C*-actions and Kinematics

Sandra Di Rocco (KTH)

FoCM, Hong Kong, June 212008

- Joint work with:
D. Eklund (KTH),
A.J. Sommese (Notre Dame) and C.W. Wampler (General Motors)

M_3-

Plan:

- Some facts on complex manifolds with a C*-action.
- Intersecting two subvarieties of complementary dimension.
- A numerical approximation, the Intersection Algorithm.
- Solving the inverse kinematics problem for a general SixRevolute Serial-Link Manipulator.

ROVAL INSTITUTE
OF TECHNOLOGY
Sandra Di Rocco
KTH, Mathematics

Complex manifolds with a C*-action

Consider a non singular complex projective variety of dimension n. Suppose that it is equipped with a C*-action having a finite fixed point set.
Data:

$$
X \subset \mathbb{P}^{N} \quad \mathbb{C}^{*} \times X \rightarrow X,(t, x)=t x
$$

fixed points: B_{1}, \ldots, B_{r}

Examples:

$$
\begin{gathered}
\mathbb{P}^{N} \\
G(N, r) \\
Q \subset \mathbb{P}^{7}, x_{0} x_{4}+x_{1} x_{5}+x_{2} x_{7}+x_{3} x_{8}=0
\end{gathered}
$$

Complex manifolds with a C*-action

- The Bialynicki-Birula decomposition (1973):

The space X can be decomposed in locally closed invariant subsets, in two ways: the "plus" and "minus" decomposition.
There are two distinguished blocks, called the source and the sink

$$
\begin{array}{cc}
M_{i}^{+}=\left\{x \in X \mid \lim _{t \rightarrow 0} t x=B_{i}\right\} & \overline{M_{1}^{+}}=X, B_{1} \text { source }, M_{k}^{+}=B_{k}, B_{k} \text { sink } \\
M_{i}^{-}=\left\{x \in X \mid \lim _{t \rightarrow \infty} t x=B_{i}\right\} & \overline{M_{k}^{-}}=X, M_{1}^{-}=B_{1}
\end{array}
$$

$$
X=\cup_{i=1}^{r} M_{i}^{+}=\cup_{i=1}^{r} M_{i}^{-}
$$

Complex manifolds with a C*-action

- Example: The smooth quadric hypersurface in 3-space, with an action having 4 fixed points

$$
\begin{aligned}
& \text { Let } X=\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3},\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \mapsto\left(x_{0} y_{0}, x_{0} y_{1}, x_{1} y_{0}, x_{1} y_{1}\right) \\
& \qquad \begin{array}{r}
\left(t,\left(x_{0}, x_{1}, y_{0}, y_{1}\right)\right) \rightarrow\left(x_{0}, t x_{1}, y_{0}, t y_{1}\right) \\
B_{1}=(0,1,0,1), B_{2}=(0,1,1,0), B_{3}=(1,0,0,1), B_{4}=(1,0,1,0) \\
M_{1}^{+}=B_{1}, M_{1}^{-}=\left\{\left(x_{0}, x_{1}, y_{0}, y_{1}\right): x_{1} \neq 0, y_{1} \neq 0\right\} \\
M_{2}^{+}=\left\{\left(x_{0}, x_{1}, y_{0}, y_{1}\right): x_{0}=0, y_{0} \neq 0\right\} \\
M_{3}^{+}=\left\{\left(x_{0}, x_{1}, y_{0}, y_{1}\right): x_{0} \neq 0, y_{0}=0\right\} \\
M_{4}^{+}=\left\{\left(x_{0}, x_{1}, y_{0}, y_{1}\right): x_{0} \neq 0, y_{0} \neq 0\right\}, M_{4}^{-}=B_{4} \\
M_{2}^{-}=\left\{\left(x_{0}, x_{1}, y_{0}, y_{1}\right): x_{1} \neq 0, y_{1}=0\right\} \\
M_{3}^{-}=\left\{\left(x_{0}, x_{1}, y_{0}, y_{1}\right): x_{1}=0, y_{1} \neq 0\right\}
\end{array}
\end{aligned}
$$

Complex manifolds with a C*-action

- Main idea: use the action to find numerically the intersection of two curves.
- How: pushing one towards the sink and the other towards the source. This will provide starting points and a homotopy to track the points back.

a)

b)

c)

Algorithm in a toy-example

- Example with two curves, Y, Z in the quadric.

$$
\begin{array}{r}
Y=V(f), Z=V(g) \\
f:=3 x_{0} y_{0}+x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1} \\
g:=y_{0}^{2} x_{0}+y_{1}^{2} x_{0}+y_{0}^{2} x_{1}+3 y_{1}^{2} x_{1}
\end{array}
$$

Consider:

$$
t Y, t^{-1} Z \text { as } t \rightarrow 0
$$

the Homotopy is $H: \mathbb{C}^{*} \times X \rightarrow \mathbb{C}^{2}$

$$
H\left(t, x_{0}, y_{0}, y_{0}, y_{1}\right)=\binom{3 t^{2} x_{0} y_{0}+t x_{0} y_{1}+t x_{1} y_{0}+x_{1} y_{1}}{y_{0}^{2} x_{0}+t^{2} y_{1}^{2} x_{0}+t y_{0}^{2} x_{1}+3 t^{3} y_{1}^{2} x_{1}}
$$

Example

- Locally near the other two fixed points:

8

Rovalinstitute
OFTECHOLOGY

Example

- In an (analytic) neighborhood of the other two points we can linearize the action.
- Locally the cells are translates of the coordinate axis. Intersection with the cells give start points.

$$
\begin{array}{rc}
\text { Near } B_{3} & \text { Near } B_{2} \\
t(z, w)=\left(t z, t^{-1} w\right) & (-\epsilon,-\epsilon) \\
\epsilon Y \cap M_{3}^{+}=(-\epsilon, 0) & \downarrow \\
\epsilon^{-1} Z \cap M_{3}^{-}=(0,-\epsilon \sqrt{-1})(0, \epsilon \sqrt{-1}) & \text { RUN BERTINI } \\
\text { start points: } &
\end{array}
$$

Rovalinstitute
OFTECHNLOGY

The problem

- Let X be a non singular complex projective variety, with a C*action whose fixed-set is finite.
- Let Y, Z be pure-dimensional subvarieties of complementary dimension.
- Assume (for simplicity) that they are in general position with respect to the action and they intersect transversally.
- Give an algorithm to approximate numerically the points of intersection.

The algorithm

Set up:
Y defined by $f=f_{1}, \ldots, f_{N-s}, \operatorname{dim}(Y)=s$
Z defined by $g=g_{1}, \ldots, g_{N-r}, \operatorname{dim}(Z)=r$
$\operatorname{dim}(X)=r+s$

$$
\begin{array}{r}
\text { Let } B_{1}, \ldots, B_{k} \text { s.t. } \\
\operatorname{dim}\left(M_{i}^{+}\right)=\operatorname{dim}(Z), \operatorname{dim}\left(M_{i}^{-}\right)=\operatorname{dim}(Y), i=1, \ldots, k
\end{array}
$$

The algorithm

1) Set the homotopy:

$$
\begin{array}{r}
H(t, x)=\left(f\left(t^{-1} x\right), g(t x)\right) \\
\text { from } \epsilon \text { to } 1
\end{array}
$$

2)

$$
\begin{array}{r}
\text { around } B_{i}, i=1 \ldots k \\
t\left(z_{1}, \ldots, z_{s}, w_{1}, \ldots, w_{r}\right)=\left(t^{\alpha_{1}} z_{1}, \ldots, t^{\alpha_{s}} z_{s}, t^{\beta_{1}} w_{1}, \ldots, t^{\beta_{r}} w_{r}\right) \\
\alpha_{i}, \beta_{i} \in \mathbb{Q}_{+}, \text {where } \\
U \cap M_{i}^{+}=\left\{w_{j}=0, j=1 \ldots r\right\} \\
U \cap M_{i}^{-}=\left\{z_{j}=0, j=1 \ldots s\right\}
\end{array}
$$

The algorithm

3)

Via Puiseux expansions and
Newton method to increase precision

$$
\begin{array}{r}
\text { compute } \\
\left(z_{1}, \ldots, z_{s}, w_{1}, \ldots, w_{r}\right) \text { s.t. } \\
\left(z_{1}, \ldots, z_{s}\right) \in M_{i}^{+} \cap \epsilon Y,\left(w_{1}, \ldots, w_{r}\right) \in M_{i}^{-} \cap \epsilon^{-1} Z
\end{array}
$$

4) Use the result as start points
run BERTINI

The Six-Revolute Serial-Link Manipulator

- The most common Robot-arm

14

The Six-Revolute Serial-Link Manipulator

Given p find the positions and rotation of each joint making The arm arrive at p.

This problem has 16 solutions -Shown by continuation by Tsai\&Morgan 1985, total degree homotopy: 256

- 1988, Li\&Liang, degree 16

Rovalinstitute

Geometric setting

- The solution space:

The space of "special Euclidean transforms in 3-space" is identified with a non singular quadric in 7-projective space, called the Study Quadric.

$$
\begin{array}{r}
S O(3) \times \mathbb{R}^{3} \leftrightarrow Q \subset \mathbb{P}^{7} \\
(R, t) \leftrightarrow\left(p_{0}, \ldots, p_{4}, q_{0}, \ldots, q_{4}\right), p_{0} q_{0}+\ldots+p_{4} q_{4}=0
\end{array}
$$

The 6R IKP

-Split the problem in two 3R IKP
-Each 3R IKP has a 3-dimensional subspace of solutions, X, Y.
-The final solutions are given by intersecting X and Y.

The (general) 6R IKP

- Reduce the problem to two general 3R IKP.

$$
\begin{aligned}
f & :=M_{0} \circ R_{z}\left(\theta_{1}\right) \circ M_{1} \circ R_{z}\left(\theta_{2}\right) \circ M_{2} \circ R_{z}\left(\theta_{3}\right) \circ M_{3} \\
g & :=M_{6} \circ R_{z}\left(\theta_{6}\right) \circ M_{5} \circ R_{z}\left(\theta_{5}\right) \circ M_{4} \circ R_{z}\left(\theta_{4}\right) \circ M_{3}
\end{aligned}
$$

M_{i} : known descriptions of the links
θ_{i} : joint variables

The intersection algorithm, in MatLab+ Bertini, takes 44 sec. to find the 16 solutions, tracking exactly 16 paths.

Summary

- A C*-action on a non singular algebraic variety, having a finite fixed-set, gives two decompositions.
- The decompositions have two distinguished cells: The source and the sink.
- Given two subvarieties of complementary dimension, by pushing one towards the source and the other towards the sink we force the intersection points to move towards certain fixed points.
- By homotopy continuation we can trace the intersection back and solve the intersection problem.
- This algorithm has natural applications in kinematics, for example it gives a new algorithm to solve a general 6R IKP.

THANKS!
19

ROVAL institute
OFTECHNOLOGY

