Deformation techniques for sparse polynomial systems

Gabriela Jeronimo, Guillermo Matera, Pablo Solernó, Ariel Waissbein

Buenos Aires, Argentina

FoCM'08, Hong Kong

Symbolic polynomial system solving

Input: $\left\{f_{1}, \ldots, f_{n}\right\} \subset \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ which define a variety $V:=V\left(f_{1}, \ldots, f_{n}\right) \subset \mathbb{A}^{n}$ of dimension zero.

Output: a geometric solution.

- A generic linear form $u \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$.
- The minimal polynomial $p \in \mathbb{Q}[T]$ of $\pi_{u}(V)$.
- The inverse map $\pi_{u}^{-1}(t):=\left(v_{1}(t), \ldots, v_{n}(t)\right)$.

Then $V:=\left\{\left(v_{1}(t), \ldots, v_{n}(t)\right): p(t)=0\right\}$.

Remark (Kronecker): v_{1}, \ldots, v_{n} are easily computed from the minimal pol. $p(T)$ of a generic linear form u.

Projection Problem (Proj): Given

- generators $f_{1}, \ldots, f_{n} \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ of $I(V)$,
- a generic linear form u, find the minimal polynomial $p(T) \in \mathbb{Q}[T]$.

Complexity of the projection problem

- L : complexity of evaluation of f_{1}, \ldots, f_{n}.
- $D:=\prod_{i} \operatorname{deg}\left(f_{i}\right)$: the Bézout number of the system.

Theorem [Giusti, Heintz, Pardo, ...] Proj can be solved with $L n^{O(1)} D^{2}$ arithmetic operations.

Problem: for particular classes of systems, profit from better "Bézout numbers".

Symbolic homotopy methods

Let $f:=\left(f_{1}, \ldots, f_{n}\right) \in \mathbb{Q}[X]^{n}:=\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]^{n}$ be polynomials such that $V:=V(f) \subset \mathbb{A}^{n}$ is 0 -dimensional.

Suppose given $F:=\left(F_{1}, \ldots, F_{n}\right) \in \mathbb{Q}[X, \mathcal{E}]^{n}$ such that:

- $V=\{F(X, 1)=0\}$,
- $W_{0}:=\{F(X, 0)=0\}$ is "known",
- $W:=V(F) \subset \mathbb{A}^{n+1}$ is a curve.

Let $\pi: W \rightarrow \mathbb{A}^{1}$ be the projection $\pi(x, \varepsilon):=\varepsilon$,

- π is dominant and 0 is a regular value of π.

Projection problem - unramified case (ProjU): Given

- a "generic" linear form $u \in \mathbb{Q}[X]$,
- the minimal polynomial $p_{0}(T)$ of u in $\mathbb{Q}\left[W_{0}\right]$, compute the minimal pol $p(\mathcal{E}, T)$ of u in $\mathbb{Q}(\mathcal{E}) \hookrightarrow \mathbb{Q}(W)$.

Complexity measures

- L: complexity of evaluation of F_{1}, \ldots, F_{n}.
- deg (π) : degree of π.
- deg (W) : degree of the curve W.

Theorem ([Heintz, Krick, Puddu, Sabia, Waissbein], [Schost]): ProjU can be solved with complexity $\operatorname{Ln}{ }^{O(1)} \operatorname{deg}(\pi) \underset{4}{\operatorname{deg}(W) \text {. }}$

An extension to the case of W_{0} ramified

It's easier to produce deformations with W_{0} ramified.

- Branches of W at $\mathcal{E}=0$ are given by Puiseux series.
- We may need several terms to "separate" all the branches at $\mathcal{E}=0$. These are called the singular parts.

Projection problem - ramified case (ProjR): Given

- a "generic" linear form $u \in \mathbb{Q}[X]$,
- the singular parts of the Puiseux expansions of the branches of W at $\mathcal{E}=0$,
compute the minimal pol $p(\mathcal{E}, T)$ of u in $\mathbb{Q}(\mathcal{E}) \hookrightarrow \mathbb{Q}(W)$.

Toy example: for $f_{1}:=X_{1}^{2}-X_{1}-X_{2}-1=0, f_{2}:=$ $X_{2}^{2}-X_{1}-X_{2}-1=0$, we consider the deformation:

$$
\left(S_{\mathcal{E}}\right):\left\{\begin{array}{l}
F_{1}(X, \mathcal{E}):=X_{1}^{2}-\mathcal{E}\left(X_{1}+X_{2}-1\right)=0 \\
F_{2}(X, \mathcal{E}):=X_{2}^{2}-\mathcal{E}\left(X_{1}+X_{2}-1\right)=0 .
\end{array}\right.
$$

$\left(S_{\mathcal{E}}\right)$ consists of 4 distinct branches $\sigma_{i}(\omega)$ with

- $\sigma_{i}(0)=(0,0,0)$,
- $\sigma_{i}^{\prime}(0)=(0, \pm 1, \pm 1)$ (all tangents are distinct),
which are obtained from the solutions at $\mathcal{E}=0$ of

$$
\left(S_{\mathcal{E}}^{*}\right):\left\{\begin{array}{l}
\widehat{F}_{1}(X, \mathcal{E}):=\mathcal{E}^{-2} F_{1}\left(\mathcal{E} X_{1}, \mathcal{E} X_{2}, \mathcal{E}^{2}\right)=0 \\
\widehat{F}_{2}(X, \mathcal{E}):=\mathcal{E}^{-2} F_{2}\left(\mathcal{E} X_{1}, \mathcal{E} X_{2}, \mathcal{E}^{2}\right)=0
\end{array}\right.
$$

Indeed, at $\mathcal{E}=0$ we have

$$
\left(S_{0}^{*}\right) \quad \widehat{F}_{1}(X, 0)=X_{1}^{2}-1=0, \widehat{F}_{2}(X, 0)=X_{2}^{2}-1=0,
$$

namely, a unramified situation. For each solution $\alpha^{(i)}$ of $\left(S_{0}^{*}\right)$, we have a branch of $\left(S_{\mathcal{E}}^{*}\right)$ parametrized as

$$
\widehat{\sigma}_{i}(\omega):=\left(\alpha_{1}^{(i)} \omega+\mathcal{O}\left(\omega^{2}\right), \alpha_{2}^{(i)} \omega+\mathcal{O}\left(\omega^{2}\right), \omega^{2}\right)
$$

Then we obtain a parametrization of a branch of $\left(S_{\mathcal{E}}\right)$ by

$$
\sigma_{i}(\mathcal{E})=\left(\alpha_{1}^{(i)} \mathcal{E}^{1 / 2}+\mathcal{O}(\mathcal{E}), \alpha_{2}^{(i)} \mathcal{E}^{1 / 2}+\mathcal{O}(\mathcal{E}), \mathcal{E}\right)
$$

We compute these parametrizations up to order 4 and the minimal polynomial $p(\mathcal{E}, T)=\Pi_{i}\left(T-\sigma_{i}(\mathcal{E})\right)$ associated to $\left(S_{\mathcal{E}}\right)$.

In general, we consider a finite family of deformations:

$$
F^{(\gamma)}(\mathcal{E}, X):=\mathcal{E}^{\alpha_{j}^{(\gamma)}} F\left(\mathcal{E}^{e_{\gamma}},\left(X-\sigma^{(\gamma)}(\mathcal{E})\right) \mathcal{E}^{R_{\gamma}}\right)
$$

where $\sigma^{(\gamma)}(\mathcal{E})$ is the singular part of the branch γ.

Theorem [Bompadre, M., Wachenchauzer, Waissbein] If $F^{(\gamma)}$ form a standard basis for every γ, then ProjR can be solved with complexity

$$
L(n e)^{O(1)} \operatorname{deg}(\pi) \operatorname{deg}(W) .
$$

Application: Sparse systems

Let be given a 0-dimensional system

$$
\begin{equation*}
f_{1}=0, \ldots, f_{n}=0 \tag{S}
\end{equation*}
$$

with $f_{i}:=\sum_{q \in \Delta_{i}} c_{i, q} X^{q}, \quad c_{i, q} \neq 0 \quad(i=1, \ldots, n)$.
Let $Q_{i}:=\operatorname{Conv}\left(\Delta_{i}\right) \subset \mathbb{R}^{n}$ be the convex hull of the set of exponents of the nonzero monomials of f_{i}.

The mixed volume $M V\left(Q_{1}, \ldots, Q_{n}\right)$ is the coefficient of $\lambda_{1} \cdots \lambda_{n}$ in $\operatorname{Vol}\left(\lambda_{1} Q_{1}+\cdots+\lambda_{n} Q_{n}\right) \in \mathbb{Z}_{\geq 0}$.

Theorem 1 (Bernstein): $\#_{\mathbb{C}^{*}}(S) \leq M V\left(Q_{1}, \ldots, Q_{n}\right)$.
Extension of Theorem 1 [Li, Wang]: If $\underline{0} \in Q_{i}$ for all i, then $\#_{\mathbb{C}}(S) \leq M V\left(Q_{1}, \ldots, Q_{n}\right)$.
[Huber, Sturmfels] introduces a "polyhedral" deformation of (S) aimed at a numerical continuation method.

Huber-Sturmfels deformation of (S) is given by polynomials which are obtained: for a "lifting form" $\omega=$ $\left(\omega_{1}, \ldots, \omega_{n}\right): \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$, we consider

$$
\text { (S) } \quad \widehat{F}_{i}:=\sum_{q \in \Delta_{i}} c_{i, q} X^{q} \mathcal{E}^{\omega_{i}(q)} \quad(1 \leq i \leq n) .
$$

Theorem 1: For a generic choice of the coefficients of f_{1}, \ldots, f_{n}, the deformation (S) is a reduction to a ramified case in our sense.

Assume that f_{1}, \ldots, f_{n} are "generic".
Remark: An estimate for $\operatorname{deg}(W)$ is

$$
\operatorname{deg}(W) \leq M V\left(\Delta_{n+1}, \widehat{Q}_{1}, \ldots, \widehat{Q}_{n}\right)
$$

where Δ_{n+1} is the unitary simplex of \mathbb{R}^{n+1}.
Remark 2: Complexity depends on the degree of the morphism and the non-archimedean height $h(W)$, when considering $\widehat{F}_{1}, \ldots, \widehat{F}_{n}$ as elements of $\mathbb{Q}[\mathcal{E}][X]$.

Theorem 2: Let $\widehat{Q}_{i} \subset \mathbb{R}^{n+1}$ be the Newton polytope of \widehat{F}_{i}, and Δ be the unitary simplex of $\mathbb{R}^{n} \times\{0\}$. Then

$$
h(W) \leq M V\left(\Delta, \widehat{Q}_{1}, \ldots, \widehat{Q}_{n}\right) .
$$

Theorem 3: Generic sparse systems with Newton polytopes Q_{1}, \ldots, Q_{n} can be solved with complexity

$$
\sum_{i} \# Q_{i} \cdot M V\left(Q_{1}, \ldots, Q_{n}\right) \cdot M V\left(\Delta, \widehat{Q}_{1}, \ldots, \widehat{Q}_{n}\right) .
$$

Remark: The numerical algorithm of Huber-Sturmfels also requires the input system to be generic.

For $f_{1}, \ldots, f_{n} \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ "non-generic" with supports $\Delta_{1}, \ldots, \Delta_{n}$, we consider a deformation

$$
F_{i}(X, \mathcal{E}):=\mathcal{E} f_{i}(X)+(1-\mathcal{E}) g_{i}(X),
$$

with g_{1}, \ldots, g_{n} generic with supports $\Delta_{1}, \ldots, \Delta_{n}$.
Theorem 4: A 0-dimensional sparse system with Newton polytopes $\Delta_{1}, \ldots, \Delta_{n}$ can be solved with complexity

$$
L_{F} \cdot M V\left(Q_{1}, \ldots, Q_{n}\right) \cdot \sum_{i=1}^{n} M V\left(\Delta, Q_{1}, \ldots, Q_{i-1}, Q_{i+1}, \ldots, Q_{n}\right)
$$

Conclusions:

- Complexity of 1-parameter deformations depends on:
- the cost of the evaluation of the input polynomials,
- the degree of the morphism (=Bézout bound)
- the non-archimedian height of the curve.
- There exist significant families of systems with good deformations.

Questions:

- Arithmetic complexity estimates for sparse systems.
- Estimates of the non-archimedian height.
- Families of systems with good Bézout bounds.

