Stable methods for solving polynomial equations

M. Alonso, B. Mourrain, Ph. Trébuchet
Univ. of Madrid, GALAAD, INRIA Méditerrannée
LIP6, Paris

June 20, 2008

Equations with approximate coefficients

Input: $f_{1}, \ldots, f_{m} \in R:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], I:=\left(f_{1}, \ldots, f_{m}\right) \subset R$.
\square We consider a neighbourhood of the system \mathbf{f}, or a family of systems depending on parameters, of the same "shape".
\square Around a regular value of the parameters,

- continuity of the solution set.
- continuity of the algebraic structure.
\square At a singular value of the parameters, all sort of bad things may happen.

Stability searched at regular values.

The objective(s):

- Develop methods which are stable (work with approximate coefficients) and efficient ?

Problems to be solved:

- If we start with a perturbation of the input, do we get nearby output?
- If the approximation is not sufficient, how can we improve it ?
How to proceed?
Exploit the algebraic structure and numerical information.

Related works

- Janet basis: 20'
- Grobner basis: 60'
- H-basis: Macaulay'16, Möller-Sauer'00
- Border basis:

Cartan'45
Kuranishi'57

Mourrain, Trébuchet: '99 (characterisation), '00, '02 (algorithm), '02 (Ph.D.), '05 (issac), '06 (syzygies), '08 (syzygies).
Stetter'04.
Kehrein, Kreuzer, Robbiano: '05, '05 (characterisation), '06 (algorithm), '08.
Huibregste '06 (syzygies).

GB are going boink, aren't they ?

A system:

$$
\left\{\begin{array}{l}
p_{1}:=a x_{1}^{2}+b x_{2}^{2}+I_{1}\left(x_{1}, x_{2}\right) \\
p_{2}:=c x_{1}^{2}+d x_{2}^{2}+l_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

Basis of
$\mathcal{A}=\mathbb{K}\left[\mathbf{x}_{1}, x_{2}\right] /\left(p_{1}, p_{2}\right):$ $\left(1, x_{1}, x_{2}, x_{1} x_{2}\right)$.

Basis of
$\tilde{\mathcal{A}}=\mathbb{K}\left[x_{1}, x_{2}\right] /\left(\tilde{p}_{1}, \tilde{p}_{2}\right)$:
(1, $\left.x_{1}, x_{2}, x_{2}^{2}\right)$.

Catastroph !

- A new set of monomials for the basis.
- Big coefficients (in $\frac{1}{\epsilon_{i}}$) appear.

Border basis

Notations:

- $I=\left(f_{1}, \ldots, f_{s}\right), \mathcal{A}=\mathbb{K}[\mathbf{x}] / I$,
- B a set of monomials connected to 1

$$
\left(m \in B-\{1\} \Rightarrow \exists m^{\prime} \in B, i \in[1, n] \text { st. } m=m^{\prime} x_{i}\right)
$$

- $B^{+}=B \cup x_{1} B \cup \cdots \cup x_{n} B, \delta B=B^{+}-B$.

Suppose B is a basis of \mathcal{A}, then

- Each $\mathbf{x}^{\alpha} \in \delta B$ yields a rewritting rule

$$
f_{\alpha}=\mathbf{x}^{\alpha}-\sum_{\beta \in B} \lambda_{\alpha, \beta} \mathbf{x}^{\beta}
$$

- The rewritting rules of δB allow to reduce any $p \in \mathbb{K}[\mathbf{x}]$ to $\langle B\rangle$.

Definition

A border basis of B for l is a set of relations of the form f_{α} for $\alpha \in \delta B$, such $I=\left(f_{\alpha}\right),\langle B\rangle \cap I=\{0\}$.

Normal form criterion

- Many possible reductions of m on $\langle B\rangle$.
- Not necessarly, $\mathbb{K}[\mathbf{x}]=\langle B\rangle \oplus I($ or $\langle B\rangle \cap I=\{0\})$.
- How to check normal form ?
\square The rewritting family defines a projection $N:\left\langle B^{+}\right\rangle \rightarrow\langle B\rangle$.

Theorem (-'99)

Let B be connected to 1 and $M_{i}:\langle B\rangle \rightarrow\langle B\rangle$ such that $M_{i}(b)=N\left(x_{i} b\right)$.
N normal form modulo $I=(\operatorname{Ker}(N))$

$$
\begin{aligned}
& \Leftrightarrow B \text { basis of } \mathcal{A}=R / I \\
& \Leftrightarrow M_{i} \circ M_{j}=M_{j} \circ M_{i}, i, j=1, \ldots, n .
\end{aligned}
$$

Normal form criterion

\square A choice function $\gamma: \mathbb{K}[\mathbf{x}] \rightarrow\left(\mathbf{x}^{*}\right)$ refining a grading Λ, such that $\forall p \in \mathbb{K}[\mathbf{x}], \gamma(p)$ is a monomial of the support of p.
\square A rewritting family $\left(f_{i}\right)_{i \in I}$ for B is s.t.:

- $\operatorname{Supp}\left(f_{i}\right) \subset B^{+}$,
- f_{i} has exactly one monomial $\gamma\left(f_{i}\right)$ in δB,
- if $\gamma\left(f_{i}\right)=\gamma\left(f_{j}\right)$ then $i=j$,
- $\forall m \in \delta B, \exists i \in I \mid \gamma\left(f_{i}\right)=m$.
\square For any $p_{1}, p_{2} \in \mathbb{K}[\mathbf{x}], C\left(p_{1}, p_{2}\right)=\frac{\operatorname{lcm}\left(\gamma\left(p_{1}\right), \gamma\left(p_{2}\right)\right)}{\gamma\left(p_{1}\right)} p_{1}-\frac{\operatorname{lcm}\left(\gamma\left(p_{1}\right), \gamma\left(p_{2}\right)\right)}{\gamma\left(p_{2}\right)} p_{2}$.

Theorem

Let F be a normalising family for a set B of monomials, connected to 1 , and let N be the projection of $\left\langle B^{+}\right\rangle \rightarrow\langle B\rangle$ along $\langle F\rangle$. Then, N extends uniquely to $\tilde{N}: \mathbb{K}[\mathbf{x}] \rightarrow\langle B\rangle$ s.t. $\operatorname{ker}(\tilde{N})=(F)$.
iff

$$
\forall f, f^{\prime} \in F \text { s.t. } C\left(f, f^{\prime}\right) \in\left\langle B^{+}\right\rangle, N\left(C\left(f, f^{\prime}\right)\right)=0
$$

Algorithm (Normal form computations)

INPUT: f_{1}, \ldots, f_{m} defining and ideal of dimension 0 , and γ a choice function refining the degree.
Initilization:
Choose the $f_{i_{0}}$ of minimal degree k,
$B_{k}=\left(\gamma\left(f_{i_{0}}\right)\right)^{c}, k=\operatorname{deg}\left(f_{i_{0}}\right), P_{k}=\left\{f_{i_{0}}\right\}, M_{k}=\left\{\gamma\left(f_{i_{0}}\right)\right\}$.
Core Loop: While $\cup_{k} M_{k} \neq B_{k}^{+}-B_{k}$ do

- Compute $P_{k+1}=\left(P_{k}^{+} \cup F_{k}\right) \cap B_{k}^{+}$,
- $M_{k+1}=\left\{M_{k}^{+} \cap B_{k}^{+}\right\}$,
- $F_{k+1}=$ RewrittingFamily $\left(P_{k+1}, M_{k+1}\right)$,
- Reduce $C_{k+1}=\left\{C\left(f, f^{\prime}\right)\right.$ of degree $\left.k+1, f, f^{\prime} \in P_{k}\right\}$ by $F=\cup_{1 \leq j \leq k+1} F_{j}$.
- According to $r=\# M_{k+1}-\# F_{k+1}$ and $c=\#\left\{C\right.$ - polynomials of C_{k+1} non reduced to 0$\}$, update B and P_{k+1}.
OUTPUT: $F=\cup_{j} F_{j}$ a normalising family for $\left(f_{i}\right)$.

Generalized normal form

- It generalises Gröbner basis computation.

If γ is a monomial ordering,

- the output is a grobner basis,
- the C-polynomials "are" the S-polynomials.
- Linear algebra on vector spaces of polynomials.
- It allows pivoting on the rows and columns, according to numerical criterions.
- Use of generic sparse lu decomposition (superlu).
- Extension to Laurent polynomials.

Experimentations (MATHEMAGIX, Ph. Trébuchet)

Katsura(6):

choice function	number of bits	time	$\max \left(\left\\|f_{i}\right\\|_{\infty}\right)$
grevlex	128	1.98 s	10^{-28}
dlex	128	2.62 s	10^{-24}
mac	128	1.64 s	10^{-30}
grevlex	80	1.35 s	10^{-20}
dlex	80	3.98 s	10^{-15}
mac	80	0.95 s	10^{-19}
grevlex	64		-
dlex	64		-
mac	64	0.9 s	10^{-11}

Paralell robot:

choice function	number of bits	time	$\max \left(\left\\|f_{i}\right\\|_{\infty}\right)$
dlex	250	11.16 s	$0.42 * 10^{-63}$
mac	250	11.62 s	$0.46 * 10^{-63}$
dinvlex	250	13.8 s	$0.135 * 10^{-60}$
dlex	128	9.13 s	$0.3 * 10^{-24}$
dinvlex	128	11.1 s	$0.3 * 10^{-23}$
mac	128	9.80 s	$0.1 * 10^{-24}$
dlex	80	-	-
dinvlex	80	-	-
mac	80	6.80 s	10^{-12}

Syzygies:

Proposition (-'06; H'06;-, T'08)

The syzygies of $\left(f_{\alpha}\right)_{\alpha \in \delta B}$ are generated by the relations:

$$
x_{\alpha} f_{\alpha}-x_{\alpha^{\prime}} f_{\alpha^{\prime}}-\sum_{\gamma \in \delta B} \lambda_{\gamma} f_{\gamma}=0
$$

for $x_{\alpha} \mathbf{x}^{\alpha}=x_{\alpha^{\prime}} \mathbf{x}^{\alpha^{\prime}}=x_{\alpha} x_{\alpha^{\prime}} m, m \in B$, deduced from the reduction of the C-polynomials.

Stability:

- A grading Λ of $\mathbb{K}[\mathbf{x}]$.
- $N_{\epsilon}(\mathbf{f})=\left\{\left(h_{1}, \ldots, h_{s}\right) \in \mathbb{K}[\mathbf{x}], \Lambda\left(h_{i}\right) \leq \Lambda\left(f_{i}\right),\left\|h_{i}-f_{i}\right\|_{\infty}<\epsilon\right\}$
- γ a choice function refining the grading Λ.
- $\gamma_{\epsilon}(p)=\gamma\left(p_{\epsilon}\right)$ where $\left\|p-p_{\epsilon}\right\|_{\infty}<\epsilon, p_{\epsilon}$ of smallest support.

Theorem (-, T'08)

Let $\mathbf{f}=\left(f_{1}, \ldots, f_{s}\right)$ be a zero dimensional s.t. that $\forall \mathbf{f}^{\prime} \in U(\mathbf{f}), \mathbf{f}^{\prime}$ has D complex roots, counted with multiplicities. Then $\forall \epsilon>0$ small enough, there exists $\nu_{0}>0$ s.t. $\forall \mathbf{f}^{\prime} \in N_{\nu_{0}}(\mathbf{f}) \subset U(\mathbf{f})$, the basis B computed with γ for the system \mathbf{f} is also the basis computed with γ_{ϵ} for \mathbf{f}^{\prime}.

Perturbations

The algebraic set \mathcal{H}_{B} of quotient algebras with basis B.

$\square B$ a given set of monomials connected to 1 .
\square A quotient algebra \mathcal{A} with basis B described by

$$
\mathbf{z}=\left(z_{\alpha, \beta}\right) \in \overline{\mathbb{K}}^{\delta B \times B},
$$

the coefficient vectors of the border relations:

$$
h_{\alpha}^{\mathbf{z}}(\mathbf{x}):=\mathbf{x}^{\alpha}-\sum_{\beta \in B} z_{\alpha, \beta} \mathbf{x}^{\beta} .
$$

$\square M_{x_{i}}^{z}:=$ multiplication tables modulo $h_{\alpha}^{\mathrm{z}}(\mathbf{x})$.

Theorem

The polynomials $h_{\alpha}^{\mathbf{z}}(\mathbf{x})$ are the border relations of a quotient algebra $\mathcal{A}^{\mathbf{z}}$ iff $M_{x_{i}}^{\mathbf{z}} \circ M_{x_{j}}^{\mathbf{z}}-M_{x_{j}}^{z} \circ M_{x_{i}}^{\mathbf{z}}=0 \quad(1 \leqslant i<j \leqslant n)$.
$\mathcal{H}_{B}:=\left\{\mathbf{z}=\left(z_{\alpha, \beta}\right) \in \mathbb{K}^{\delta B \times B} ; M_{x_{i}}^{\mathbf{z}} \circ M_{x_{j}}^{\mathbf{z}}-M_{x_{j}}^{\mathbf{z}} \circ M_{x_{i}}^{\mathbf{z}}=0_{1 \leqslant i<j \leqslant n}\right\}$
Affine chart of the Hilbert Scheme $\mathcal{H}_{|B|}^{n}$.

The tangent space to \mathcal{H}_{B}

A point of \mathcal{H}_{B} :

- $\left(f_{k}^{0}\right)=I_{0}$,
- $\left(h_{\alpha}^{0}\right)_{\alpha \in \partial B}$ a border basis of I_{0} for B connected to 1 .
- N_{0} the normal form for I_{0} on $\langle B\rangle$.

A controlled perturbation: $f_{k}^{\varepsilon}=f_{k}^{0}+\varepsilon \mathbf{f}_{\mathbf{k}}^{1}(k=1 \ldots s),\left(f_{k}^{\varepsilon}\right)=I_{\varepsilon}$.

Proposition

Suppose that $\mathbb{K}[\mathbf{x}] / I^{\epsilon}$ contains a subalgebra $\mathcal{A}^{\varepsilon}$ with basis B, then the border basis of $\mathcal{A}^{\varepsilon}$ is of the form $h_{\alpha}^{\varepsilon}=h_{\alpha}^{0}+\varepsilon \mathbf{h}_{\alpha}^{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ with

- $\mathbf{M}_{\mathrm{x}_{\mathrm{i}}}^{1} \circ M_{x_{j}}^{0}+M_{x_{i}}^{0} \circ \mathbf{M}_{\mathrm{x}_{\mathrm{j}}}^{1}-\mathbf{M}_{\mathrm{x}_{\mathrm{j}}}^{1} \circ M_{x_{i}}^{0}-M_{x_{j}}^{0} \circ \mathbf{M}_{\mathrm{x}_{\mathrm{i}}}^{1}=0_{(1 \leqslant i<j \leqslant n)}$,
- $N_{0}\left(f_{k}^{1}\right)-\sum_{\alpha \in \partial B} N_{0}\left(q_{\alpha, k}^{0} \mathbf{h}_{\alpha}^{1}\right)=0$,
where

$$
\begin{align*}
& \mathbf{N}^{1}\left(\mathbf{x}^{\alpha}\right)=\mathbf{h}_{\alpha}^{1}, \mathbf{N}^{1}\left(\mathbf{x}^{\beta}\right)=0, \mathbf{M}_{\mathbf{x}_{\mathrm{i}}}^{1}\left(\mathbf{x}^{\beta}\right)=\mathbf{N}^{1}\left(x_{i} \mathbf{x}^{\beta}\right)_{(\alpha \in \delta, \beta \in B)}, \tag{2}\\
& f_{k}^{0}=\sum_{\alpha \in \partial B} q_{\alpha, k}^{0} h_{\alpha}^{0} .
\end{align*}
$$

Initially: $f_{1}^{0}=y^{2}, f_{1}^{0}=x^{3}-x^{2} y$.

- $B=\left\{1, x, x^{2}, y, x y, x^{2} y\right\}$.
- Border basis: $\left\{y^{2}, x y^{2}, x^{2} y^{2}, x^{3}-x^{2} y, x^{3} y\right\}$.

Perturbation: $f_{1}^{\varepsilon}=f_{1}^{0}-\varepsilon\left(x^{2} y+1\right), f_{2}^{\varepsilon}:=f_{2}^{0}-\varepsilon$.

- $h_{y^{2}}^{\varepsilon}=y^{2}-\varepsilon\left(x^{2} y+1\right)$.
- $h_{x^{3}}^{\varepsilon}=x^{3}-x^{2} y-\varepsilon$.
- $h_{x y^{2}}^{\varepsilon}=x y^{2}-\varepsilon x+\mathcal{O}\left(\varepsilon^{2}\right)$,
- $h_{x^{2} y^{2}}^{\varepsilon}=x^{2} y^{2}-\varepsilon x^{2}+\mathcal{O}\left(\varepsilon^{2}\right)$.
- $h_{x^{3} y}^{\varepsilon}=x^{3} y-\varepsilon\left(z_{1}+z_{2} x+z_{3} x^{2}+z_{4} y+z_{5} x y+z_{6} x^{2} y\right)+\mathcal{O}\left(\varepsilon^{2}\right)$.

Equation (1) yields

$$
\begin{gathered}
M_{x}^{\varepsilon} M_{y}^{\varepsilon}-M_{y}^{\varepsilon} M_{x}^{\varepsilon}=\varepsilon\left(\begin{array}{cccccc}
0 & z_{1} & 0 & 0 & 0 & 0 \\
0 & z_{2} & 0 & 0 & 0 & 0 \\
0 & z_{3}-1 & 0 & 0 & 0 & 0 \\
0 & z_{4}-1 & 0 & 0 & 0 & -z_{1} \\
0 & z_{5} & 0 & 0 & 0 & -z_{5} \\
0 & z_{6} & 0 & 0 & 0 & 0
\end{array}\right)+\mathcal{O}\left(\varepsilon^{2}\right) . \\
h_{x^{3} y}^{\varepsilon}=x^{3} y-\varepsilon\left(x^{2}+y\right)+\mathcal{O}\left(\varepsilon^{2}\right) .
\end{gathered}
$$

$\square T_{\mathbf{h}_{0}}=\left\{\left(h_{\alpha}^{1}\right)_{\alpha \in \delta B} \in\langle B\rangle^{\delta B}\right.$, which satisfies (1) $\}$.

$$
\begin{aligned}
\phi: T_{f_{0}} & \rightarrow \operatorname{Hom}_{R}\left(I_{0}, R / I_{0}\right) \\
\left(h_{\alpha}^{1}\right) & \mapsto \phi\left(h_{\alpha}^{1}\right): h_{\alpha}^{0} \mapsto h_{\alpha}^{1}
\end{aligned}
$$

is an isomorphism of \mathbb{K}-vector spaces.
$\square H_{B}$ contains a component of dimension $n \times|B|$ parametrised by

$$
\begin{array}{rll}
\mathfrak{H}_{B}: \mathbb{C}^{n \times|B|} & \rightarrow & \mathbb{C}^{\partial B \times B} \\
\mathfrak{Z}=\left\{\zeta_{1}, \ldots, \zeta_{|B|}\right\} & \mapsto & \left(\rho_{\alpha, \beta}(\mathfrak{Z})\right)_{\alpha \in \partial B, \beta \in B} .
\end{array}
$$

where $h_{\alpha}(\mathfrak{Z}, \mathbf{x})=\frac{R_{\alpha}(\mathfrak{3}, \mathbf{x})}{V_{B}(\mathfrak{Z})}=\mathbf{x}^{\alpha}-\sum_{\beta \in B} \rho_{\alpha, \beta}(\mathfrak{Z}) \mathbf{x}^{\beta}$ and

$$
V_{B}(\mathfrak{Z})=\left|\begin{array}{ccc}
\zeta_{1}^{\beta_{1}} & \cdots & \zeta_{1}^{\beta_{|B|}} \\
\vdots & \vdots & \vdots \\
\zeta_{|B|}^{\beta_{1}} & \cdots & \zeta_{|B|}^{\beta_{|B|}}
\end{array}\right|, R_{\alpha}(\mathfrak{Z}, \mathbf{x})=\left|\begin{array}{cccc}
\mathbf{x}^{\alpha}(\mathbf{x}) & \mathbf{x}^{\beta_{1}} & \cdots & \mathbf{x}^{\beta_{|B|}} \\
\mathbf{x}^{\alpha}\left(\zeta_{1}\right) & \zeta_{1}^{\beta_{1}} & \cdots & \zeta_{1}^{\beta_{|B|}} \\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{x}^{\alpha}\left(\zeta_{|B|}\right) & \zeta_{|B|}^{\beta_{1}} & \cdots & \zeta_{|B|}^{\beta_{|B|}}
\end{array}\right| .
$$

\square Weierstrass iteration, explicit inversion of $d \mathfrak{H}_{B}$ [-, R'03].
$\square H_{B}$ irreducible for $n \leq 2$, not always irreducible for $n>3$ [I'72].
\square The irreducible components of H_{B} are not known for $|B|>8$.

