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Plan:

= Some facts on complex manifolds with a C*-action.
Intersecting two subvarieties of complementary dimension.
A numerical approximation, the Intersection Algorithm.

Solving the inverse kinematics problem for a general Six-
Revolute Serial-Link Manipulator.




I
Complex manifolds with a C*-action

Consider a non singular complex projective variety of dimension n.
Suppose that it is equipped with a C*-action having a finite fixed

point set.
Data:
X cPV C*x X - X, (t,z) =tz
fixed points: Bi,..., B,
IPN
Examples: G(N,r)

Q C P7, xoz4 + z125 + T2z7 + 328 = 0
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Complex manifolds with a C*-action

= The Bialynicki-Birula decomposition (1973):

The space X can be decomposed in locally closed invariant subsets, in two
ways: the “plus” and “minus” decomposition.

There are two distinguished blocks, called the source and the sink

M ={zeX| 7%i_I}f(l)tiE:Bi} M;t = X, By source , M;" = By, By, sink

M, ={z € X | lim tz = B;} r =X, M =B,

t— 00

X =U_ M =U_ M,

Sandra Di Rocco L °|_| FoCM ‘08
KTH, Mathematics o June 21 2008




I
Complex manifolds with a C*-action

= Example: The smooth quadric hypersurface in 3-space,
with an action having 4 fixed points

Let X = P! x P! — P?, (zo,x1,Y0,Y1) — (ZToYo, ToY1, T1Y0, T1Y1)
(t7 (m07w17y07y1)) = (w07tw17y07ty1)
B, = (0, 1,0, 1),32 = (0, 1, 1,0),33 = (1,0, 0, 1),B4 = (1,0, 1,0)

M;" = By, My = {(z0,21,Y0,y1) : 1 # 0,y1 # 0}
My = {(zo,21,90,41) : To = 0,90 # 0}
M;— = {(z0,1,90,¥1) : o # 0,y0 = 0}
My = {(zo,z1,90,¥1) : zo # 0,50 # 0}, M, = By
My = {(z0,%1,Y0,91) : 1 # 0,91 = 0}
M5 = {(zo0,21,%0,¥1) : 1 =0,y1 # 0}
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Complex manifolds with a C*-action

= Main idea: use the action to find numerically the intersection of
two curves.

= How: pushing one towards the sink and the other towards the

source. This will provide starting points and a homotopy to track
the points back.

B2 M2 B4
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T
Algorithm in a toy-example

= Example with two curves, Y,Z in the quadric.

f = 3zoyo + oY1 + z1Y0 + T1¥1
9 = Yoo + YiTo + Y1 + YT 1.

Consider:
tY,t 7 1Z ast — 0

the Homotopy is H : C* x X — C?

3t2zoyo + troy1 + tx1yo + T1Y1 )

H t,w b b ) —
(£, @0, Y0, Yo, Y1) ( Yoro + t2yiwo + tydz + 3t3yiT,
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Example

= Locally near the other two fixed points:

B2 M2

M_2+ eC_1

e-!C 2 M 3

e-!C 2

M 34 B3
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I
Example

= In an (analytic) neighborhood of the other two points we can
linearize the action.

= Locally the cells are translates of the coordinate axis.
Intersection with the cells give start points.

Near Bj Near By
t(z,w) = (tz,t " w) (—e, —¢€)
Y N M, = (—¢,0) l

e 'ZNM; = (0,—ev/—1)(0,ev/—1)
start points:

(0, —ev/—1), (0, ev/—1) s
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RUN BERTINI
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The problem

= Let X be a non singular complex projective variety, with a C*-
action whose fixed-set is finite.

= LetY,Z be pure-dimensional subvarieties of complementary
dimension.

= Assume (for simplicity) that they are in general position with
respect to the action and they intersect transversally.

= Give an algorithm to approximate numerically the points of
intersection.
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.
The algorithm

Set up:

Y defined by f = f1,..., fn—s,dim(Y) = s
Z defined by g = ¢g1,...,98_r,dim(Z) =7
dim(X) =r+s

Let Bi,..., By s.t.
dim(M,") = dim(Z),dim(M; ) = dim(Y),i =1,...,k
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The algorithm

1) Set the homotopy:
H(t,z) = (f(t"'z), g(tx))

from € to 1

2)
around B;,1=1...k

t(21, .0 n, Zgy Wy ..oy Wy) = (%21, ..., t% 25, 7wy, ..., tPrw,)
a’inﬂi S Q+7Where
UNM"={w;=0,7=1...7}
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.
The algorithm

3) Via Puiseux expansions and
Newton method to increase precision
compute
(215 vy Zs, W1, - - ., Wr) S.1.
(21,...,25) € M;' NeY, (wy,...,w,) €M, Ne 'Z

4) Use the result as start points
run BERTINI
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I
The Six-Revolute Serial-Link Manipulator

= The most common Robot-arm
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The Six-Revolute Serial-Link Manipulator

Given p find the positions
and rotation of each joint making
The arm arrive at p.

This problem has 16 solutions

77" -Shown by continuation by Tsai&Morgan
7 1985, total degree homotopy: 256

il L1 p - 1988, Li&Liang, degree 16
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T
Geometric setting

= The solution space:

The space of “special Euclidean transforms in 3-space” is identified
with a non singular quadric in 7-projective space, called the
Study Quadric.

SO(3) x R < Q C P’
(R,t) < (po,---,P4,90,---,G4),P0G0 + - .. + Pags = 0
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]
The 6R IKP

=Split the problem in two 3R IKP
=sEach 3R IKP has a 3-dimensional subspace of solutions, X,Y.
=The final solutions are given by intersecting X and Y.
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T
The (general) 6R IKP

= Reduce the problem to two general 3R IKP.

f:=MyoR,(0;) o MyoR,(03) o MyoR,(03) o M3
g:=MgoR,(0g) o M50 R,(05) o Myo R,(04) 0 M3

M; : known descriptions of the links

f; : joint variables

The intersection algorithm, in MatLab+ Bertini, takes 44 sec.
to find the 16 solutions, tracking exactly 16 paths.
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Summary

A C*-action on a non singular algebraic variety, having a finite
fixed-set, gives two decompositions.

The decompositions have two distinguished cells: The source
and the sink.

Given two subvarieties of complementary dimension, by pushing
one towards the source and the other towards the sink we force
the intersection points to move towards certain fixed points.

By homotopy continuation we can trace the intersection back
and solve the intersection problem.

This algorithm has natural applications in kinematics, for
example it gives a new algorithm to solve a general 6R IKP.

THANKS!
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