) :=

[
a3 a2 a1 1 0

0 a3 a2 a1 1

]
,

We take y := [0, 0, 1,−a1, a1
2 − a2]T ∈ Null(Syl4(f )).

The resulting moment matrices MB(y) and M′B(y) are:

2664
0 0 1

0 1 −a1

1 −a1 a1
2 − a2

3775 ,
2666666664

0 0 1

0 1 −a1

1 −a1 a1
2 − a2

−a1 a1
2 − a2 −a1

3 + 2 a2a1 − a3

a1
2 − a2 −a1

3 + 2 a2a1 − a3 a1
4 − 3 a2a1

2 + 2 a3a1 + a2
2

3777777775
.
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Computation of Matrices of Traces

Univariate example cont.

The generalized Jacobian in this case is J := f ′ = 3x2 + 2a1x + a2, and its
Sylvester matrix is

SylB(f ′) =


a2 2 a1 3 0 0

0 a2 2 a1 3 0

0 0 a2 2 a1 3

 .

Finally, we get that SylB(f ′) ·M′B(y) is the matrix of traces R:
3 −a1 −2 a2 + a1

2

−a1 −2 a2 + a1
2 −3 a3 + 3 a2a1 − a1

3

−2 a2 + a1
2 −3 a3 + 3 a2a1 − a1

3 −4 a2a1
2 + 2 a2

2 + a1
4 + 4 a3a1

 .
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Computation of Matrices of Traces

THANK YOU!
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