Effective Methods in Algebraic Geometry

Effective
Effektive
Эффективные
Effettivi
Effectives
Efectivos

Barcelona, June 15-19 2009 http://www.imub.ub.es/mega09
(CoCoA school: June 9-13)

Computing the Newton polygon of offsets to plane algebraic curves

Carlos D'Andrea

cdandrea@ub.edu
http://carlos.dandrea.name

Joint work with

- Martín Sombra (Barcelona)
- Fernando San Segundo (Alcalá)
- Rafael Sendra (Alcalá)

Universidad de Alcalá

The Newton Polygon

(of a plane curve)

$$
N(\mathcal{C}):=N\left(X^{3}+Y^{3}-3 X Y\right)
$$

Offsets or parallel curves
 (to plane curves)

Parametric equation of the offset

$$
O_{d}(\mathcal{C})(t)=\rho(t) \pm d \frac{N(t)}{\|N(t)\|}
$$

- ρ is a parametrization of \mathcal{C}
- $d \in \mathbb{R}$ is the distance
- $N(t)$ is a normal field to $\rho(t)$

Known facts about offsets

- If \mathcal{C} is a plane algebraic curve, then $O_{d}(\mathcal{C})$ is also an algebraic curve with at most two components (Sendra-Sendra 2000)
- \mathcal{C} rational does not imply $O_{d}(\mathcal{C})$ rational

Parametric equations of the offset

$$
\left\{\begin{array}{l}
X^{ \pm}(t)=\frac{A_{1}(t) \pm \sqrt{h(t)} B_{1}(t)}{D_{1}(t)} \\
Y^{ \pm}(t)=\frac{A_{2}(t) \pm \sqrt{h(t)} B_{2}(t)}{D_{2}(t)}
\end{array}\right.
$$

Computational Problem
 Given \mathcal{C}, compute $O_{d}(\mathcal{C})$

Solution

Eliminate y_{1}, y_{2} from

$$
\left\{\begin{array}{cc}
f\left(y_{1}, y_{2}\right) & =0 \\
\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}-d^{2} & =0 \\
-\frac{\partial f}{\partial y_{2}}\left(x_{1}-y_{1}\right)+\frac{\partial f}{\partial y_{1}}\left(x_{2}-y_{2}\right) & =0
\end{array}\right.
$$

Tropical associated problem Given \mathcal{C}, compute $N\left(O_{d}(\mathcal{C})\right)$

Known results (offsets)

- The degree of $\mathcal{O}_{d}(\mathcal{C})$
(San Segundo-Sendra 2004)
- The partial degrees of $\mathcal{O}_{d}(\mathcal{C})$
(San Segundo-Sendra 2006)

Known results (tropicalization)

The Newton polygon of a rational plane curve

- Dickenstein-Feichtner-Sturmfels 2007
- Sturmfels-Tevelev 2007
- D-Sombra 2007

Example

$$
\begin{gathered}
\rho(t)=\left(\frac{1}{t(t-1)}, \frac{t^{2}-5 t+2}{t}\right) \\
1-16 X-4 X^{2}-9 X Y-2 X^{2} Y-X Y^{2}
\end{gathered}
$$

- $\operatorname{ord}_{0}(\rho)=(-1,-1)$
- $\operatorname{ord}_{1}(\rho)=(-1,0)$
- $\operatorname{ord}_{\infty}(\rho)=(2,-1)$
- for $v^{2}-5 v+2=0 \operatorname{ord}_{v}(\rho)=(0,1)$

Main result

(D-San Segundo-Sendra-Sombra)
If \mathcal{C} is given parametrically, then the same "recipe" works

Example

$$
\rho(t)=\left(t, t^{3}\right) d=1
$$

$$
X^{ \pm}(t)=t \mp \frac{3 t^{2}}{\sqrt{9 t^{4}+1}}, \quad Y^{ \pm}(t)=t^{3} \mp \frac{1}{\sqrt{9 t^{4}+1}}
$$

$$
\begin{aligned}
X^{ \pm}(t) & =\frac{t\left(9 t^{4}+1\right) \mp 3 t^{2} \sqrt{9 t^{4}+1}}{9 t^{4}+1} \\
Y^{ \pm}(t) & =\frac{t^{3}\left(9 t^{4}+1\right) \pm \sqrt{9 t^{4}+1}}{9 t^{4}+1}
\end{aligned}
$$

Sketch of a proof

(tropical flavor)

* Lift the curve to \mathbb{K}^{3} and consider $\left\{\begin{array}{l}P(t, X)=0 \\ Q(t, Y)=0\end{array}\right.$
* Tropicalize the spatial curve
* Compute its multiplicities
* Project
- Sturmfels-Tevelev 2007
- "Puiseux Expansion for Space Curves", Joseph Maurer (1980)

Sketch of another proof

(mediterranean flavor)

* Stay in \mathbb{K}^{2}
* Use Theorem 4.1 from the book of Walker, combined with the (inverse) Puiseux diagram construction

Theorem 4.1
 (Algebraic Curves by Robert J. Walker)

If $f(x, y) \in \mathbb{K}[x, y]$, to each root $\bar{y} \in \mathbb{K}((x))$ of $f(x, y)=0$ for which $\mathcal{O}(\bar{y})>0$ there corresponds a unique place of the curve $f(x, y)=0$ with center at the origin. Conversely, to each place (\bar{x}, \bar{y}) of f with center at the origin there correspond $\mathcal{O}(\bar{x})$ roots of $f(x, y)=0$, each of order greater than zero.

(inverse) Puiseux diagram construction

The family $\{(\mathcal{O}(\bar{x}), \mathcal{O}(\bar{y}))\}_{(\bar{x}, \bar{y}) \in P(\mathcal{C})}$ with $\mathcal{O}(\bar{x}) \neq 0$ or $\mathcal{O}(\bar{y}) \neq 0$ determines $N(f(x, y))$

In general

Maurer's results can be applied to projections of curves of the form

$$
\left\{\begin{array}{l}
P(t, X, Y)=0 \\
Q(t, X, Y)=0
\end{array}\right.
$$

And the tropicalization theorem holds also in this case

Moreover

From ANY formula (algebraic or not) of the form

$$
\left\{\begin{aligned}
X & =\Psi_{1}(t) \\
Y & =\Psi_{2}(t)
\end{aligned}\right.
$$

if you can extract the data $\{(\mathcal{O}(\bar{x}), \mathcal{O}(\bar{y}))\}_{(\bar{x}, \bar{y}) \in P(\mathcal{C})}$ with $\mathcal{O}(\bar{x}) \neq 0$ or $\mathcal{O}(\bar{y}) \neq 0$, then you can get $N(\mathcal{C})$

THANKS...

Effective
 Effektive
 Эффективны
 Effettivi Effectives
 Effectives Efectivos
 E
 Methods
 Methoden
 Методы
 Méthodes
 Métodos
 M ${ }^{\circ} \mathrm{A}$
 in Algebraic in Algebraischer Algebrica
 Algébrique
 Geometry Geometrie Геометрии in Geometria en Gcometria

 Barcelona, June 15-19 2009 http://www.imub.ub.es/mega09

