Point counting in genus 2: towards 128 bits

P. Gaudry É. Schost N. Pitcher
Cacao project ORCCA MSCS
CNRS-INRIA UWO U. of Illinois

Genus 2 curves and associated objects

- C is the curve defined over \mathbb{F}_{p} by

$$
y^{2}=x^{5}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}
$$

with p large prime.

- J is its Jacobian
- projective variety of dimension 2;
- but we will work on an affine part of it.
- \mathbf{K} is the associated Kummer surface
$-\mathbf{K}=\mathbf{J} /\{ \pm 1\}$.
- a projective variety of dimension 2 too;
- we won't work with it too much.

Why?

Cryptologists like genus 2 Jacobians.

- Dimension 2:
- there are more rational points than on an elliptic curve,
- so for a given number of points, smaller base field.
- Scalar multiplication is not too slow
- Chudnovsky², Gaudry.

So they could be competitive with elliptic curves.

Our question

Problem: finding one curve

- whose Jacobian has a prime cardinality (for safety reasons);
- over a prime field;
- with small coefficients
- to make scalar multiplication fast.

Goal: $p=2^{127}-1$.
We are not there yet, but almost.

- a first 128 bit run;
- the curve was mostly random (but lucky).

Previous work, large characteristic

Schoof (1985): polynomial time algorithm for elliptic curves.

- Pila (1990): algorithm for abelian varieties.
- Kampkötter (1991): genus 2 algorithm.
- Adleman-Huang (1996), Huang-Ierardi (1998): improvements of Pila's work.
- Gaudry-Harley (2000): genus 2 algorithm, $p \simeq 2^{61}$.
- Matsuo-Chao-Tsujii (2002): baby steps / giant steps strategy.
- Gaudry-S. (2004): cryptographic size: $p \simeq 2^{82}$.
- Gaudry-S. (2004): parallel, low-memory version of Matsuo-Chao-Tsujii.

Schoof's approach

Let

$$
\chi=T^{4}-s_{1} T^{3}+s_{2} T^{2}-p s_{1} T+p^{2} \in \mathbb{Z}[T]
$$

be the characteristic polynomial of the Frobenius endomorphism on \mathbf{J}.

- $\operatorname{card}(\mathbf{J})=\chi(1) ;$
- for $\ell \in \mathbb{N}$, computing the ℓ-torsion (or a subset of it) gives $\chi \bmod \ell$ (up to some indeterminacy, maybe).

General scheme:

- for as many coprimes $\ell_{1}, \ldots, \ell_{r}$ as possible, compute the ℓ-torsion;
- some collision detection technique is used if we do not have enough precision to conclude by Chinese remaindering:
If $\ell_{1} \cdots \ell_{r}=m$, then the cost is about $p^{0.75} / m$.

Concretely

It boils down to solving polynomial systems.
To keep in mind:

- an element of the Jacobian has 4 coordinates with 2 relations.
- ℓ-torsion has cardinality ℓ^{4}.

Large primes: up to $\ell=31$ or $\ell=37$ ($\ell=43$ doable?)

- solving bivariate systems by bivariate resultants.

Prime powers:

- cool improvements on 2^{k}-torsion and 3^{k}-torsion;
- brute-force improvements on 5^{k}-torsion and 7^{k}-torsion.

Concretely

Software environment: NTL

- Does better than Magma for the routines we need
- most basic routines on uni (bi, tri) -variate polynomials.
- Convenient
- ./configure ; make
- On the other hand, no Gröbner engine
- anyway, faster workarounds.

Reduction to bivariate solving

Almost everything is from Gaudry-Harley and Gaudry-S.:

- Rewrite $[\ell] D=0$ as

$$
D=P_{1}\left(x_{1}, y_{1}\right)+P_{2}\left(x_{2}, y_{2}\right), \quad[\ell] P_{1}=-[\ell] P_{2}
$$

- You get equations in $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ with symmetries.
- Rewrite these equations in the elementary symmetric polynomials. Saves a factor of 2 !
- Solve bivariate equations with bivariate resultants.

What's left to improve:

- Bivariate resultants are sub-optimal.

Output size $\simeq \ell^{4} ; \operatorname{cost} O^{\sim}\left(\ell^{6}\right)$
O^{\sim} means we neglect logarithmic factors.

- Systems are over-determined.

Lifting the torsion

While (possible==true) do

- write the equations that say $[\ell] P_{k+1}=P_{k}$
- extend the base field with one solution;
- continue.

$$
\ell \rightarrow \ell^{2} \rightarrow \ell^{3} \rightarrow \cdots
$$

Here, $\ell=2,3,5,7$.

- Known complexity estimates ill-adapted: it's all in the big-Oh.
- the systems are simple enough that specialized solutions may pay off:
$-\ell=2$: reduction to square-root extraction;
$-\ell=3$: deformation techniques \& root-finding;
$-\ell=5,7$: bivariate resultants, again.

Division by 2

1. Amounts to compute square roots.

- or a little bit more (extend the base field when no square root exists)
- complexity as in Kaltofen-Shoup, 1997.

2. Main subroutine: modular composition $A, B, C \mapsto A(B) \bmod C$.

- most other operations reduce to composition or a dual form of it.
- irreducibility tests
- equal-degree factorization
- finding new primitive elements
- cost: $C(d)=O^{\sim}\left(d^{1.5}\right)$ (polynomial operations) $+O\left(d^{2}\right)$ (linear algebra)
- Kedlaya-Umans: not useful yet.

Division by 3

Basic idea

- The system $[3] P=Q$ is parametrized by the coordinates of Q.
- Set up a homotopy between the target $[3] P=Q$ and an initial system $[3] P_{0}=Q_{0}$ for which we know the solutions basically, we let $Q_{t}=(1-t) Q_{0}+t Q$.
- Compute a description of the solution curve and let $t=1$.

Division by 3

Basic idea

- The system $[3] P=Q$ is parametrized by the coordinates of Q.
- Set up a homotopy between the target $[3] P=Q$ and an initial system $[3] P_{0}=Q_{0}$ for which we know the solutions
basically, we let $Q_{t}=(1-t) Q_{0}+t Q$.
- Compute a description of the solution curve and let $t=1$.

Division by 3

Basic idea

- The system $[3] P=Q$ is parametrized by the coordinates of Q.
- Set up a homotopy between the target $[3] P=Q$ and an initial system $[3] P_{0}=Q_{0}$ for which we know the solutions
basically, we let $Q_{t}=(1-t) Q_{0}+t Q$.
- Compute a description of the solution curve and let $t=1$.

Division by 3

Basic idea

- The system $[3] P=Q$ is parametrized by the coordinates of Q.
- Set up a homotopy between the target $[3] P=Q$ and an initial system $[3] P_{0}=Q_{0}$ for which we know the solutions
basically, we let $Q_{t}=(1-t) Q_{0}+t Q$.
- Compute a description of the solution curve and let $t=1$.

Division by 3

Basic idea

- The system $[3] P=Q$ is parametrized by the coordinates of Q.
- Set up a homotopy between the target $[3] P=Q$ and an initial system $[3] P_{0}=Q_{0}$ for which we know the solutions
basically, we let $Q_{t}=(1-t) Q_{0}+t Q$.
- Compute a description of the solution curve and let $t=1$.

Division by 3

Basic idea

- The system $[3] P=Q$ is parametrized by the coordinates of Q.
- Set up a homotopy between the target $[3] P=Q$ and an initial system $[3] P_{0}=Q_{0}$ for which we know the solutions
basically, we let $Q_{t}=(1-t) Q_{0}+t Q$.
- Compute a description of the solution curve and let $t=1$.

Concretely

General idea: as in Pardo-San Martin; Matera et al.

1. Evaluation properties

- nice straight-line program for multiplication by 3 .

2. Action of the 3 -torsion

- branches are conjugate: lift only one branch.

3. Local \rightarrow global

- rational interpolation.

4. Subgroups of the 3 -torsion

- easier factorization.

The nice straight-line program

```
ZZ_pEX DT141=-tmp14c+MulTrunc(tmp14b, DT91+DT101, k)-DT121-DT131;
ZZ_pEX DT142=2*MulTrunc(tmp14b, DT61-1, k)-2*v1-DT132;
ZZ_pEX DT143=MulTrunc(-u1-1, tmp14a, k) -2*MulTrunc(tmp14b, v1, k)+T9-DT133;
ZZ_pEX DT144=tmp14a-T10;
ZZ_pEX T15=(T14-MulTrunc(T12, u1, k))/2;
ZZ_pEX DT151=(DT141-MulTrunc(DT121, u1, k)-T12)/2;
ZZ_pEX DT152=DT142/2-u1v1;
ZZ_pEX DT153=(DT143+MulTrunc(T9, u1, k))/2;
ZZ_pEX T16=(T13-MulTrunc(T12, u0, k))/2;
ZZ_pEX DT161=(DT131-MulTrunc(DT121, u0, k))/2;
ZZ_pEX DT162=(DT132-T12)/2-u0v1;
ZZ_pEX DT163=(DT133+MulTrunc(T9, u0, k))/2;
ZZ_pEX T17=-MulTrunc(DT61, T4, k) -2*MulTrunc(T15, v1, k);
ZZ_pEX DT171=MulTrunc(DT61, T3, k)-2*(T4+MulTrunc(DT151, v1, k));
ZZ_pEX DT172=-MulTrunc(DT61, T1, k)-2*MulTrunc(DT152, v1, k);
ZZ_pEX DT173=-MulTrunc(DT61, DT43, k)-2*(MulTrunc(DT153, v1, k)+T15);
ZZ_pEX DT174=-MulTrunc(DT61, DT44, k)-tmp14c+tmp13a;
ZZ_pEX T18=SqrTrunc(T15, k);
ZZ_pEX DT181=2*MulTrunc(T15, DT151, k);
ZZ_pEX DT182=2*MulTrunc(T15, DT152, k);
ZZ_pEX DT183=2*MulTrunc(T15, DT153, k);
ZZ_pEX DT184=MulTrunc(T15, DT144, k);
ZZ_pEX T19=SqrTrunc(T16, k);
ZZ_pEX DT191=2*MulTrunc(T16, DT161, k);
ZZ_pEX DT192=2*MulTrunc(T16, DT162, k);
ZZ_pEX DT193=2*MulTrunc(T16, DT163, k);
```

```
ZZ_pEX DT194=MulTrunc(T16, T10, k);
ZZ_pEX tmp20a=T15+T16;
ZZ_pEX T20=SqrTrunc(tmp20a, k)-T18-T19;
ZZ_pEX DT201=2*MulTrunc(tmp20a, DT151+DT161, k)-DT181-DT191;
ZZ_pEX DT202=2*MulTrunc(tmp20a, DT152+DT162, k)-DT182-DT192;
ZZ_pEX DT203=2*MulTrunc(tmp20a, DT153+DT163, k)-DT183-DT193;
ZZ_pEX DT204=MulTrunc(tmp20a, DT144+T10, k)-DT184-DT194;
ZZ_pEX T21=T20-SqrTrunc(T4, k);
ZZ_pEX DT211=DT201+2*MulTrunc(T4, T3, k);
ZZ_pEX DT212=DT202-2*MulTrunc(T4, T1, k);
ZZ_pEX DT213=DT203-2*MulTrunc(T4, DT43, k);
ZZ_pEX DT214=DT204-2*MulTrunc(T4, DT44, k);
ZZ_pEX T22=T19-MulTrunc(T17, T4, k);
ZZ_pEX DT221=DT191+MulTrunc(T17, T3, k)-MulTrunc(T4, DT171, k);
ZZ_pEX DT222=DT192-MulTrunc(T17, T1, k)-MulTrunc(T4, DT172, k);
ZZ_pEX DT223=DT193-MulTrunc(T17, DT43, k)-MulTrunc(T4, DT173, k);
ZZ_pEX DT224=DT194-MulTrunc(T17, DT44, k)-MulTrunc(T4, DT174, k);
ZZ_pEX T23=u1*Eu1;
ZZ_pEX T24 =u0 - T23 + Eu1Eu1 - Eu0;
ZZ_pEX tmp25=T24-Eu0;
ZZ_pEX tmp25b=Eu0*u1;
ZZ_pEX T25=MulTrunc(u0, tmp25, k) + Eu0*(SqrTrunc(u1, k)-T23+Eu0);
ZZ_pEX DT251=-u0*Eu1+2*tmp25b-Eu0Eu1;
ZZ_pEX DT252=tmp25+u0;
ZZ_pEX T26=Ev1+v1;
ZZ_pEX T27=Ev0+v0;
ZZ_pEX T28=ff4-u1;
```


Results

task	time in sec.	bottleneck
$\ell=2^{17}$	348,008	modular composition
$\ell=3^{7}$	126,720	lifting / interpolation polynomial too large for FFT bivariate resultants
$\ell=5^{4}$	235,713	bivariate resultants
$\ell=7^{2}$	95,975	bivariate resultants
$\ell=11, \ldots, 31$	$2,242,185$	memory becomes a problem
kangaroos	7300	
total	$3,055,901 \approx 1$ month	

We expect to test about 10000 curves before finding a suitable one.
Should take about 100 CPU years.

