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Symbolic polynomial system solving

Input: {f1, . . . , fn} ⊂ Q[X1, . . . , Xn] which define a vari-

ety V := V (f1, . . . , fn) ⊂ An of dimension zero.

Output: a geometric solution.

• A generic linear form u ∈ Q[X1, . . . , Xn].

• The minimal polynomial p ∈ Q[T ] of πu(V ).

• The inverse map π−1
u (t) := (v1(t), . . . , vn(t)).

Then V := {(v1(t), . . . , vn(t)) : p(t) = 0}.
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Remark (Kronecker): v1, . . . , vn are easily computed
from the minimal pol. p(T ) of a generic linear form u.

Projection Problem (Proj): Given

• generators f1, . . . , fn ∈ Q[X1, . . . , Xn] of I(V ),

• a generic linear form u,

find the minimal polynomial p(T ) ∈ Q[T ].

Complexity of the projection problem

• L: complexity of evaluation of f1, . . . , fn.

• D :=
∏

i deg(fi): the Bézout number of the system.

Theorem [Giusti, Heintz, Pardo, . . . ] Proj can be solved
with LnO(1)D2 arithmetic operations.

Problem: for particular classes of systems, profit from
better “Bézout numbers”.
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Symbolic homotopy methods

Let f := (f1, . . . , fn) ∈ Q[X]n := Q[X1, . . . , Xn]n be poly-

nomials such that V := V (f) ⊂ An is 0-dimensional.

Suppose given F := (F1, . . . , Fn) ∈ Q[X, E]n such that:

• V = {F (X,1) = 0},

• W0 := {F (X,0) = 0} is “known”,

• W := V (F ) ⊂ An+1 is a curve.

Let π : W → A1 be the projection π(x, ε) := ε,

• π is dominant and 0 is a regular value of π.
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Projection problem - unramified case (ProjU): Given

• a “generic” linear form u ∈ Q[X],

• the minimal polynomial p0(T ) of u in Q[W0],

compute the minimal pol p(E, T ) of u in Q(E) ↪→ Q(W ).

Complexity measures

• L: complexity of evaluation of F1, . . . , Fn.

• deg(π): degree of π.

• deg(W ): degree of the curve W .

Theorem ([Heintz,Krick,Puddu,Sabia,Waissbein], [Schost]):

ProjU can be solved with complexity LnO(1)deg(π) deg(W ).
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An extension to the case of W0 ramified

It’s easier to produce deformations with W0 ramified.

• Branches of W at E = 0 are given by Puiseux series.

• We may need several terms to “separate” all the

branches at E = 0. These are called the singular parts.

Projection problem - ramified case (ProjR): Given

• a “generic” linear form u ∈ Q[X],

• the singular parts of the Puiseux expansions of the

branches of W at E = 0,

compute the minimal pol p(E, T ) of u in Q(E) ↪→ Q(W ).
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Toy example: for f1 := X2
1 − X1 − X2 − 1 = 0, f2 :=

X2
2 −X1 −X2 − 1 = 0, we consider the deformation:

(SE) :

{
F1(X, E) := X2

1 − E(X1 + X2 − 1) = 0,

F2(X, E) := X2
2 − E(X1 + X2 − 1) = 0.

(SE) consists of 4 distinct branches σi(ω) with

• σi(0) = (0,0,0),

• σ′i(0) = (0,±1,±1) (all tangents are distinct),

which are obtained from the solutions at E = 0 of

(S∗E) :

{
F̂1(X, E) := E−2F1(EX1, EX2, E2) = 0,

F̂2(X, E) := E−2F2(EX1, EX2, E2) = 0.

6



Indeed, at E = 0 we have

(S∗0) F̂1(X,0) = X2
1 − 1 = 0, F̂2(X,0) = X2

2 − 1 = 0,

namely, a unramified situation. For each solution α(i)

of (S∗0), we have a branch of (S∗E) parametrized as

σ̂i(ω) :=
(
α
(i)
1 ω +O(ω2), α(i)

2 ω +O(ω2), ω2
)
.

Then we obtain a parametrization of a branch of (SE) by

σi(E) =
(
α
(i)
1 E1/2 +O(E), α(i)

2 E1/2 +O(E), E
)
.

We compute these parametrizations up to order 4 and

the minimal polynomial p(E, T ) =
∏

i(T − σi(E)) associ-

ated to (SE).
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In general, we consider a finite family of deformations:

F (γ)(E, X) := Eα
(γ)
j F (Eeγ , (X − σ(γ)(E))ERγ),

where σ(γ)(E) is the singular part of the branch γ.

Theorem [Bompadre, M., Wachenchauzer, Waissbein]

If F (γ) form a standard basis for every γ, then ProjR

can be solved with complexity

L(ne)O(1)deg(π) deg(W ).
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Application: Sparse systems

Let be given a 0-dimensional system

(S) f1 = 0, . . . , fn = 0

with fi :=
∑

q∈∆i
ci,qX

q, ci,q 6= 0 (i = 1, . . . , n).

Let Qi := Conv(∆i) ⊂ Rn be the convex hull of the set

of exponents of the nonzero monomials of fi.

The mixed volume MV (Q1, . . . , Qn) is the coefficient of

λ1 · · ·λn in Vol(λ1Q1 + · · ·+ λnQn) ∈ Z≥0.

Theorem 1 (Bernstein): #C∗(S) ≤ MV (Q1, . . . , Qn).

Extension of Theorem 1 [Li, Wang]: If 0 ∈ Qi for all

i, then #C(S) ≤ MV (Q1, . . . , Qn).
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[Huber, Sturmfels] introduces a “polyhedral” deforma-

tion of (S) aimed at a numerical continuation method.

Huber-Sturmfels deformation of (S) is given by poly-

nomials which are obtained: for a “lifting form” ω =

(ω1, . . . , ωn) : Zn → Zn, we consider

(S) F̂i :=
∑

q∈∆i

ci,qX
qEωi(q) (1 ≤ i ≤ n).

Theorem 1: For a generic choice of the coefficients

of f1, . . . , fn, the deformation (S) is a reduction to a

ramified case in our sense.
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Assume that f1, . . . , fn are “generic”.

Remark: An estimate for deg(W ) is

deg(W ) ≤ MV (∆n+1, Q̂1, . . . , Q̂n),

where ∆n+1 is the unitary simplex of Rn+1.

Remark 2: Complexity depends on the degree of the

morphism and the non-archimedean height h(W ), when

considering F̂1, . . . , F̂n as elements of Q[E][X].

Theorem 2: Let Q̂i ⊂ Rn+1 be the Newton polytope

of F̂i, and ∆ be the unitary simplex of Rn × {0}. Then

h(W ) ≤ MV (∆, Q̂1, . . . , Q̂n).
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Theorem 3: Generic sparse systems with Newton poly-
topes Q1, . . . , Qn can be solved with complexity∑

i

#Qi ·MV (Q1, . . . , Qn) ·MV (∆, Q̂1, . . . , Q̂n).

Remark: The numerical algorithm of Huber–Sturmfels
also requires the input system to be generic.

For f1, . . . , fn ∈ Q[X1, . . . , Xn] “non–generic” with sup-
ports ∆1, . . . ,∆n ,we consider a deformation

Fi(X, E) := Efi(X) + (1− E)gi(X),

with g1, . . . , gn generic with supports ∆1, . . . ,∆n.

Theorem 4: A 0–dimensional sparse system with New-
ton polytopes ∆1, . . . ,∆n can be solved with complexity

LF ·MV (Q1, . . . , Qn)·
n∑

i=1

MV (∆, Q1, . . . , Qi−1, Qi+1, . . . , Qn).
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Conclusions:

• Complexity of 1-parameter deformations depends on:

- the cost of the evaluation of the input polynomials,

- the degree of the morphism (=Bézout bound)

- the non-archimedian height of the curve.

• There exist significant families of systems with good

deformations.
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Questions:

• Arithmetic complexity estimates for sparse systems.

• Estimates of the non-archimedian height.

• Families of systems with good Bézout bounds.
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