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Challenges

There are many challenges facing Computational Algebraic
Geometry:

Practical: Do big problems using existing algorithms
and hardware.

Theoretical: Find better algorithms. Also understand
the complexity of existing algorithms.

This Talk

I will discuss some completely different challenges facing
Computational Algebraic Geometry.
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Nature, 20 January 2000

A Synthetic Oscillatory Network of Transcriptional Regulators

Michael B. Elowitz & Stanislas Leibler

Departments of Molecular Biology and Physics, Princeton

Networks of interacting biomolecules carry out many
essential functions in living cells, but the ‘design principles’
underlying the functioning of such intracellular networks
remain poorly understood.

Here we present the design and construction of a synthetic
network to implement a particular function. We used three
transcriptional repressor systems to build an oscillating
network, termed the repressilator, in Escherichia coli.
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From “Box 1” of the Article

Three repressor-protein concentrations pi and their
corresponding mRNA concentrations mi (i is lacI, tetR,cI)
are treated as continuous dynamical variables.

The kinetics of the system are determined by six coupled
first-order differential equations:

dmi

dt
= −mi +

α
1+pn

j
+ α0

dpi

dt
= −β (pi −mi)

for i = lacI, tetR, cI, j = cI, lacI, tetR and n,α ,α0,β > 0.

Question

What are the steady-state solutions?
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Steady State Solutions

The steady state solutions are solutions of the system:

0 = −mi +
α

1+pn
j

+ α0

0 = −β (pi −mi)

Write the indices as i = 1,2,3, j = 2,3,1.

The System of Equations

0 = −p1 + α
1+pn

2
+ α0

0 = −p2 + α
1+pn

3
+ α0

0 = −p3 + α
1+pn

1
+ α0
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Real Solutions

Claim
Assume α ,α0 > 0.

The equation

p =
α

1+pn + α0

has a unique real solution, denoted p.

The unique real solution of

0 = −p1 + α
1+pn

2
+ α0

0 = −p2 + α
1+pn

3
+ α0

0 = −p3 + α
1+pn

1
+ α0

is given by p1 = p2 = p3 = p.
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Proof for n = 2

Set p = p1, a = α , b = α0 and eliminate p2,p3:

(p3 −bp2 +p−a−b)(1+2a2+a4 +5ab+4a3b +3b2+

8a2b2 +8ab3 +a3b3 +3b4 +3a2b4 +3ab5 +b6−ap−
2a2bp−2ab2p−a3b2p−2a2b3p−ab4p +3p2 +4a2p2+

12abp2 +3a3bp2 +9b2p2 +12a2b2p2 +18ab3p2 +9b4p2+

3a2b4p2 +6ab5p2 +3b6p2 −2ap3 +a3p3 −2a2bp3−

4ab2p3 −2a2b3p3 −2ab4p3 +3p4 +3a2p4 +9abp4 +9b2p4+

4a2b2p4 +12ab3p4 +9b4p4 +3ab5p4 +3b6p4 −ap5−

2ab2p5 −ab4p5 +p6 +a2p6 +2abp6 +3b2p6 +2ab3p6+

3b4p6 +b6p6) = 0

The second factor is a polynomial H of degree 6 in p.

Small Discriminant Calculation

p3 −bp2 +p−a−b has a unique real root when a,b > 0.
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Proof for n = 2, Continued

Larger Discriminant Calculation

The polynomial H is positive when p,a,b > 0.

(Suggested by Fabrice Rouillier) The discriminant of H is

Disc(H,p) = a16(a2 +b6 +3b2 +3b4 +1+2ab+2ab3)P

where P is a sum (no subtractions) of monomials in a,b with
a constant term 16384. The leading coefficient of H

a2 +b6 +3b2 +3b4 +1+2ab+2ab3

is strictly positive when a,b > 0, so H has no root at infinity.
So the number of real roots of H is constant when a,b > 0.

QED
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Better Proof for all n > 0

(Suggested by André Galligo)

Key Point

If α ,α0,n > 0, then p 7→ α
1+pn + α0 is strictly decreasing.

Assume
p1 = α

1+pn
2
+ α0

p2 = α
1+pn

3
+ α0

p3 = α
1+pn

1
+ α0

and suppose for example p2 < p3. Then

p2 < p3 ⇒ p1 > p2 ⇒ p3 < p1 ⇒ p2 > p3,

a contradiction. QED
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From the “Methods” Section of the Article

Time-lapse microscopy was conducted on a Zeiss Axiovert
135TV microscope equipped with a 512 × 512-pixel cooled
CCD camera (Princeton Instruments).

Bright-field (0.1 s) and epifluorescence (0.05–0.5 s)
exposures were taken periodically (every 5 or 10 min). All
light sources (standard 100 W Hg and halogen lamps) were
shuttered between exposures.

A fast Fourier transform was applied to the temporal
fluorescence signal from each analyzed cell lineage and
divided by the transform of a decaying exponential with a
time constant of 90 min, the measured lifetime of GFPaav.
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More from “Box 1” of the Article

The system of differential equations has a unique steady
state, which becomes unstable when

(β +1)2

β
<

3X 2

4+2X

where

X =
αnpn−1

(1+pn)2

and p is the solution to

p =
α

1+pn + α0

No Justification Whatsoever!
This is all they say about uniqueness!
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Challenge 1

Biology is using more and more mathematics, but their
culture is very different. Hence:

They describe the microscope and the types of lights.

They mention the use of FFT to analyze the data.

But when it comes to a serious mathematical assertion,
they say nothing! Here are unanswered questions:

Did they know the proof just described?

Why didn’t they say "since α
1+pn + α0 is decreasing"?

Challenge 1

Users in other fields may have different traditions for dealing
(or not dealing) with mathematics. How do we help them
take the mathematics seriously?
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What is a Computation?

A symbolic computation can take many forms:

An algorithm (most general)

A straight-line program (for large polynomials)

An explicit formula (determinant or determinant of a
complex)

I will illustrate this range of computations with the example
of the classical multivariable resultant. As we will see, there
are some challenges.
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The Classical Multivariable Resulant

Let F0, . . . ,Fn ∈ C[x0, . . . ,xn] be homogeneous polynomials
of degrees d0, . . . ,dn.

Definition

The Resultant of F0, . . . ,Fn, denoted

Res = Resd0,...,dn(F0, . . . ,Fn)

is a polynomial in the coefficients of F0, . . . ,Fn with the
property that

Res(F0, . . . ,Fn) = 0 ⇐⇒

{
F0 = · · · = Fn = 0
has a nontrivial solution
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Computing Resultants

Res = Resd0,...,dn(F0, . . . ,Fn) can be computed many ways:

The Macaulay formula, which expresses Res as a
quotient of two determinants.

In some special cases, there are determinantal
formulas for Res (Sylvester, Bézout, etc.).

The Poisson formula, which expresses Res as a
product of F0 evaluated at the solutions of
F1 = · · · = Fn = 0.

The Cayley formula, which expresses Res as the
determinant of a complex.
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GCD of Maximal Minors

Here is another resultant formula. Let d = ∑n
i=0 di −n and

set S = C[x0, . . . ,xn]. Then Sk denotes the vector space of
homogeneous polynomials of degree k . Consider

Sd−d0
⊕·· ·⊕Sd−dn −→ Sd

(G0, . . . ,Gn) 7−→ G0F0 + · · ·+GnFn

Theorem

Let M be matrix of this map with respect to the monomial
bases. Regard the coefficients of the Fi as variables. Then

Res = gcd{maximal minors of M}.
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Resultant Matrices

The matrix of the previous slide is called a resultant matrix
by Elkadi and Mourrain. The resultant matrix, denoted
ResMat, has some advantages over the resultant Res:

ResMat requires no symbolic computation.

For a specific choice of the Fi , Res = 0 ⇐⇒ ResMat
does not have maximal rank.

ResMat adapts well to approximate coefficients.

A Challenging Suggestion

This approach suggests that in certain situations, resultants
should be replaced with resultant matrices.
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A Very Different Formula

Let A = (Aij)0≤i ,j≤n. Set F̂i = Fi(
∂

∂Ai0
, . . . , ∂

∂Ain
) and define

T k

k
= d0 · · ·dn ∑

k0+···+kn=k

n

∏
i=0

F̂ ki
i

(diki)!

TrAd0k0+···+dnkn

d0k0 + · · ·+dnkn

∣∣∣∣∣
A=0

Theorem (Morozov & Shakirov, 2008; Faá di Bruno, 1859)

Res(xd0
0 −F0, . . . ,x

dn
n −Fn) = exp

(
−

∞

∑
k=0

T k

k

)

This generalizes the classical formula

det(I −A) = exp
(
−

∞

∑
k=0

TrAk

k

)

(Thanks to Jean-Pierre Jouanolou for the 1859 reference.)
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A Joint Paper

The multiplicity of computations presents another challenge,
related to the way some mathematicians view computations.

For example, I wrote a paper with Laurent Busé and Carlos
D’Andrea on implicitization of surfaces in P3. Like resultants,
implicitization can be done many ways, including:

Gröbner bases.

Resultants.

Moving surfaces (Sederberg, Chen, Goldman, etc.)

The first referee rejected the paper and wondered why we
didn’t use Gröbner bases to solve the problem!
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Challenge 2

The multiplicity of computations leads to more challenges:

Challenge 2

(Within the Computational Community)
Can we be truly open to radically different ways of
thinking about objects [resultants, for example] that we
know and love?

(Relating to the Larger Mathematical Community)
How do we educate our fellow algebraic geometers and
commutative algebraists about the importance of
multiple approaches to computational problems?
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Bad Algorithms

There are many bad algorithms.

Primality Testing

Test the primality of n > 1 in Z dividing n by all 1 < m < n.

High complexity need not make an algorithm bad.

Buchberger Algorithm

Compute a Gröbner basis of 〈f1, . . . , fs〉 ⊆ Q[x1, . . . ,xn].

This algorithm is doubly exponential but incredibly useful.

On the other hand, there are some completely impractical
algorithms that are nevertheless wonderful.

Here are three of my favorite bad algorithms.



Challenges in
Computational

Algebraic
Geometry

David A. Cox

Challenge 1:
Other
Disciplines
Article in Nature

The Mathematics

Methods

Challenge 2:
The Range of
Computations
Resultants

A Joint Paper

Challenge 3:
Loving Bad
Algorithms
Factoring over the
Rationals

Factoring over
Number Fields

Sudoku

An Algorithm of Kronecker

Irreducibility over Q

Let f ∈ Z[x ] have degree n and relatively prime coefficients.
How do we tell if f is irreducible over Q?

Create a finite list of polynomials g as follows:

For 0 < d < n and factors ai of f (i), i = 0, . . . ,d , find
g ∈ Q[x ] with deg(g) ≤ d and g(i) = ai , i = 0, . . . ,d .

Accept g if deg(g) = d and g ∈ Z[x ]; reject otherwise.

Theorem (Kronecker)

f is irreducible ⇐⇒ f is divisible by none of these g’s.

This algorithm is dreadfully inefficient but still wonderful
because it gives a constructive method for finding factors. It
is not obvious such such a method exists.
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Another Algorithm of Kronecker

Factoring over a Number Field

Let f ∈ Q[x ] is irreducible and let Q ⊆ K be a number field.
How do we factor f over K ?

The previous algorithm requires a UFD (very rare for
number fields) and, as noted by Hendrik Lenstra, finitely
many units (only Q and imaginary quadratic fields). So how
do we proceed?

First observe that there is an algorithm that works over K ,
namely the Euclidean Algorithm for K [x ].

In 1882, Kronecker combined factorization in Q[x ] and the
Euclidean Algorithm for K [x ] to give a factorization
algorithm in K [x ].
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Using Factorization over Q

Let g be the minimal polynomial of a primitive element
β ∈ K , so that K = Q(β ) ≃ Q[y ]/〈g(y)〉. Then set

A = Q[x ,y ]/〈f (x),g(y)〉 ≃ K [x ]/〈f (x)〉

and pick t ∈ Q such that x + ty takes distinct values on the
solutions of f (x) = g(y) = 0.

Let M : A → A be the linear map induced by multiplication by
x + ty and let

CharM(u) =
s

∏
i=1

Φi(u)

be the factorization of the characteristic polynomial of M into
irreducible factors in Q[x ].
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Using the Euclidean Algorithm over K

Theorem (Kronecker)

The irreducible factors of f in K [x ], K = Q(β ), are given by

gcdK [x](f (x),Φi(x + tβ ))

This algorithm for factoring f over K [x ] is bad because
computing the characteristic polynomial involves
evaluating a large determinant.

This algorithm is wonderful because it shows how to
factor in situations when unique factorization fails in OK .

This algorithm is wonderful because it links factoring
and the Euclidean algorithm.
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Graphs Coloring and Sudoku

Let G = (V ,E) be a graph with vertices V = {1, . . . ,n}.

Definition

A k-coloring of G is a function from V to a set of k colors
such that adjacent vertices have distinct colors.

Example

vertices = 81 squares
edges = links between:
• squares in same column
• squares in same row
• squares in same 3×3

Colors = {1,2, . . . ,9}

Goal: Extend the partial
coloring to a full coloring.

3 5
1 2 9

2
3

9
5
8

7
4

6
13

4
3

3
2
6
7 6

5
4

1
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Graph Ideal

Definition

The k-coloring ideal of G is the ideal IG,k ⊆ C[xi | i ∈ V ]
generated by:

for all i ∈ V : xk
i −1

for all ij ∈ E : xk−1
i +xk−2

i xj + · · ·+xix
k−2
j +xk−1

j

Lemma

V(IG,k ) ⊆ Cn consists of all k-colorings of G for the set of
colors consisting of the k th roots of unity

µn = {1, ζk , ζ 2
k , . . . , ζ k−1

k }, ζk = e2π i/k
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Uniquely k -Colorable Graphs

Definition

A graph G is uniquely k-colorable if it has a unique
k-coloring up the permutation of the colors.

We start with a k-coloring of G that uses all k colors.
Assume the k colors occur among the last k vertices. Then:

Use variables x1, . . . ,xn−k , y1, . . . ,yk with lex order

x1 > · · · > xn−k > y1 > · · · > yk

Use these variables to label the vertices of G.
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A Theorem

Consider the following n polynomials:

yk
k −1

hj(yj , . . . ,yk ) = ∑αj+···+αk=j y
αj

j · · ·yαk
k , j = 1, . . . ,k −1

xi −yj , color(xi ) = color(yj ), j ≥ 1

Theorem (Hillar & Windfeldt, 2008)

The following are equivalent:

G is uniquely k-colorable.

The n polynomials g1, . . . ,gn listed above lie in IG,k .

{g1, . . . ,gn} is a Gröbner basis for IG,k .
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Solving the Sudoku

To solve this sudoku, use:

• 81 variables xij , 1 ≤ i , j ≤ 9.
• Relabel the 9 variables for

red squares as y1, . . . ,y9.
• The graph ideal IG,9.
• The 9 polynomials y9

9 −1,
h8(y8,y9),h7(y7,y8,y9),
h6(y6,y7,y8,y9), . . . ,
h1(y1, . . . ,y9) = y1 + · · ·+y9.

• The 16 polynomials x31 −y7,
x33 −y6,x37 −y2, . . .

1 2
3

4

5

6 7
8

9
2

3
9
5

13
4
3

3
2
6
7 6

5
4

1

Assuming a unique solution, the Gröbner basis of the ideal
generated by these polynomials will contain x11 −yi , etc.
This will tell us how to fill in the blank squares!
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Really Bad and Wonderful

This algorithm is a really bad way to solve sudoku puzzles.
People have tried to implement it in Magma, Mathematica,
etc., with no success—the 81 variables of a 9 ×9 sudoku
make the complexity too great. (This method can work
using various tricks, but these tricks are essentially the
standard algorithm to solve sudoku.)

A Good Student Project

This can be done successfully for 4 × 4 sudoku puzzles.

This algorithm is wonderful in the way it links sukoku, graph
coloring, and Gröbner bases. Such unexpected connections
are part of the wonder and joy of mathematics.
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Challenge 3

Cutting-edge algorithms are very important in computational
algebraic geometry. But there are also bad algorithms that
deserve to be celebrated:

They can show us that something is possible.

They can illustrate the links between different ideas.

They can amuse and inspire us.

Challenge 3

Can we love these bad algorithms? Can we find more?

Thank you!
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