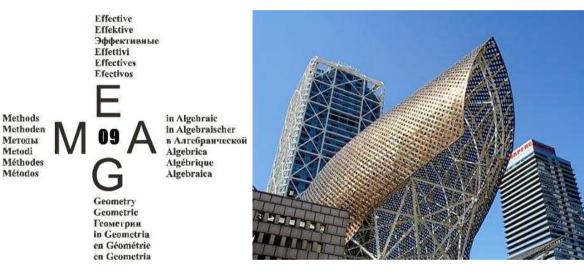
Effective Methods in Algebraic Geometry



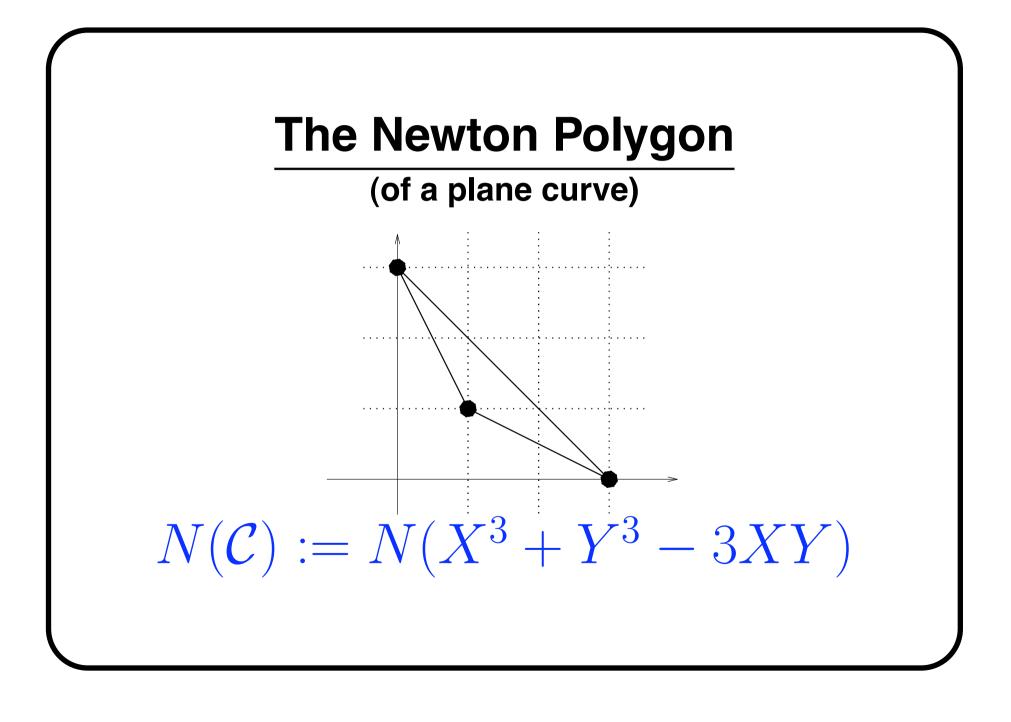
Barcelona, June 15-19 2009
http://www.imub.ub.es/mega09
(CoCoA school: June 9-13)

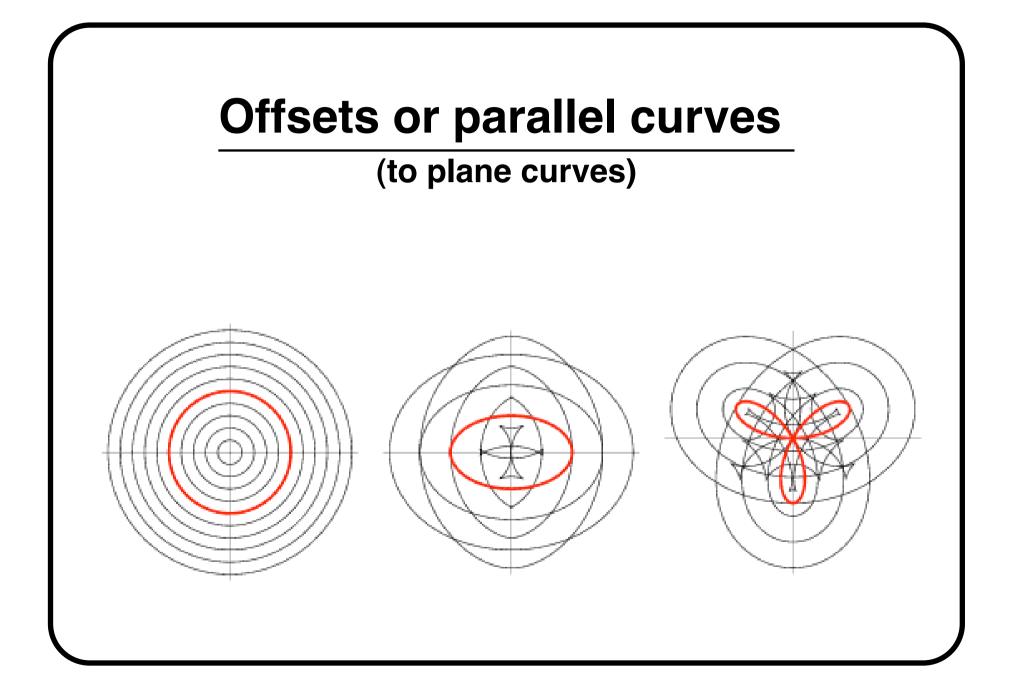
Computing the Newton polygon of offsets to plane algebraic curves

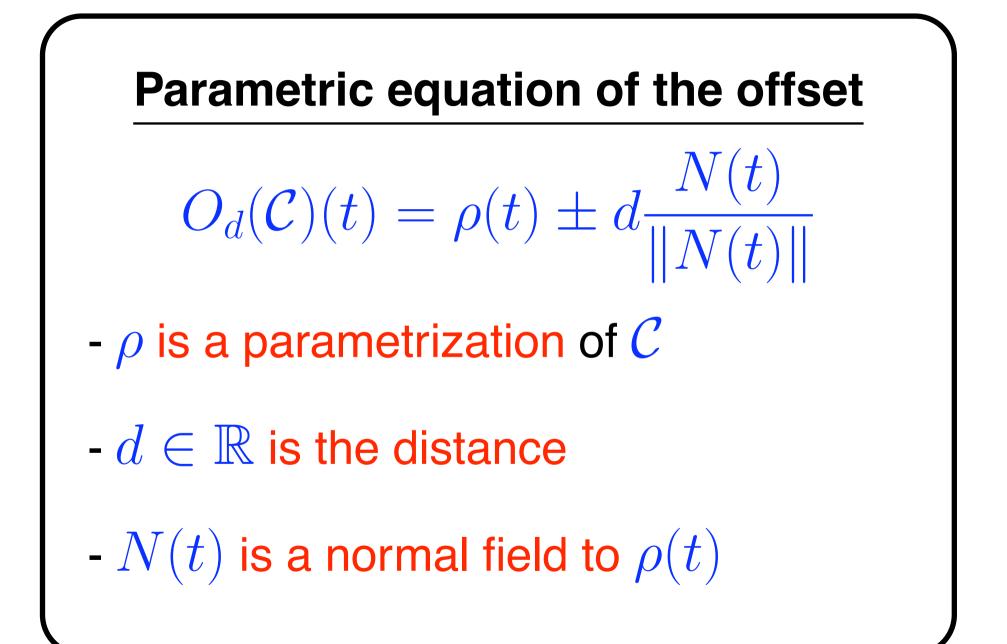
Carlos D'Andrea

cdandrea@ub.edu

http://carlos.dandrea.name



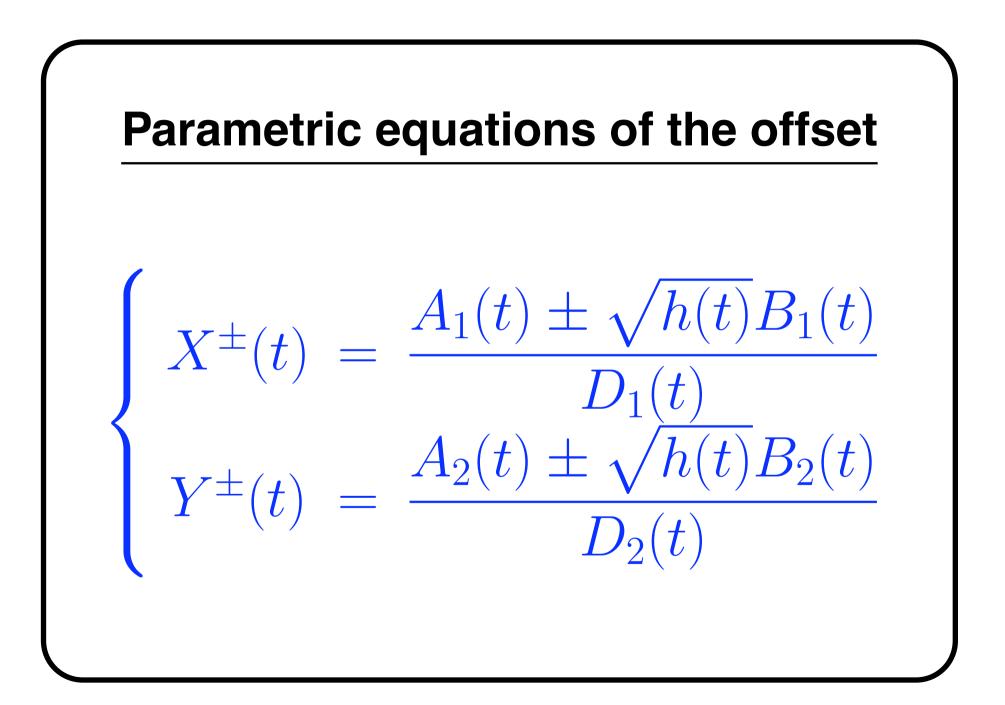


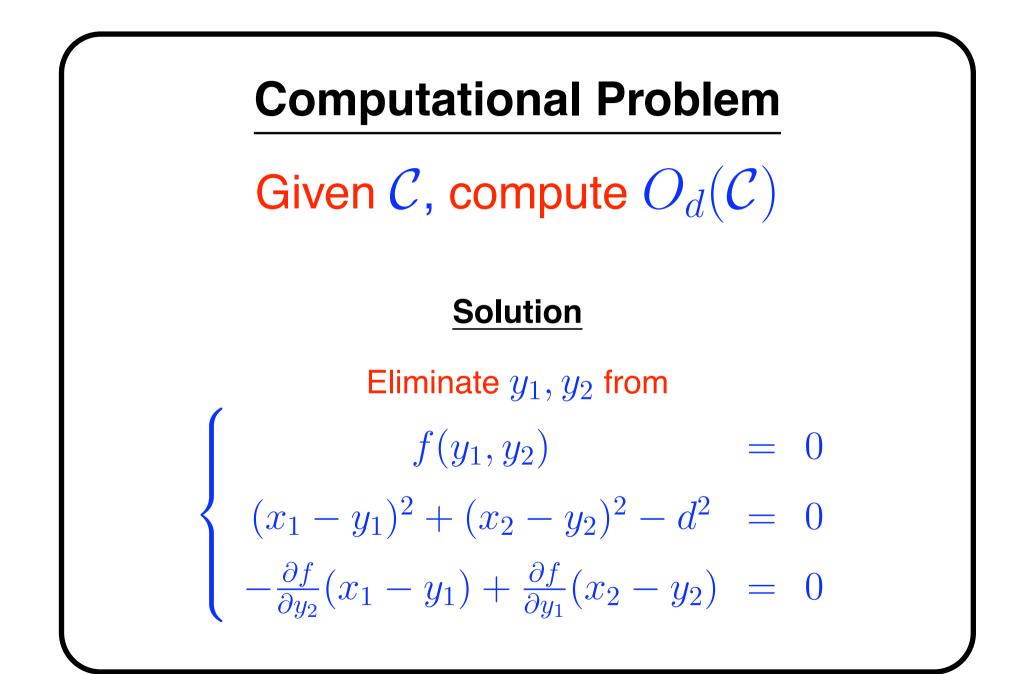


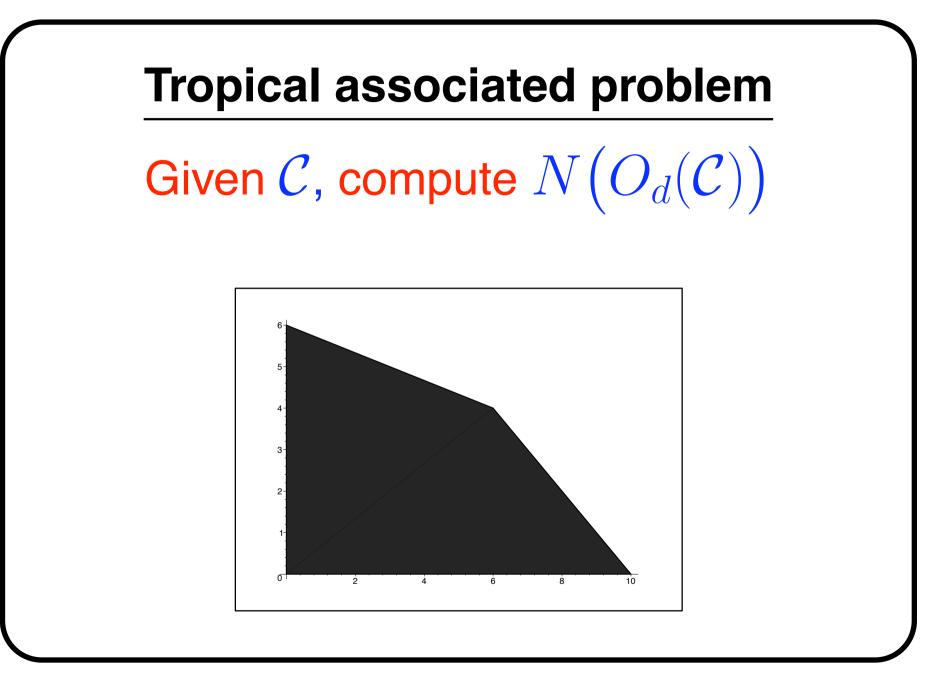
Known facts about offsets

- If C is a plane algebraic curve, then $O_d(C)$ is also an algebraic curve with at most two components (Sendra-Sendra 2000)

- C rational does not imply $O_d(C)$ rational







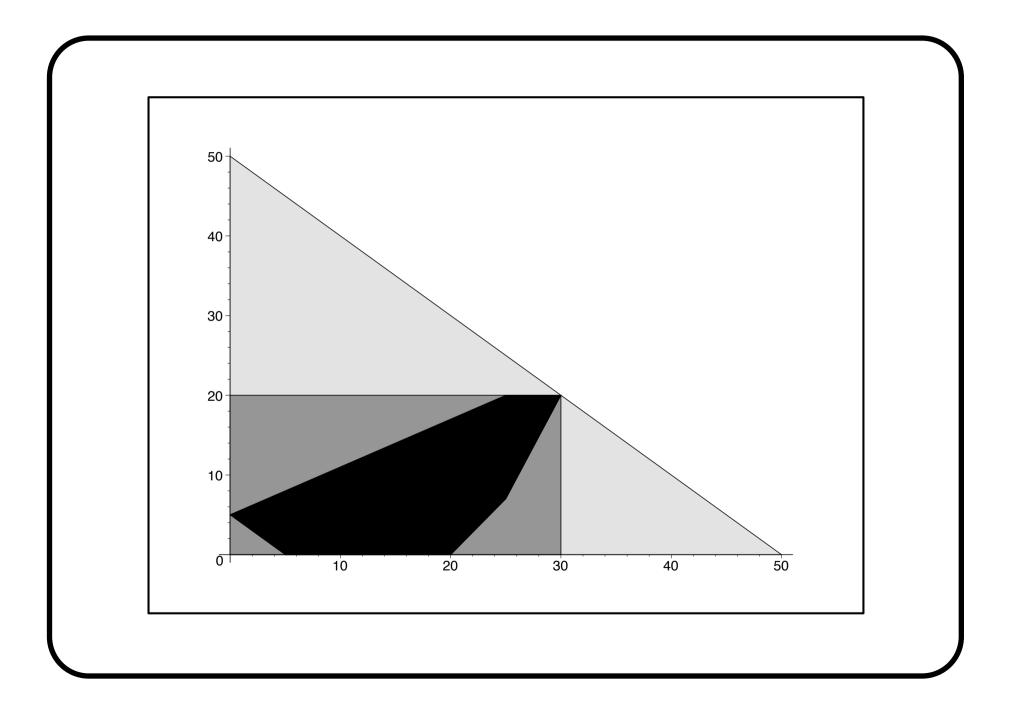
Known results (offsets)

- The degree of $\mathcal{O}_d(\mathcal{C})$

(San Segundo-Sendra 2004)

- The partial degrees of $\mathcal{O}_d(\mathcal{C})$

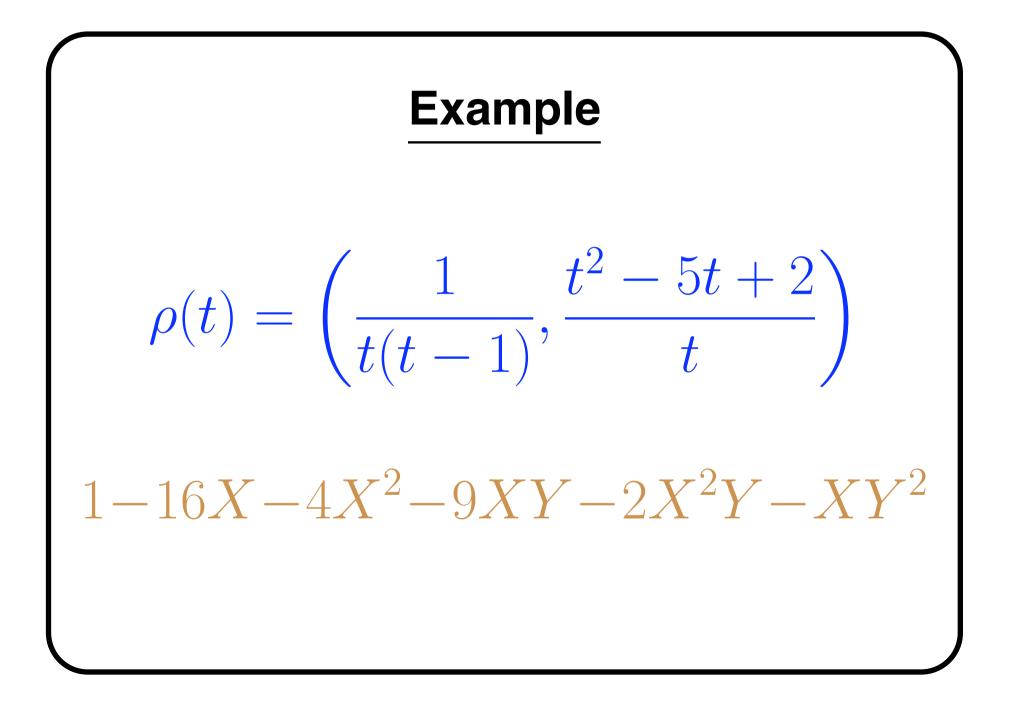
(San Segundo-Sendra 2006)



Known results (tropicalization)

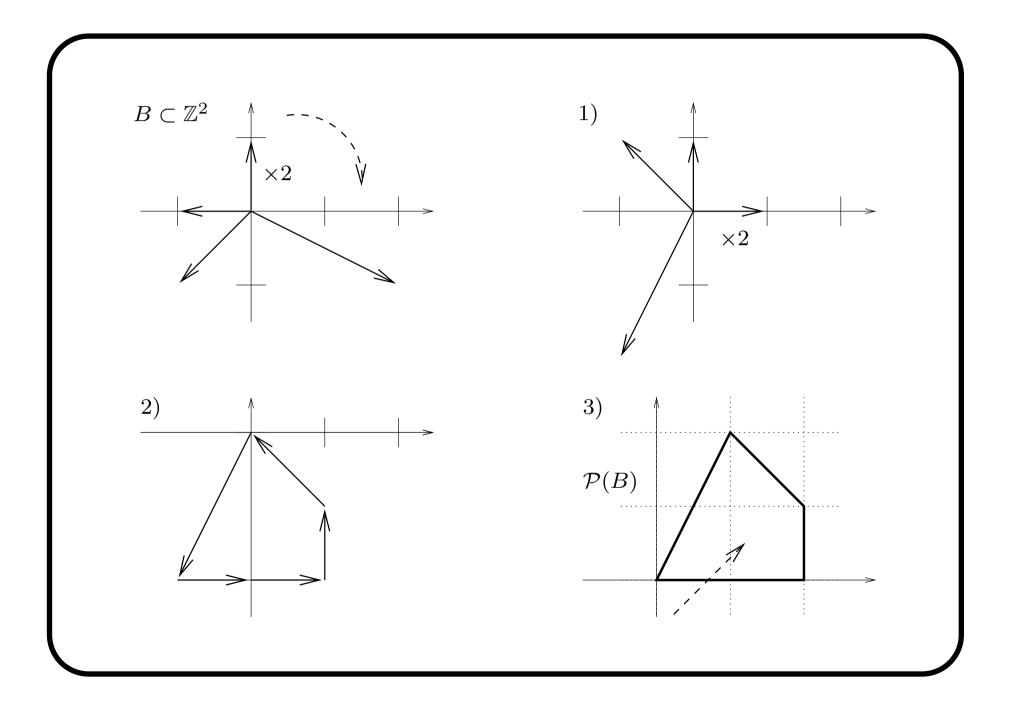
The Newton polygon of a rational plane curve

- Dickenstein-Feichtner-Sturmfels 2007
- Sturmfels-Tevelev 2007
- D-Sombra 2007



•
$$ord_0(\rho) = (-1, -1)$$

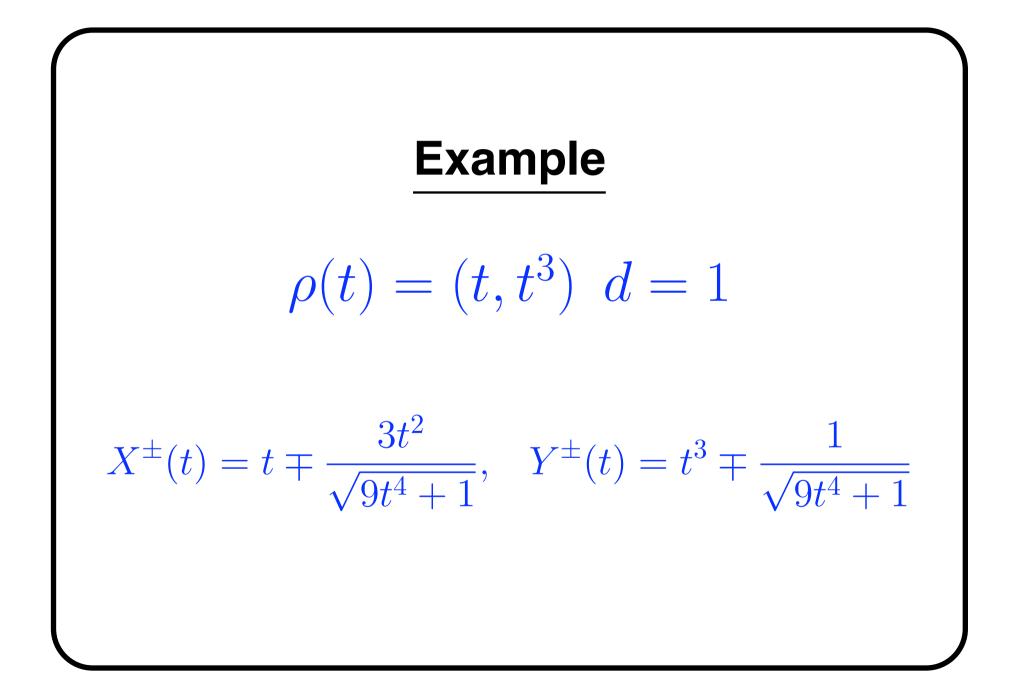
• $ord_1(\rho) = (-1, 0)$
• $ord_{\infty}(\rho) = (2, -1)$
• for $v^2 - 5v + 2 = 0$ $ord_v(\rho) = (0, 1)$



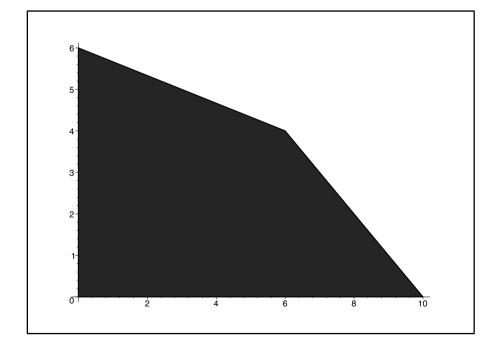
Main result

(D-San Segundo-Sendra-Sombra)

If \mathcal{C} is given parametrically, then the same "recipe" works



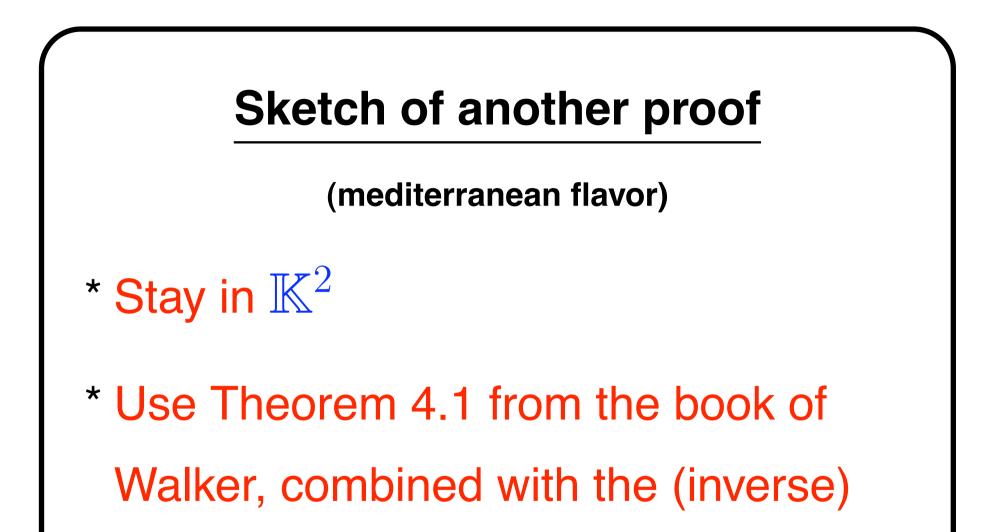
$$X^{\pm}(t) = \frac{t(9t^4+1) \mp 3t^2\sqrt{9t^4+1}}{9t^4+1}$$
$$Y^{\pm}(t) = \frac{t^3(9t^4+1) \pm \sqrt{9t^4+1}}{9t^4+1}$$



Sketch of a proof

(tropical flavor)

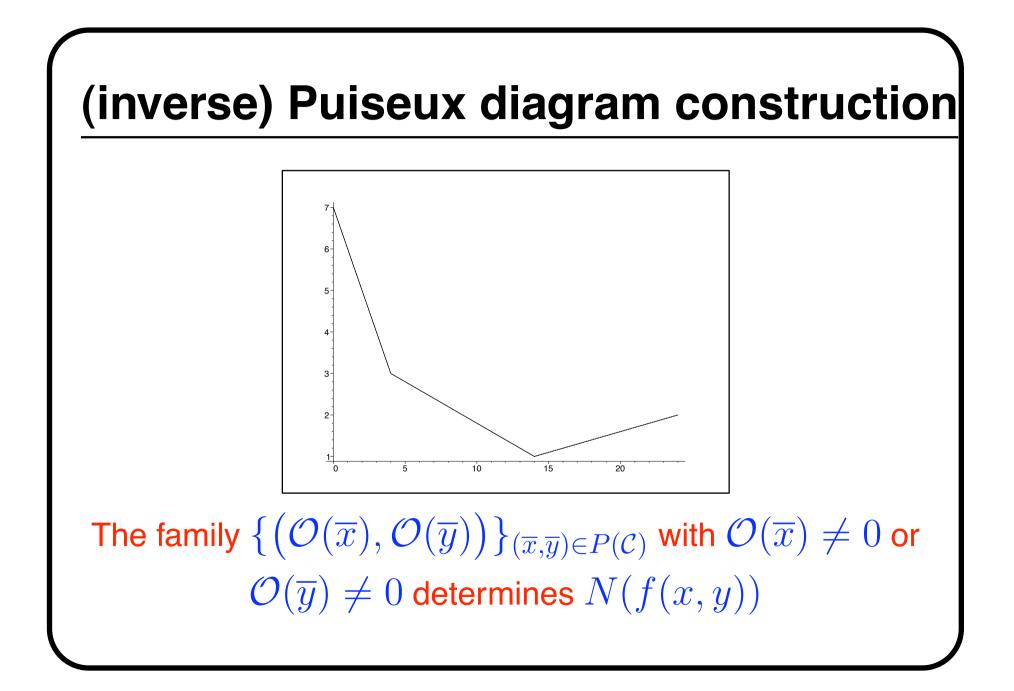
- * Lift the curve to \mathbb{K}^3 and consider $\begin{cases} P(t,X) = 0 \\ Q(t,Y) = 0 \end{cases}$
- * Tropicalize the spatial curve
- * Compute its multiplicities
- * Project
- Sturmfels-Tevelev 2007
- "Puiseux Expansion for Space Curves", Joseph Maurer (1980)

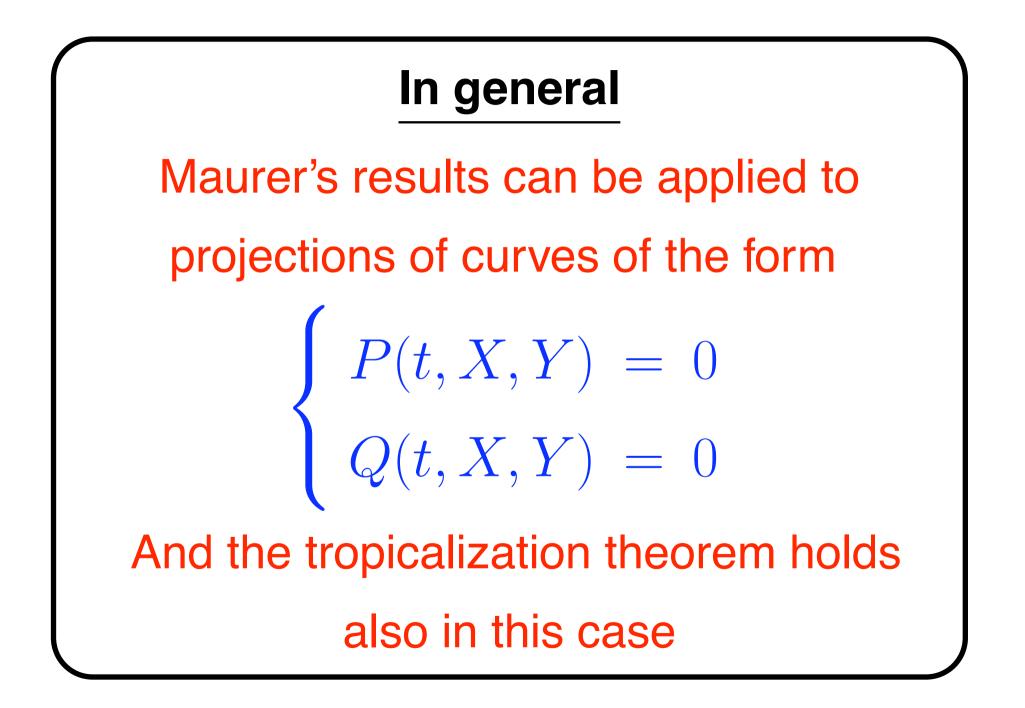


Puiseux diagram construction

Theorem 4.1 (Algebraic Curves by Robert J. Walker)

If $f(x, y) \in \mathbb{K}[x, y]$, to each root $\overline{y} \in \mathbb{K}((x))$ of f(x, y) = 0 for which $\mathcal{O}(\overline{y}) > 0$ there corresponds a unique place of the curve f(x, y) = 0 with center at the origin. Conversely, to each place $(\overline{x}, \overline{y})$ of f with center at the origin there correspond $\mathcal{O}(\overline{x})$ roots of f(x, y) = 0, each of order greater than zero.





Moreover

From ANY formula (algebraic or not) of the form

$$\begin{cases} X = \Psi_1(t) \\ Y = \Psi_2(t), \end{cases}$$

if you can extract the data $\{(\mathcal{O}(\overline{x}), \mathcal{O}(\overline{y}))\}_{(\overline{x},\overline{y})\in P(\mathcal{C})}$ with $\mathcal{O}(\overline{x}) \neq 0$ or $\mathcal{O}(\overline{y}) \neq 0$, then you can get $N(\mathcal{C})$

http://www.imub.ub.es/mega09