Constructing Numerical Campedelli Surfaces

Wolfram Decker, Michael Kunte, Frank-Olaf Schreyer Hongkong, June 2008
"... given a system of equations, it can be extremely difficult to analyze its qualitative properties, such as the geometry of the corresponding variety. The theory of syzygies offers a microscope for looking at systems of equations, and helps to make their subtle properties visible."

- David Eisenbud, The Geometry of Syzygies

Birational Invariants of Surfaces

$X=$ smooth connected projective variety of dimension 2 over \mathbb{C} $\omega_{X}=\bigwedge^{2} T_{X}^{*}$ its canonical bundle

Canonical ring:

$$
R(X)=\mathbb{C} \oplus \bigoplus_{m \geq 1} H^{0}\left(X, \omega_{X}^{\otimes m}\right)=\bigoplus_{m \geq 0} H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right)
$$

Plurigenera: $\quad P_{m}=\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \omega_{X}^{\otimes m}\right), \quad m \geq 1$
Geometric and arithmetic genus: $p_{g}=P_{1} \geq p_{a}=\chi\left(\mathcal{O}_{X}\right)-1$
Irregularity: $q=p_{g}-p_{a} \geq 0$
Kodaira dimension:

$$
\operatorname{kod}(X)=\left\{\begin{array}{cc}
-\infty & R(X) \simeq \mathbb{C} \\
\operatorname{trdeg}_{\mathbb{C}} R(X)-1 & \text { otherwise }
\end{array} \in\{-\infty, 0,1,2\}\right.
$$

characterizes behavior of plurigenera for $m \longrightarrow \infty$

Enriques-Kodaira Classification

Minimal model:

$$
\begin{aligned}
& X \\
& \downarrow \\
& X_{\min }
\end{aligned} \quad \text { contract }(-1)-\text { curves }
$$

Theorem. Every surface has a minimal model in precisely one of the classes (1)-(8) below. This is uniquely determined (up to isomorphisms) except for the surfaces with minimal models in the classes (1) and (2).

	class of X	$\operatorname{kod}(X)$
(1)	minimal rational surfaces	$-\infty$
(2)	ruled surfaces with $q \geq 1$	$-\infty$
(3)	Enriques surfaces	0
(4)	bielliptic surfaces	0
(5)	K3 surfaces	0
(6)	Tori	0
(7)	minimal elliptic sur- faces with kod $(X)=1$	1
(8)	minimal surfaces of general type	2

Castelnuovo criterion: X rational $\Longleftrightarrow P_{2}=q=0$.

Are there nonrational surfaces with $p_{g}=q=0$?
Example: Enriques.
Enriques surfaces satisfy $K_{X}^{2}=0$.
Examples with $p_{g}=q=0$ and $K_{X}^{2} \geq 1$ must be of general type.

Surfaces of General Type

$X=$ minimal surface of general type. Then:

- There is a quasiprojective coarse moduli scheme for X 's with fixed Chern numbers c_{1}^{2} and c_{2}.
- $K_{X}^{2}=c_{1}^{2}>0$ and $c_{2}>0$.
- Miyaoka-Yau inequality: $c_{1}^{2} \leq 3 c_{2}$

Noether's formula: $1-q+p_{g}=\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)$
$X=$ minimal surface of general type with $p_{g}=q=0$. Then:

- $1 \leq c_{1}^{2} \leq 9$ and $c_{2}=12-c_{1}^{2}$.

Godeaux Construction

\mathbb{Z}_{5} acts freely on the Fermat quintic

$$
F=\left\{x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}=0\right\} \subset \mathbb{P}^{3}
$$

via

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \longrightarrow\left(x_{1}, \epsilon x_{2}, \epsilon^{2} x_{3}, \epsilon^{3} x_{n}\right),
$$

where

$$
\epsilon=e^{2 \pi i / 5}
$$

$X=F / \mathbb{Z}_{5}$ is a minimal surface of general type with $p_{g}=q=0$ and $K_{X}^{2}=1$.

Definition. Any minimal surface of general type with invariants as above is called a Numerical Godeaux surface.

Fact (Miyaoka, Reid). $H_{1}(X, \mathbb{Z})$ is either $0, \mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}$ or \mathbb{Z}_{5}.

Similarly as above, \mathbb{Z}_{8} acts freely on the complete intersection T of 4 quadris in \mathbb{P}^{6} chosen as follows:

- None of the quadrics passes through the coordinate vertices.
- The ideal generated by the 4 quadrics is \mathbb{Z}_{8}-invariant.
$X=T / \mathbb{Z}_{8}$ is a minimal surface of general type with $p_{g}=q=0$ and $K_{X}^{2}=2$.

Definition. Any minimal surface of general type with invariants as above is called a Numerical Campedelli surface.

Fact (Beauville, Reid). $\left|H_{1}(X, \mathbb{Z})\right| \leq 9$.

Syzygy Construction

To begin, we discuss three examples of Betti diagrams:

Example 1.

	0	1	2	3
0 :	1	-	-	-
1:	-	3	2	-
2 :	-	3	6	3
	1	6	8	3

Example 2.

	0	1	2	3	4	5
0	1	-	-	-	-	-
1	-	-	-	-	-	-
2	-	-	-	-	-	-
3	-	-	-	-	-	-
4	-	10	13	4	-	
5	-	1	3	3	1	

Example 3.

	0	1	2	3	4	5
0	1	-	-	-	-	-
1	-	10	15	$*$	-	-
2	-	-	$5+*$	26	20	5

Fact. X is a minimal surface of general type with $p_{g}=q=0$, then:

- $R(X)$ is a finitely generated Noetherian ring which is Gorenstein if $q=0$.
- The Hilbert function of $R(X)$ is

$$
m \rightarrow \operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right)=\frac{m(m-1)}{2} K_{X}^{2}+1
$$

Idea. Let X be a numerical Campedelli surface. Choose a 3dimensional subspace $V \subset H^{0}\left(X, \mathcal{O}_{X}\left(3 K_{X}\right)\right)$ and bases x_{0}, x_{1}, x_{2} of $H^{0}\left(X, \mathcal{O}_{X}\left(2 K_{X}\right)\right)$ and y_{0}, y_{1}, y_{2} of V. Consider $R(X)$ as a module over $S=\mathbb{C}\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right]$, where the x_{i} and y_{j} have degrees 2 and 3 respectively.

Fact. Assume that $H^{0}\left(X, \mathcal{O}_{X}\left(2 K_{X}\right)\right)$ is base-point free Then the graded Betti diagram of $R(X)$ is of type:

	0	1	2	3
0	1	-	-	-
1	-	-	-	-
2	-	-	-	-
3	4	-	-	-
4	7	-	-	-
5	-	18	-	-
6		20	-	-
7			20	-
8			18	-
9			-	7
10			-	4
11			-	-
12			-	-
13			-	1

Fact. Assume moreover that V is base-point free. Let L be the linear system formed by the x_{i} and y_{j}. Then L embeds the canonical model of X into the weighted projective space $\mathbb{P}\left(2^{3}, 3^{3}\right)$ iff the module presented by the morphism

$$
S(-3)^{4} \oplus S(-4)^{7} \stackrel{\phi}{\leftrightarrows} S(-6)^{18} \oplus S(-7)^{20}
$$

is of finite length. Writing $F=\operatorname{ker} \phi$. we then have a BuchsbaumEisenbud resolution for the homogeneous coordinate ring of the embedded canonical model of X of type

$$
0 \leftarrow S / I(X) \leftarrow S \leftarrow F \leftarrow F^{\vee}(-14) \leftarrow S(-14) \leftarrow 0 .
$$

