Constructing Numerical Campedelli Surfaces

Wolfram Decker, Michael Kunte, Frank-Olaf Schreyer Hongkong, June 2008

"... given a system of equations, it can be extremely difficult to analyze its qualitative properties, such as the geometry of the corresponding variety. The theory of syzygies offers a microscope for looking at systems of equations, and helps to make their subtle properties visible."

– David Eisenbud, The Geometry of Syzygies

Birational Invariants of Surfaces

X = smooth connected projective variety of dimension 2 over \mathbb{C} $\omega_X = \bigwedge^2 T_X^*$ its canonical bundle

Canonical ring:

$$R(X) = \mathbb{C} \oplus \bigoplus_{m \ge 1} H^0(X, \omega_X^{\otimes m}) = \bigoplus_{m \ge 0} H^0(X, \mathcal{O}_X(mK_X))$$

Plurigenera: $P_m = \dim_{\mathbb{C}} H^0(X, \omega_X^{\otimes m}), \quad m \ge 1$ Geometric and arithmetic genus: $p_g = P_1 \ge p_a = \chi(\mathcal{O}_X) - 1$ Irregularity: $q = p_g - p_a \ge 0$ Kodaira dimension:

kod (X) =
$$\begin{cases} -\infty & R(X) \simeq \mathbb{C} \\ \text{trdeg}_{\mathbb{C}} R(X) - 1 & \text{otherwise} \end{cases} \in \{-\infty, 0, 1, 2\}$$

characterizes behavior of plurigenera for $m\longrightarrow\infty$

Enriques-Kodaira Classification

Minimal model:

 $\begin{array}{l} X \\ \downarrow \\ X_{\min} \end{array} \text{ contract } (-1) - \text{curves} \end{array}$

Theorem. Every surface has a minimal model in precisely one of the classes (1)-(8) below. This is uniquely determined (up to isomorphisms) except for the surfaces with minimal models in the classes (1) and (2).

	class of X	$\operatorname{kod}\left(X\right)$
(1)	minimal rational surfaces	$-\infty$
(2)	ruled surfaces with $q \ge 1$	$-\infty$
(3)	Enriques surfaces	0
(4)	bielliptic surfaces	0
(5)	K3 surfaces	0
(6)	Tori	0
(7)	minimal elliptic sur-	
	faces with kod $(X) = 1$	1
(8)	minimal surfaces	
	of general type	2

Castelnuovo criterion: X rational $\iff P_2 = q = 0$. \Box

Are there nonrational surfaces with $p_g = q = 0$?

Example: Enriques.

Enriques surfaces satisfy $K_X^2 = 0$.

Examples with $p_g = q = 0$ and $K_X^2 \ge 1$ must be of general type.

Surfaces of General Type

- X = minimal surface of general type. Then:
 - There is a quasiprojective coarse moduli scheme for X's with fixed Chern numbers c_1^2 and c_2 .
 - $K_X^2 = c_1^2 > 0$ and $c_2 > 0$.
 - Miyaoka-Yau inequality: $c_1^2 \leq 3c_2$

Noether's formula: $1 - q + p_g = \frac{1}{12}(c_1^2 + c_2)$

- X = minimal surface of general type with $p_g = q = 0$. Then:
 - $1 \le c_1^2 \le 9$ and $c_2 = 12 c_1^2$.

Godeaux Construction

 \mathbb{Z}_5 acts freely on the Fermat quintic

$$F = \left\{ x_0^5 + x_1^5 + x_2^5 + x_3^5 = 0 \right\} \subset \mathbb{P}^3$$

via

$$(x_1, x_2, x_3, x_4) \longrightarrow (x_1, \epsilon x_2, \epsilon^2 x_3, \epsilon^3 x_n),$$

where

$$\epsilon = e^{2\pi i/5}.$$

 $X = F/\mathbb{Z}_5$ is a minimal surface of general type with $p_g = q = 0$ and $K_X^2 = 1$.

Definition. Any minimal surface of general type with invariants as above is called a **Numerical Godeaux surface**. \Box

Fact (Miyaoka, Reid). $H_1(X, \mathbb{Z})$ is either 0, \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 or \mathbb{Z}_5 .

Similarly as above, \mathbb{Z}_8 acts freely on the complete intersection T of 4 quadris in \mathbb{P}^6 chosen as follows:

- None of the quadrics passes through the coordinate vertices.
- The ideal generated by the 4 quadrics is \mathbb{Z}_8 -invariant.

 $X = T/\mathbb{Z}_8$ is a minimal surface of general type with $p_g = q = 0$ and $K_X^2 = 2$.

Definition. Any minimal surface of general type with invariants as above is called a **Numerical Campedelli surface**. \Box

Fact (Beauville, Reid). $|H_1(X, \mathbb{Z})| \leq 9$.

Syzygy Construction

To begin, we discuss three examples of Betti diagrams:

Example 1.

	0	1	2	3
0:	 1			 _
1:	-	3	2	-
2:	-	3	6	3
total:	 1	 6		 3

Example 2.

	0	1	2	3	4	5
0	1	_	_	_	_	_
1	_	_	_	_	_	_
2	_	_	_	_	_	_
3	_	_	_	_	_	_
4	_	10	13	4	_	
5		1	3	3	1	

Example 3.

	0	1	2	3	4	5
0	1	_	—	_	_	_
1	—	10	15	*	_	_
2	_	—	5 + *	26	20	5

Fact. X is a minimal surface of general type with $p_g = q = 0$, then:

- R(X) is a finitely generated Noetherian ring which is Gorenstein if q = 0.
- The Hilbert function of R(X) is

$$m \to \dim_{\mathbb{C}} H^0(X, \mathcal{O}_X(mK_X)) = \frac{m(m-1)}{2}K_X^2 + 1.$$

Idea. Let X be a numerical Campedelli surface. Choose a 3dimensional subspace $V \subset H^0(X, \mathcal{O}_X(3K_X))$ and bases x_0, x_1, x_2 of $H^0(X, \mathcal{O}_X(2K_X))$ and y_0, y_1, y_2 of V. Consider R(X) as a module over $S = \mathbb{C}[x_0, x_1, x_2, y_0, y_1, y_2]$, where the x_i and y_j have degrees 2 and 3 respectively. **Fact.** Assume that $H^0(X, \mathcal{O}_X(2K_X))$ is base-point free Then the graded Betti diagram of R(X) is of type:

	0	1	2	3
0	1	_	_	_
1	—	_	_	_
2	_	_	_	_
3	4	_	_	_
4	7	_	_	_
5	—	18	_	_
6		20	_	_
7			20	_
8			18	_
9			_	7
10			—	4
11			—	_
12			—	_
13			—	1

Fact. Assume moreover that V is base-point free. Let L be the linear system formed by the x_i and y_j . Then L embeds the canonical model of X into the weighted projective space $\mathbb{P}(2^3, 3^3)$ iff the module presented by the morphism

$$S(-3)^4 \oplus S(-4)^7 \xleftarrow{\phi} S(-6)^{18} \oplus S(-7)^{20}$$

is of finite length. Writing $F = \ker \phi$. we then have a Buchsbaum-Eisenbud resolution for the homogeneous coordinate ring of the embedded canonical model of X of type

$$0 \leftarrow S/I(X) \leftarrow S \leftarrow F \leftarrow F^{\vee}(-14) \leftarrow S(-14) \leftarrow 0.$$