
Point counting in genus 2:

towards 128 bits

P. Gaudry É. Schost N. Pitcher

Cacao project ORCCA MSCS

CNRS-INRIA UWO U. of Illinois

1



Genus 2 curves and associated objects

• C is the curve defined over Fp by

y2 = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0,

with p large prime.

• J is its Jacobian

– projective variety of dimension 2;

– but we will work on an affine part of it.

• K is the associated Kummer surface

– K = J/{±1}.
– a projective variety of dimension 2 too;

– we won’t work with it too much.

2



Why?

Cryptologists like genus 2 Jacobians.

• Dimension 2:

– there are more rational points than on an elliptic curve,

– so for a given number of points, smaller base field.

• Scalar multiplication is not too slow

– Chudnovsky2, Gaudry.

So they could be competitive with elliptic curves.

3



Our question

Problem: finding one curve

• whose Jacobian has a prime cardinality (for safety reasons);

• over a prime field;

• with small coefficients

– to make scalar multiplication fast.

Goal: p = 2127 − 1.

We are not there yet, but almost.

• a first 128 bit run;

• the curve was mostly random (but lucky).

4



Previous work, large characteristic

Schoof (1985): polynomial time algorithm for elliptic curves.

• Pila (1990): algorithm for abelian varieties.

• Kampkötter (1991): genus 2 algorithm.

• Adleman-Huang (1996), Huang-Ierardi (1998): improvements of Pila’s work.

• Gaudry-Harley (2000): genus 2 algorithm, p ' 261.

• Matsuo-Chao-Tsujii (2002): baby steps / giant steps strategy.

• Gaudry-S. (2004): cryptographic size: p ' 282.

• Gaudry-S. (2004): parallel, low-memory version of Matsuo-Chao-Tsujii.

5



Schoof’s approach

Let
χ = T 4 − s1T

3 + s2T
2 − ps1T + p2 ∈ Z[T ]

be the characteristic polynomial of the Frobenius endomorphism on J.

• card(J) = χ(1);

• for ` ∈ N, computing the `-torsion (or a subset of it) gives χ mod ` (up to some
indeterminacy, maybe).

General scheme:

• for as many coprimes `1, . . . , `r as possible, compute the `-torsion;

• some collision detection technique is used if we do not have enough precision to
conclude by Chinese remaindering:

If `1 · · · `r = m, then the cost is about p0.75/m.

6



Concretely

It boils down to solving polynomial systems.

To keep in mind:

• an element of the Jacobian has 4 coordinates with 2 relations.

• `-torsion has cardinality `4.

Large primes: up to ` = 31 or ` = 37 (` = 43 doable?)

• solving bivariate systems by bivariate resultants.

Prime powers:

• cool improvements on 2k-torsion and 3k-torsion;

• brute-force improvements on 5k-torsion and 7k-torsion.

7



Concretely

Software environment: NTL

• Does better than Magma for the routines we need

– most basic routines on uni (bi, tri) -variate polynomials.

• Convenient

– ./configure ; make

• On the other hand, no Gröbner engine

– anyway, faster workarounds.

8



Reduction to bivariate solving

Almost everything is from Gaudry-Harley and Gaudry-S.:

• Rewrite [`]D = 0 as

D = P1(x1, y1) + P2(x2, y2), [`]P1 = −[`]P2.

• You get equations in (x1, y1, x2, y2) with symmetries.

• Rewrite these equations in the elementary symmetric polynomials.

Saves a factor of 2!

• Solve bivariate equations with bivariate resultants.

What’s left to improve:

• Bivariate resultants are sub-optimal.

Output size ' `4; cost O (̃`6)
O˜ means we neglect logarithmic factors.

• Systems are over-determined.

9



Lifting the torsion

While (possible==true) do

• write the equations that say [`]Pk+1 = Pk `4 solutions;

• extend the base field with one solution;

• continue. ` → `2 → `3 → · · ·

Here, ` = 2, 3, 5, 7.

• Known complexity estimates ill-adapted: it’s all in the big-Oh.

• the systems are simple enough that specialized solutions may pay off:

– ` = 2: reduction to square-root extraction;

– ` = 3: deformation techniques & root-finding;

– ` = 5, 7: bivariate resultants, again.

10



Division by 2

1. Amounts to compute square roots.

• . . . or a little bit more (extend the base field when no square root exists)

• complexity as in Kaltofen-Shoup, 1997.

2. Main subroutine: modular composition A, B,C 7→ A(B) mod C.

• most other operations reduce to composition or a dual form of it.

– irreducibility tests

– equal-degree factorization

– finding new primitive elements

• cost: C(d) = O (̃d1.5) (polynomial operations) + O(d2) (linear algebra)

• Kedlaya-Umans: not useful yet.

11



Division by 3

Basic idea

• The system [3]P = Q is parametrized by the coordinates of Q.

• Set up a homotopy between the target [3]P = Q and an initial system
[3]P0 = Q0 for which we know the solutions

basically, we let Qt = (1− t)Q0 + tQ.

• Compute a description of the solution curve and let t = 1.

12



Division by 3

Basic idea

• The system [3]P = Q is parametrized by the coordinates of Q.

• Set up a homotopy between the target [3]P = Q and an initial system
[3]P0 = Q0 for which we know the solutions

basically, we let Qt = (1− t)Q0 + tQ.

• Compute a description of the solution curve and let t = 1.

Q0
Q

13



Division by 3

Basic idea

• The system [3]P = Q is parametrized by the coordinates of Q.

• Set up a homotopy between the target [3]P = Q and an initial system
[3]P0 = Q0 for which we know the solutions

basically, we let Qt = (1− t)Q0 + tQ.

• Compute a description of the solution curve and let t = 1.

Q0
Q

14



Division by 3

Basic idea

• The system [3]P = Q is parametrized by the coordinates of Q.

• Set up a homotopy between the target [3]P = Q and an initial system
[3]P0 = Q0 for which we know the solutions

basically, we let Qt = (1− t)Q0 + tQ.

• Compute a description of the solution curve and let t = 1.

Q0
Q

15



Division by 3

Basic idea

• The system [3]P = Q is parametrized by the coordinates of Q.

• Set up a homotopy between the target [3]P = Q and an initial system
[3]P0 = Q0 for which we know the solutions

basically, we let Qt = (1− t)Q0 + tQ.

• Compute a description of the solution curve and let t = 1.

Q0
Q

16



Division by 3

Basic idea

• The system [3]P = Q is parametrized by the coordinates of Q.

• Set up a homotopy between the target [3]P = Q and an initial system
[3]P0 = Q0 for which we know the solutions

basically, we let Qt = (1− t)Q0 + tQ.

• Compute a description of the solution curve and let t = 1.

Q0
Q

17



Concretely

General idea: as in Pardo-San Martin; Matera et al.

1. Evaluation properties

• nice straight-line program for multiplication by 3.

2. Action of the 3-torsion

• branches are conjugate: lift only one branch.

3. Local → global

• rational interpolation.

4. Subgroups of the 3-torsion

• easier factorization.

18



The nice straight-line program

ZZ_pEX DT141=-tmp14c+MulTrunc(tmp14b, DT91+DT101, k)-DT121-DT131;

ZZ_pEX DT142=2*MulTrunc(tmp14b, DT61-1, k)-2*v1-DT132;

ZZ_pEX DT143=MulTrunc(-u1-1, tmp14a, k) -2*MulTrunc(tmp14b, v1, k)+T9-DT133;

ZZ_pEX DT144=tmp14a-T10;

ZZ_pEX T15=(T14-MulTrunc(T12, u1, k))/2;

ZZ_pEX DT151=(DT141-MulTrunc(DT121, u1, k)-T12)/2;

ZZ_pEX DT152=DT142/2-u1v1;

ZZ_pEX DT153=(DT143+MulTrunc(T9, u1, k))/2;

ZZ_pEX T16=(T13-MulTrunc(T12, u0, k))/2;

ZZ_pEX DT161=(DT131-MulTrunc(DT121, u0, k))/2;

ZZ_pEX DT162=(DT132-T12)/2-u0v1;

ZZ_pEX DT163=(DT133+MulTrunc(T9, u0, k))/2;

ZZ_pEX T17=-MulTrunc(DT61, T4, k)-2*MulTrunc(T15, v1, k);

ZZ_pEX DT171=MulTrunc(DT61, T3, k)-2*(T4+MulTrunc(DT151, v1, k));

ZZ_pEX DT172=-MulTrunc(DT61, T1, k)-2*MulTrunc(DT152, v1, k);

ZZ_pEX DT173=-MulTrunc(DT61, DT43, k)-2*(MulTrunc(DT153, v1, k)+T15);

ZZ_pEX DT174=-MulTrunc(DT61, DT44, k)-tmp14c+tmp13a;

ZZ_pEX T18=SqrTrunc(T15, k);

ZZ_pEX DT181=2*MulTrunc(T15, DT151, k);

ZZ_pEX DT182=2*MulTrunc(T15, DT152, k);

ZZ_pEX DT183=2*MulTrunc(T15, DT153, k);

ZZ_pEX DT184=MulTrunc(T15, DT144, k);

ZZ_pEX T19=SqrTrunc(T16, k);

ZZ_pEX DT191=2*MulTrunc(T16, DT161, k);

ZZ_pEX DT192=2*MulTrunc(T16, DT162, k);

ZZ_pEX DT193=2*MulTrunc(T16, DT163, k);
19



ZZ_pEX DT194=MulTrunc(T16, T10, k);

ZZ_pEX tmp20a=T15+T16;

ZZ_pEX T20=SqrTrunc(tmp20a, k)-T18-T19;

ZZ_pEX DT201=2*MulTrunc(tmp20a, DT151+DT161, k)-DT181-DT191;

ZZ_pEX DT202=2*MulTrunc(tmp20a, DT152+DT162, k)-DT182-DT192;

ZZ_pEX DT203=2*MulTrunc(tmp20a, DT153+DT163, k)-DT183-DT193;

ZZ_pEX DT204=MulTrunc(tmp20a, DT144+T10, k)-DT184-DT194;

ZZ_pEX T21=T20-SqrTrunc(T4, k);

ZZ_pEX DT211=DT201+2*MulTrunc(T4, T3, k);

ZZ_pEX DT212=DT202-2*MulTrunc(T4, T1, k);

ZZ_pEX DT213=DT203-2*MulTrunc(T4, DT43, k);

ZZ_pEX DT214=DT204-2*MulTrunc(T4, DT44, k);

ZZ_pEX T22=T19-MulTrunc(T17, T4, k);

ZZ_pEX DT221=DT191+MulTrunc(T17, T3, k)-MulTrunc(T4, DT171, k);

ZZ_pEX DT222=DT192-MulTrunc(T17, T1, k)-MulTrunc(T4, DT172, k);

ZZ_pEX DT223=DT193-MulTrunc(T17, DT43, k)-MulTrunc(T4, DT173, k);

ZZ_pEX DT224=DT194-MulTrunc(T17, DT44, k)-MulTrunc(T4, DT174, k);

ZZ_pEX T23=u1*Eu1;

ZZ_pEX T24 =u0 - T23 + Eu1Eu1 - Eu0;

ZZ_pEX tmp25=T24-Eu0;

ZZ_pEX tmp25b=Eu0*u1;

ZZ_pEX T25=MulTrunc(u0, tmp25, k) + Eu0*(SqrTrunc(u1, k)-T23+Eu0);

ZZ_pEX DT251=-u0*Eu1+2*tmp25b-Eu0Eu1;

ZZ_pEX DT252=tmp25+u0;

ZZ_pEX T26=Ev1+v1;

ZZ_pEX T27=Ev0+v0;

ZZ_pEX T28=ff4-u1;

20



Results

task time in sec. bottleneck

` = 217 348,008 modular composition

` = 37 126,720 lifting / interpolation

polynomial too large for FFT

` = 54 235,713 bivariate resultants

` = 72 95,975 bivariate resultants

` = 11, . . . , 31 2,242,185 bivariate resultants

memory becomes a problem

kangaroos 7300

total 3,055,901 ≈ 1 month

We expect to test about 10000 curves before finding a suitable one.

Should take about 100 CPU years.

21


