

Falai Chen
University of Science and Technology of China

Outline

- Implicitization
- Moving planes and moving surfaces
- Ruled surfaces
- Tensor product surfaces
- Surfaces of revolution

Implicitization

- Given a rational surface

$$
\begin{equation*}
\mathbf{P}(\mathbf{s}, \mathrm{t})=(\mathrm{a}(\mathrm{~s}, \mathrm{t}), \mathrm{b}(\mathrm{~s}, \mathrm{t}), \mathrm{c}(\mathrm{~s}, \mathrm{t}), \mathrm{d}(\mathrm{~s}, \mathrm{t})) \tag{1}
\end{equation*}
$$

- Find an irreducible homogenous polynomial $f(x, y, z, w)$ such that

$$
\begin{equation*}
f(\mathbf{a}(\mathrm{~s}, \mathrm{t}), \mathrm{b}(\mathrm{~s}, \mathrm{t}), \mathrm{c}(\mathrm{~s}, \mathrm{t}), \mathrm{d}(\mathrm{~s}, \mathrm{t})) \equiv \mathbf{0} \tag{2}
\end{equation*}
$$

Implicitization

- Traditional methods:
- Resultants
- Groebner bases
- Wu's method
- Undetermined coefficients
-......

Implicitization

- Problems with the traditional Methods
- Groebner bases and Wu's method are computational very expensive.
- Resultant-based methods fail in the presence of base points.
- Most methods give a very huge polynomial which is problematic in numerical computation (The implicit equation of a bicubic surface is a polynomial of degree 18 with 1330 terms!)

Implicitization

- Moving planes and moving surfaces
[Sederberg and Chen, Implicitization using moving curves and surfaces, SIGGRAPH, 1995]
- Advantages
- Efficient
- Never fails
- Simplifies in the presence of base points
- The implicit equation is a determinant

Implicitization

- Moving planes and moving surfaces
[Sederberg and Chen, Implicitization using moving curves and surfaces, SIGGRAPH, 1995]
- Problems
- Lack explicit constructions
- No rigorous proofs

Implicitization

- Goal

Try to provide a general framework for implicitizing rational surfaces via syzygies.

Moving planes and surfaces

- A moving plane is a family of planes with parameter pairs (s, t) :

$$
\begin{equation*}
A(s, t) x+B(s, t) y+C(s, t) z+D(s, t) \equiv 0 \tag{3}
\end{equation*}
$$

It is denoted by

$$
\mathbf{L}(s, t)=(A(s, t), B(s, t), C(s, t), D(s, t)) \in \mathbf{R}[s, t]^{4}
$$

Moving planes and surfaces

- A moving plane is said to follow the rational surface $\mathbf{P}(\mathrm{s}, \mathrm{t})$ if

$$
\begin{equation*}
A a+B b+C c+D d \equiv 0 \tag{4}
\end{equation*}
$$

- Geometrically, "follow" means that, for each parameter pair (s, t), the point $\mathbf{P}(s, t)$ is on the moving plane $\mathrm{L}(\mathrm{s}, \mathrm{t})$.

Moving planes and surfaces

- Let $\mathbf{L}_{s, t}$ be the set of moving planes which follow the rational surface $\mathbf{P}(s, t)$. Then $\mathbf{L}_{s, t}$ is exactly the syzygy module over $\mathbf{R}[\mathrm{s}, \mathrm{t}]$

$$
\begin{align*}
& \operatorname{Syz}(a, b, c, d):= \\
& \left\{(A, B, C, D) \in R[s, t]^{4} \mid a A+b B+c C+d D \equiv 0\right\} \tag{5}
\end{align*}
$$

Moving planes and surfaces

- A moving surface of degree l is a family of algebraic surfaces with parametric pairs (s, t):

$$
M(x, y, z, w ; s, t):=\sum_{i=1}^{\sigma} f_{i}(x, y, z, w) b_{i}(s, t)=0
$$

- $f_{i}(x, y, z, w), i=1, \ldots, \sigma$ are degree l homogeneous polynomials, $b_{\mathrm{i}}(s, t)$ are blending functions.

Moving planes and surfaces

- A moving surface is said to follow the rational surface $\mathrm{P}(\mathrm{s}, \mathrm{t})$ if

$$
M(a(s, t), b(s, t), c(s, t), d(s, t)) \equiv 0 .
$$

- The implicit equation $f(x, y, z)$ of the rational surface $\mathbf{P}(\mathrm{s}, \mathrm{t})$ is a moving surface.

Rational Ruled Surfaces

Rational ruled surfaces

- A bi-degree $(n, 1)$ tensor product rational surface

$$
\begin{equation*}
\mathbf{P}(s, t)=\mathbf{P}_{0}(s)+t \mathbf{P}_{1}(s) \tag{5}
\end{equation*}
$$

where $\mathbf{P}_{i}(s)=\left(a_{i}(s), b_{i}(s), c_{i}(s), d_{i}(s)\right), i=0,1$.

- Moving planes involving only the parameter s

$$
\begin{align*}
& \mathrm{L}(s):=\left\{(A, B, C, D) \in R[s]^{4} \mid\right. \\
&a A+b B+c C+d D \equiv 0\} \tag{6}
\end{align*}
$$

Rational ruled surfaces

- (6) is equivalent to

$$
\left(\begin{array}{llll}
a_{0}(s) & b_{0}(s) & c_{0}(s) & d_{0}(s) \tag{7}\\
a_{1}(s) & b_{1}(s) & c_{1}(s) & d_{1}(s)
\end{array}\right)\left(\begin{array}{l}
A(s) \\
B(s) \\
C(s) \\
D(s)
\end{array}\right) \equiv 0
$$

i.e.,

$$
\mathbf{L}(s)=S y z\left(\begin{array}{llll}
a_{0}(s) & b_{0}(s) & c_{0}(s) & d_{0}(s) \tag{8}\\
a_{1}(s) & b_{1}(s) & c_{1}(s) & d_{1}(s)
\end{array}\right)
$$

Rational ruled surfaces

- $\mathbf{L}(\mathrm{s})$ is a free module of dimension 2.
- Mu-bais: a basis $\mathbf{p}(\mathrm{s})$ and $\mathbf{q (s)}$ of the module $\mathbf{L}(\mathrm{s})$ with minimum degree.
- Write

$$
\begin{aligned}
& \mathbf{p}(s)=\left(p_{1}(s), p_{2}(s), p_{3}(s), p_{4}(s)\right) \\
& \mathbf{q}(s)=\left(q_{1}(s), q_{2}(s), q_{3}(s), q_{4}(s)\right)
\end{aligned}
$$

Rational ruled surfaces

- $\operatorname{deg}(\boldsymbol{p}(s))+\operatorname{deg}(\boldsymbol{q}(s))=m$, where m is the implicit degree of the rational ruled surface. Let $\operatorname{deg}(\boldsymbol{p}(s))=\mu$, then $\operatorname{deg}(\mathbf{q}(\mathrm{s}))=\mathrm{m}-\mu(\mu \leq[m / 2])$.
- The implicit equation of the ruled surface $\operatorname{Res}(\boldsymbol{p} \cdot \boldsymbol{X}, \boldsymbol{q} \cdot \boldsymbol{X} ; s)=0$, where $\boldsymbol{X}=(x, y, z, w)$. The implicit equation is a $(m-\mu) \times(m-\mu)$ determinant.

Rational ruled surfaces

- Example A rational ruled surface

$$
\mathbf{P}(s, t)=\mathbf{P}_{0}(s)+t \mathbf{P}_{1}(s)
$$

$$
\begin{aligned}
\mathbf{P}_{0}(s)= & \left(s^{3}+2 s^{2}-s+3,-3 s+3,-2 s^{2}-2 s+3,2 s^{2}+s+2\right) \\
\mathbf{P}_{1}(s)= & \left(2 s^{3}+2 s^{2}-3 s+7,2 s^{2}-5 s+5\right. \\
& \left.-6 s^{2}-8 s+4,5 s^{2}+4 s+5\right)
\end{aligned}
$$

The ruled surface has 2 base points.

Rational ruled surfaces

- A ти-basis:

$$
\mathbf{p}(s)=-5310 x s+\left(-4797 s+2947-2434 s^{2}\right) y+
$$

$$
\left(-2213 s^{2}+7553 s-2105\right) z+\left(-1263+6778 s+442 s^{2}\right) w
$$

$$
\mathbf{q}(s)=(-842 s+2434) x+(4017+741 s) y+
$$

$$
\left(-3217+421 s^{2}+2791 s\right) z+\left(842 s^{2}+2416 s-4851\right) w
$$

- The implicit equation $\operatorname{Res}(p, q ; s)=0$ is a 2 by 2 determinant.

Tensor product surfaces

- A bidegree (m, n) rational surface:

$$
\begin{equation*}
\mathrm{P}(s, t)=(a(s, t), b(s, t), c(s, t), d(s, t)) \tag{9}
\end{equation*}
$$

- Moving planes whose degree in parameter t is $n-1$:

$$
\begin{array}{r}
\mathbf{L}_{n-1}(s):=\left\{(A, B, C, D) \in \mathrm{R}_{n-1}[s, t]^{4}\right. \\
a A+b B+c C+d D \equiv 0\} \tag{10}
\end{array}
$$

Here $\mathrm{R}_{n-1}[s, t]$ refers to the set of polynomials whose degrees in t do not exceed $n-1$.

Tensor product surfaces

- Let

$$
\begin{gathered}
\mathrm{P}(s, t)=\mathrm{P}_{0}(s)+\mathrm{P}_{1}(s) t+\cdots+\mathrm{P}_{n}(s) t^{n} \\
\mathrm{~m}(s, t)=\mathrm{m}_{0}(s)+\mathrm{m}_{1}(s) t+\cdots+\mathrm{m}_{n-1}(s) t^{n-1} \in \mathrm{~L}_{\mathrm{n}-1}(s)
\end{gathered}
$$

where $\mathrm{P}_{i}(s), \mathrm{m}_{i}(s) \in \mathrm{R}[s]^{4}$

From $\mathrm{P}(s, t) \cdot \mathrm{m}(s, t) \equiv 0$, one has

Tensor product surfaces

$$
\left(\begin{array}{cccc}
\mathrm{P}_{0} & & & \tag{11}\\
\mathrm{P}_{1} & \mathrm{P}_{0} & & \\
\vdots & \mathrm{P}_{1} & \ddots & \\
\mathrm{P}_{n} & \vdots & & \mathrm{P}_{0} \\
& \mathrm{P}_{n} & & \mathrm{P}_{1} \\
& & \ddots & \vdots \\
& & & \mathrm{P}_{n}
\end{array}\right)_{2 n \times 4 n} \quad\left(\begin{array}{c}
\mathrm{m}^{T} \\
\mathrm{~m}_{1}^{T} \\
\vdots \\
\mathrm{~m}_{n-1}^{T}
\end{array}\right)=0
$$

Denote the coefficient matrix by M. Thus

$$
\mathbf{L}_{\mathrm{n}-1}(\mathrm{~s})=\operatorname{Syz}(\mathrm{M}) .
$$

Tensor product surfaces

- Theorem $1 \mathbf{L}_{\mathrm{n}-1}(s)$ is a free module over $\mathbf{R}[s]$ of dimension 2 n . (This was also obtained by Sederberg, Cox, et. al.).
- Definition 1 A basis of $\mathbf{L}_{\mathrm{n}-1}(s)$ with minimum degree is called a "mu-basis" of $\mathbf{L}_{\mathrm{n}-1}(\mathrm{~s})$. Denote it by

$$
\mathbf{m}_{1}(s, t), \mathbf{m}_{2}(s, t), \cdots, \mathbf{m}_{2 n}(s, t)
$$

Tensor product surfaces

- Problems

1. Determine the implicit degree m of the rational surface $\mathbf{P}(\mathrm{s}, \mathrm{t})$.
2. Determine the sum of the degree of the mu-basis,

$$
d=\sum_{i=1}^{2 n} \operatorname{deg}\left(\mathbf{m}_{i}\right)
$$

3. Determine the relationship between m and d.
4. Generate the implicit equation of $\mathbf{P}(s, t)$ from the mu-basis.

Bidegree (n,2) surfaces

- Mu-basis

$$
\begin{aligned}
& \mathbf{m}_{1}(s, t), \mathbf{m}_{2}(s, t), \mathbf{m}_{3}(s, t), \mathbf{m}_{4}(s, t) \\
& \mathrm{m}_{i}(s, t)=\mathrm{m}_{i 0}(s)+\mathrm{m}_{i 1}(s) t, \quad i=1,2,3,4
\end{aligned}
$$

The relations between d and the implicit degree m

$$
\begin{aligned}
& d=\sum_{i=1}^{2 n} \operatorname{deg}\left(\mathbf{m}_{i}\right) \\
& m=\text { implicit degree }
\end{aligned}
$$

The implicit degree

- Number of intersections of a generic line and the surface.
- Choose a generic line defined by two planes

$$
\begin{aligned}
& l_{0}=A_{0} x+B_{0} y+C_{0} z+D_{0} w=0 \\
& l_{1}=A_{1} x+B_{1} y+C_{1} z+D_{1} w=0
\end{aligned}
$$

The implicit degree

- Substitute the parametric equaiton of the surface into the equations of the generic lines, we can get

$$
\begin{aligned}
& f(s, t)=\mathbf{P}_{0} \cdot \mathbf{L}_{0}+\mathbf{P}_{1} \cdot \mathbf{L}_{0} t+\mathbf{P}_{2} \cdot \mathbf{L}_{0} t^{2}=0 \\
& g(s, t)=\mathbf{P}_{0} \cdot \mathbf{L}_{1}+\mathbf{P}_{1} \cdot \mathbf{L}_{1} t+\mathbf{P}_{2} \cdot \mathbf{L}_{1} t^{2}=0
\end{aligned}
$$

with

$$
\mathbf{L}_{0}=\left(A_{0}, B_{0}, C_{0}, D_{0}\right), \quad \mathbf{L}_{1}=\left(A_{1}, B_{1}, C_{1}, D_{1}\right)
$$

The implicit degree

$$
\operatorname{Sy} l(f, g ; t)=\left(\begin{array}{cccc}
\mathbf{P}_{0} \cdot \mathbf{L}_{0} & \mathbf{P}_{1} \cdot \mathbf{L}_{0} & \mathbf{P}_{2} \cdot \mathbf{L}_{0} & \\
& \mathbf{P}_{0} \cdot \mathbf{L}_{0} & \mathbf{P}_{1} \cdot \mathbf{L}_{0} & \mathbf{P}_{2} \cdot \mathbf{L}_{0} \\
\mathbf{P}_{0} \cdot \mathbf{L}_{1} & \mathbf{P}_{1} \cdot \mathbf{L}_{1} & \mathbf{P}_{2} \cdot \mathbf{L}_{1} & \\
& \mathbf{P}_{0} \cdot \mathbf{L}_{1} & \mathbf{P}_{1} \cdot \mathbf{L}_{1} & \mathbf{P}_{2} \cdot \mathbf{L}_{1}
\end{array}\right)
$$

The implicit degree

- Theorem 2 Consider all the order 4 minors formed by choosing two columns from the first four columns and two columns form the rest four columns of the matrix
$H:=\left(\begin{array}{cccccccc}a_{0} & b_{0} & c_{0} & d_{0} & 0 & 0 & 0 & 0 \\ a_{1} & b_{1} & c_{1} & d_{1} & a_{0} & b_{0} & c_{0} & d_{0} \\ a_{2} & b_{2} & c_{2} & d_{2} & a_{1} & b_{1} & c_{1} & d_{1} \\ 0 & 0 & 0 & 0 & a_{2} & b_{2} & c_{2} & d_{2}\end{array}\right)$

The implicit degree

- Theorem 2 (continued)

Let g be the gcd of the minors, then the implicit degree of the rational surface $\mathbf{P}(\mathrm{s}, \mathrm{t})$ is

$$
\begin{equation*}
m=4 n-\operatorname{deg}(g) \tag{13}
\end{equation*}
$$

Degree sum of the mu-basis

- Theorem 3 Consider all the 4×4 minors of

$$
H=\left(\begin{array}{cccccccc}
a_{0} & b_{0} & c_{0} & d_{0} & 0 & 0 & 0 & 0 \\
a_{1} & b_{1} & c_{1} & d_{1} & a_{0} & b_{0} & c_{0} & d_{0} \\
a_{2} & b_{2} & c_{2} & d_{2} & a_{1} & b_{1} & c_{1} & d_{1} \\
0 & 0 & 0 & 0 & a_{2} & b_{2} & c_{2} & d_{2}
\end{array}\right)
$$

Let g^{\prime} be the gcd of all the 4 by 4 minors, then

$$
\begin{equation*}
\mathrm{d}=4 \mathrm{n}-\operatorname{deg}\left(\mathrm{g}^{\prime}\right) \tag{14}
\end{equation*}
$$

Degree sum of the mu-basis

- Obviously we have

$$
d \geq m
$$

and the equality holds if and only if $g=g^{\prime}$.

Example 1

- A $(2,2)$ tensor product rational surface without base point
$\mathbf{P}(\mathrm{s}, \mathrm{t})=\left(13+6 t+4 t^{2}+s+11 s t+8 s t^{2}+10 s^{2}+2 s^{2} t+12 s^{2} t^{2}\right.$, $(s+t)(10 s+t-3), \quad(s+t)(1-s+4 t)$, $\left.13+12 t+11 t^{2}+10 s+4 s t+9 s t^{2}+13 s^{2}+10 s^{2} t+11 s^{2} t^{2}\right)$
- $d=1+2+2+3=8$
- m=8

Newton Polygon

Example 2

- A $(2,2)$ tensor product rational surface with one 2×2 base point at the origin

$$
\mathbf{P}(\mathrm{s}, \mathrm{t})=\left(4 t^{2}+8 s t^{2}+10 s^{2}+2 s^{2} t+12 s^{2} t^{2}, 6 t^{2}+11 s t^{2}+13 s^{2}+11 s^{2} t+9 s^{2} t^{2}\right.
$$

$$
\left.5 t^{2}+3 s t^{2}+12 s^{2}+8 s^{2} t+13 s^{2} t^{2}, 11 t^{2}+9 s t^{2}+13 s^{2}+10 s^{2} t+11 s^{2} t^{2}\right)
$$

- $d=1+1+1+1=4$
- $\mathrm{m}=\mathrm{d}=4$

Newton Polygon

Example 3

- A $(2,2)$ tensor product rational surface with one 2-ple base point at the origin

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}, \mathrm{t})= & \left(8 t^{2}+9 s t+10 s t^{2}+7 s^{2}+5 s^{2} t+3 s^{2} t^{2}, \quad 5 t^{2}+10 s t+9 s t^{2}+7 s^{2}+3 s^{2} t+s^{2} t^{2},\right. \\
& \left.10 t^{2}+2 s t+s t^{2}+3 s^{2}+8 s^{2} t+s^{2} t^{2}, \quad 2 t^{2}+8 s t+6 s t^{2}+3 s^{2}+10 s^{2} t+3 s^{2} t^{2}\right)
\end{aligned}
$$

- $d=1+1+1+2=5$
- m=4

Newton Polygon

Example 4

- A $(4,2)$ tensor product rational surface with a complicated base point

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}, \mathrm{t})= & \left(11 t^{2}+19 s t^{2}+28 s^{2} t+14 s^{2} t^{2}+15 s^{3} t+13 s^{3} t^{2}+2 s^{4}+14 s^{4} t+18 s^{4} t^{2},\right. \\
& 3 t^{2}+23 s t^{2}+13 s^{2} t+7 s^{2} t^{2}+6 s^{3} t^{2}+13 s^{4}+18 s^{4} t+7 s^{4} t^{2}, \\
& 5 t^{2}+10 s t^{2}+17 s^{2} t+9 s^{2} t^{2}+5 s^{3} t+27 s^{3} t^{2}+28 s^{4}+20 s^{4} t+25 s^{4} t^{2}, \\
& \left.4 t^{2}+18 s t^{2}+26 s^{2} t+13 s^{2} t^{2}+12 s^{3} t+6 s^{3} t^{2}+14 s^{4}+11 s^{4} t+2 s^{4} t^{2}\right)
\end{aligned}
$$

- $d=2+2+3+3=10$
- $\mathrm{m}=8$

Example 5

- A $(2,2)$ tensor product rational surface with two base points

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}, \mathrm{t})= & \left(28+26 s+28 s^{2}+14 s^{2} t^{2}, 22+16 s+13 s^{2} t+7 s^{2} t^{2},\right. \\
& \left.14+7 s+17 s^{2} t+9 s^{2} t^{2}, 25+4 s+26 s^{2} t+13 s^{2} t^{2}\right)
\end{aligned}
$$

- $d=0+1+1+1=3$
- $\mathrm{m}=3$

Newton Polygon

Relationship between m and d

Base point cases

no base point
$k \times l$ base point

$$
d=m
$$

Simple base points
$d=m$
k-ple base point(or more complicated)

Relations

$$
d=m
$$

$$
d=m
$$

$d>m$

Relationship between m and d

- Questions:

1. What's the relationship between d, m and the Newton polygon of base points?
2. When does $\mathrm{d}=\mathrm{m}$?
3. What is the relationship between d and m for complicated base points?

Using moving planes

- Let the mu-basis be

$$
\mathbf{m}_{1}(s, t), \mathbf{m}_{2}(s, t), \mathbf{m}_{3}(s, t), \mathbf{m}_{4}(s, t)
$$

- Let
$\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=$
$\left(\mathbf{m}_{1}(s, t) \cdot \mathbf{X}, \mathbf{m}_{2}(s, t) \cdot \mathbf{X}, \mathbf{m}_{3}(s, t) \cdot \mathbf{X}, \mathbf{m}_{4}(s, t) \cdot \mathbf{X}\right)$ with $\mathbf{X}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, 1)$.

Using moving planes

Then

$$
\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{1} s^{l-d_{1}} \\
\vdots \\
m_{4} \\
\vdots \\
m_{4} s^{l-d_{4}}
\end{array}\right)=G \cdot\left(\begin{array}{c}
1 \\
\vdots \\
s^{l} \\
t \\
\vdots \\
t s^{l}
\end{array}\right)
$$

Using moving planes

- G has a size $(41+4-d) \times(21+2)$. If

$$
41+4-d=21+2=m
$$

i.e., $m=d=21+2$ is even, then

$$
f(x, y, z)=\operatorname{det}(G)
$$

would be a good candidate for the implicit equation.

Using moving planes

- In general, we choose 1 such that

$$
41+4-d \geqq m, \quad 21+2 \geqq m
$$

Let

$$
l=\left\lceil\frac{m+d}{4}\right\rceil-1
$$

Then the maximum minor of matrix G would be a candidate for the implicit equation, but it may contain an extraneous factor.

Example 6 (implicitization)

- A $(2,2)$ tensor product rational surface without base point

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}, \mathrm{t})= & \left(15+12 t+17 t^{2}+18 s t+14 s t^{2}+16 s^{2}+14 s^{2} t+14 s^{2} t^{2}\right. \\
& 13+4 t+8 t^{2}+15 s t+12 s t^{2}+s^{2}+7 s^{2} t+15 s^{2} t^{2} \\
& 6+6 t+5 t^{2}+8 s t+9 s t^{2}+6 s^{2}+7 s^{2} t+15 s^{2} t^{2} \\
& \left.2+5 t+2 t^{2}+10 s t+13 s t^{2}+13 s^{2}+3 s^{2} t+19 s^{2} t^{2}\right)
\end{aligned}
$$

- $d=8, m=8$. The basis $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ has a monomial support ($1, s, s^{2}, t, t s, t s^{2}$)

- $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\operatorname{det}(\mathrm{G})$ is the implicit equation.

Example 7 (implicitization)

- A $(2,2)$ tensor product rational surface with a 2-ple base point

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}, \mathrm{t})= & \left(8 t^{2}+9 s t+10 s t^{2}+7 s^{2}+5 s^{2} t+3 s^{2} t^{2},\right. \\
& 5 t^{2}+10 s t+9 s t^{2}+7 s^{2}+3 s^{2} t+s^{2} t^{2} \\
& 10 t^{2}+2 s t+s t^{2}+3 s^{2}+8 s^{2} t+s^{2} t^{2} \\
& \left.2 t^{2}+8 s t+6 s t^{2}+3 s^{2}+10 s^{2} t+3 s^{2} t^{2}\right)
\end{aligned}
$$

Example 7 (implicitization)

- $d=1+1+1+2=5, \mathrm{~m}=4, \mathrm{l}=2$. The basis has a monomial support ($1, s, s^{2}, t, t s, t s^{2}$)
- $\left(m_{1}, m_{2}, m_{3}, m_{4}, s m_{1}, s m_{2}\right)=\left(1, s, s^{2}, t, t s, t s^{2}\right) \cdot G_{6 \times 6}$
- Each element in the first column is just a constant multiple of each other. Thus

Example 7 (implicitization)

$$
G \sim\left(\begin{array}{ll}
e & * \\
0 & \mathrm{G}_{1}
\end{array}\right)
$$

- G_{1} is a 5 by 5 matrix. $\operatorname{det}\left(\mathrm{G}_{1}\right)=\mathrm{h} f(\mathrm{x}, \mathrm{y}, \mathrm{z})$, where $f(x, y, z)$ is the implicit equation, h is a linear extraneous factor .

- Questions

1. When $d=m$ is even, does $\operatorname{det}(\mathrm{G})$ always give the implicit equation (i.e., $\operatorname{det}(\mathrm{G})$ doesn't vanish)?
2. When $d>m$ or $d=m$ is not even, under what conditions, the maximum minor of $\operatorname{det}(\mathrm{G})$ gives the implicit equation (without extraneous factor)?
3. If the maximum minor contains an extraneous factor, can we know it in advance?

Using moving quadrics

- $\quad\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=$ $\left(\mathbf{m}_{1}(s, t) \cdot \mathbf{X}, \mathbf{m}_{2}(s, t) \cdot \mathbf{X}, \mathbf{m}_{3}(s, t) \cdot \mathbf{X}, \mathbf{m}_{4}(s, t) \cdot \mathbf{X}\right)$
- Write

$$
\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right)=\sum_{i=0}^{\sigma}\left(\mathbf{M}_{\mathrm{t}, i}(x, y, z) t+\mathbf{M}_{, i}(x, y, z)\right) s^{i}
$$

Using moving quadrics

- Find the blending functions

$$
\mathbf{B}(x, y, z)=\left(B_{0}(x, y, z), B_{1}(x, y, z), B_{2}(x, y, z), B_{3}(x, y, z)\right)
$$ with total degree one in $\mathrm{x}, \mathrm{y}, \mathrm{z}$, such that

$$
\begin{aligned}
& \mathbf{B}(x, y, z) \cdot \mathbf{M}_{0, \delta}(x, y, z) \equiv 0 \\
& \mathbf{B}(x, y, z) \cdot \mathbf{M}_{1, \delta}(x, y, z) \equiv 0
\end{aligned}
$$

Using moving quadrics

Then

$$
\mathbf{B}(x, y, z) \cdot\left(m_{1}, m_{2}, m_{3}, m_{4}\right)^{T}=\sum_{i=1}^{\delta-1} Q(x, y, z, t) s^{i}
$$

will generate moving quadrics whose degree in s is at most $\sigma-1$ and degree one in t.

Using moving quadrics

- In general, we can use blending functions

$$
\mathbf{B}(x, y, z, s)=\sum_{j=0}^{k} \mathbf{B}_{j}(x, y, z) s^{j}
$$

to generate more moving quadrics, where
$\mathbf{B}_{\mathrm{j}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ has degree on in $\mathrm{x}, \mathrm{y}, \mathrm{z}$:

$$
\mathbf{B}(x, y, z, s) \cdot\left(m_{1}, m_{2}, m_{3}, m_{4}\right)^{T}=\sum_{i=1}^{\delta-1} Q(x, y, z, t) s^{i}
$$

Example 8 (implicitization)

- A $(2,2)$ tensor product rational surface without base point

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}, \mathrm{t})= & \left(15+12 t+17 t^{2}+18 s t+14 s t^{2}+16 s^{2}+14 s^{2} t+14 s^{2} t^{2}\right. \\
& 13+4 t+8 t^{2}+15 s t+12 s t^{2}+s^{2}+7 s^{2} t+15 s^{2} t^{2} \\
& 6+6 t+5 t^{2}+8 s t+9 s t^{2}+6 s^{2}+7 s^{2} t+15 s^{2} t^{2} \\
& \left.2+5 t+2 t^{2}+10 s t+13 s t^{2}+13 s^{2}+3 s^{2} t+19 s^{2} t^{2}\right)
\end{aligned}
$$

- $d=2+2+2+2=8, m=8$. The basis has support

$$
\left(1, s, s^{2}, t, t s, t s^{2}\right)
$$

Example 8 (continued)

- Using blending function

$$
\mathbf{B}(x, y, z ; s)=\sum_{j=0}^{1} \mathbf{B}_{j}(x, y, z) s^{j}
$$

We can get four moving quadrics with support monomial ($1, s, t, t s$), then

$$
\left(m q_{1}, m q_{2}, m q_{3}, m q_{4}\right)=(1, s, t, t s) \cdot \mathrm{G}_{4 \times 4}
$$

- $f(x, y, z)=\operatorname{det}(G)$ gives the implicit equation.

Example 9 (implicitization)

- A $(2,2)$ tensor product rational surface with a 2-ple base point

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}, \mathrm{t})= & \left(8 t^{2}+9 s t+10 s t^{2}+7 s^{2}+5 s^{2} t+3 s^{2} t^{2},\right. \\
& 5 t^{2}+10 s t+9 s t^{2}+7 s^{2}+3 s^{2} t+s^{2} t^{2}, \\
& 10 t^{2}+2 s t+s t^{2}+3 s^{2}+8 s^{2} t+s^{2} t^{2}, \\
& \left.2 t^{2}+8 s t+6 s t^{2}+3 s^{2}+10 s^{2} t+3 s^{2} t^{2}\right)
\end{aligned}
$$

- $d=1+1+1+2=5, \mathrm{~m}=4$. The basis has a support

$$
\left(1, s, s^{2}, t, t s, t s^{2}\right)
$$

Example 9 (continued)

- Using blending function

$$
\mathbf{B}(x, y, z ; s)=\sum_{j=0}^{2} \mathbf{B}_{j}(x, y, z) s^{j}
$$

we can get a moving quadrics with support ($1, s, t, t s$).

- Choose three moving planes and one moving quadric, we can get

$$
\left(m p_{1}, m p_{2}, m p_{3}, m q_{4}\right)=(1, s, t, t s) \cdot \mathrm{G}_{4 \times 4}
$$

Example 9 (continued)

- The first row of the matrix G has the following property:

$$
\begin{aligned}
& g_{12}=c_{1} \cdot g_{11} \\
& g_{13}=c_{2} \cdot g_{11} \\
& g_{14}=l(x, y, z) \cdot g_{11}
\end{aligned}
$$

where $G=\left(g_{i j}\right)$, and I is linear in x, y, z.

Example 9 (continued)

- Thus

$$
G \sim\left(\begin{array}{cc}
e & 0 \\
* & \mathrm{G}_{1}
\end{array}\right)
$$

G_{1} is a 3 by 3 matrix with two linear rows and one quadratic rows.

- $\operatorname{Det}\left(\mathrm{G}_{1}\right)$ is the correct implicit equation.

Example 10 (implicitization)

- A $(2,2)$ tensor product rational surface without base point

$$
\begin{aligned}
& \mathbf{P}(\mathrm{s}, \mathrm{t})=\left(13+6 t+4 t^{2}+s+11 s t+8 s t^{2}+10 s^{2}\right. \\
&+2 s^{2} t+12 s^{2} t^{2},(s+t)(10 s+t-3) \\
&(s+t)(1-s+4 t), 13+12 t+11 t^{2}+ \\
&\left.10 s+4 s t+9 s t^{2}+13 s^{2}+10 s^{2} t+11 s^{2} t^{2}\right) \\
&=d=1+2+2+3=8, \mathrm{~m}=8
\end{aligned}
$$

Example 10 (implicitization)

- Then

$$
\begin{aligned}
& \left(m p_{1}, m p_{2}, m p_{3}, m p_{4}, m q_{1}, m q_{2}\right)= \\
& \left(1, s, s^{2}, t, t s, t s^{2}\right) G_{6 \times 6}
\end{aligned}
$$

- $\operatorname{Det}(\mathrm{G})$ is the implict equation.

Newton Polygon for moving planes and quadrics

Example 10 (implicitization)

- Another expression

$$
\left(m p_{1}, m q_{1}, m q_{2}, m c_{1}\right)=(1, s, t, s t) G_{4 \times 4}
$$

- $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\operatorname{det}(\mathrm{G})$.

Newton Polygon for moving planes (quadrics, cubic)

- Questions:
- Can we always generate right number of moving planes and moving quadrics to form a square matrix with right degree?
- Prove the determinant doesn't vanish.

Surfaces of Revolution

- Let

$$
C(s)=\left(\frac{y(s)}{w(s)}, \frac{z(s)}{w(s)}\right)
$$

be a parametrization of the curve C in yz-plane. The roation of C around the z-axis results in a surface of revolution with parametrization
$\mathbf{P}(s, t)=\left(y(s)\left(1-t^{2}\right), y(s) 2 t, z(s)\left(1+t^{2}\right), w(s)\left(1+t^{2}\right)\right)$

Surfaces of Revolution

- Surface of revolution is a bidegree $(n, 2)$ tensor product surface. Let

$$
\begin{aligned}
& \mathbf{p}(s)=\left(p_{1}(s), p_{2}(s), p_{3}(s)\right) \\
& \mathbf{q}(s)=\left(q_{1}(s), q_{2}(s), q_{3}(s)\right)
\end{aligned}
$$

be a mu-basis of the planar curve C(s). Assume $\operatorname{deg}(\mathbf{p})=\mu$, then $\operatorname{deg}(\mathbf{q})=\mathrm{n}-\mu$.

Surfaces of Revolution

- Then

$$
\begin{aligned}
& \mathbf{m}_{1}(s, t)=\left(p_{1}(s), p_{1}(s) t, p_{2}(s), p_{3}(s)\right) \\
& \mathbf{m}_{2}(s, t)=\left(-p_{1}(s) t, p_{1}(s), p_{2}(s) t, p_{3}(s) t\right) \\
& \mathbf{m}_{3}(s, t)=\left(q_{1}(s), q_{1}(s) t, q_{2}(s), q_{3}(s)\right) \\
& \mathbf{m}_{4}(s, t)=\left(-q_{1}(s) t, q_{1}(s), q_{2}(s) t, q_{3}(s) t\right)
\end{aligned}
$$

is a mu-basis of the surface of revolution.

- $d=\mu+\mu+(n-\mu)+(n-\mu)=2 n, m=2 n$.

Surfaces of Revolution

- Using moving planes, the implicit equation can be written as a 2 n by 2 n determinant.

$$
\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{1} s^{n-\mu-1} \\
\vdots \\
m_{4} \\
\vdots \\
m_{4} s^{\mu-1}
\end{array}\right)=G_{2 n \times 2 n}\left(\begin{array}{c}
1 \\
s \\
\vdots \\
s^{n-1} \\
t \\
\vdots \\
t s^{n-1}
\end{array}\right)
$$

Surfaces of Revolution

- Using moving planes and moving quadrics

$$
\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right)=\left(\begin{array}{c}
y p_{1} \\
y q_{1} \\
-x p_{1}+z p_{2}+p_{3} \\
-x q_{1}+z q_{2}+q_{3}
\end{array}\right) t+\left(\begin{array}{c}
x p_{1}+z p_{2}+p_{3} \\
x q_{1}+z q_{2}+q_{3} \\
y p_{1} \\
y q_{1}
\end{array}\right)
$$

- Use blending functions to eliminate the highest degree terms in s (degree $n-\mu$).

Surfaces of Revolution

- We use m_{2} and m_{4} to generate $n-\mu$ moving quadrics of degree $n-\mu-1$ in s, and use m_{1} and m_{3} to generate μ moving quadrics of degree $\mu-1$ in s. Finally, we get $2 n-2 \mu$ moving quadrics.
- We can also generate $2 \mathrm{n}-4 \mu$ moving planes:

$$
\begin{aligned}
& m_{1}, m_{1} s, \cdots, m_{1} s^{n-2 \mu-1} \\
& m_{3}, m_{3} s, \cdots, m_{3} s^{n-2 \mu-1}
\end{aligned}
$$

Surfaces of Revolution

- Finally, we have

$$
\left(\begin{array}{c}
m p_{1} \\
\vdots \\
m p_{2 n-4 \mu} \\
m q_{1} \\
\vdots \\
m q_{2 \mu}
\end{array}\right)=G_{(2 n-2 \mu) \times(2 n-2 \mu)}\left(\begin{array}{c}
1 \\
s \\
\vdots \\
s^{n-\mu-1} \\
\vdots \\
t s^{n-\mu-1}
\end{array}\right)
$$

Example 12 (Torus)

- The torus

$$
\begin{aligned}
& \mathbf{P}(s, t)=\left(\left(3+s^{2}\right)\left(1-t^{2}\right),\left(3+s^{2}\right) \cdot 2 t,\right. \\
& \left.\left(3+2 s+3 s^{2}\right)\left(1+t^{2}\right),\left(1+s^{2}\right)\left(1+t^{2}\right)\right)
\end{aligned}
$$

- $\mathrm{m}=\mathrm{d}=1+1+1+1=4$. Using moving planes with monomial support ($1, \mathrm{~s}, \mathrm{t}, \mathrm{ts}$), the implicit equation can be written as a determinant of order 4.

Example 12 (Torus)

- We can also implicitize the torus using two moving quadrics with support $(1, s)$. Therefore the implicit equation can be also written as the determinant of a 2×2 matrix.

Example 13

- The planar curve in $y z$-plane

$$
\begin{aligned}
& y(t)=\frac{1-2 s-2 s^{2}+5 s^{3}}{11+s-s^{2}+3 s^{3}} \\
& z(s)=\frac{6 s^{2}+2 s+1+2 s^{3}}{11+s-s^{2}+3 s^{3}}
\end{aligned}
$$

The corresponding surface of revolution is a $(3,2)$ tensor product rational surface.

Example 13

- $\mathrm{m}=\mathrm{d}=1+1+2+2=6$, so the implicit equation can be written as 6 by 6 determinant.
- The implicit equation can also be derived from two moving planes and two moving quadrics with support ($1, s, t, t s$), which is a 4 by 4 determinant.
- we can also get 3 moving quadrics with support $\left(1, s, s^{2}\right)$, therefore the implicit equation can also be expressed as a 3 by 3 determinant.
- Questions:

Prove that the determinants formed by moving planes and moving quadrics do not vanish.

Example 10 (implicitization)

- A $(2,2)$ tensor product rational surface without base point

$$
\begin{aligned}
\mathbf{P}(\mathrm{s}, \mathrm{t})= & ((s+t+11)(1-s+4 t),(s+t)(10 s+t-3), \\
& (s+t)(1-s+4 t), 13+12 t+11 t^{2}+10 s+4 s t \\
& \left.+9 s t^{2}+13 s^{2}+10 s^{2} t+11 s^{2} t^{2}\right)
\end{aligned}
$$

- $d=1+1+3+3=8, \mathrm{~m}=8$.
- We cannot get enough moving planes and moving quadrics (even cubic) for implicitization with support:

$$
(1, s, t, t s)
$$

Newton Polygon for moving planes (quadrics, cubic)

- However, under the support $\left(1, s, s^{2}, t, t s, t s^{2}\right)$, we can get four moving planes and two moving quadrics, from which we can get the implicit result.

Newton Polygon for moving planes and quadrics

Example 14

- The planar circle in $y z$-plarie

$$
\begin{aligned}
& y(t)=\frac{(1+s)\left(1-2 s-2 s^{2}+5 s^{3}\right)}{11+s-s^{2}+3 s^{3}-s^{4}} \\
& z(s)=\frac{(1+s)\left(6 s^{2}+2 s+1\right)}{11+s-s^{2}+3 s^{3}-s^{4}}
\end{aligned}
$$

This is a $(4,2)$ tensor product rational surface. We can get

$$
d=2+2+2+2=8=\text { implicit degree. }
$$

- From the basis with minimal degree summation, we can also get 4 moving

- From the basis with minimal degree summation, we can also get 3 moving quadrics with support ($1, s, s^{2}$) using blending function $\leqslant x, y, z ; s)=\sum_{j=0} \mathbf{B}_{j}(x, y, z) s^{j}$
where $\operatorname{tdeg}(\mathrm{B}(x, y, z, s))_{x, y, z}=1$. Therefore, the implicit result can
be derived from the determinant of a 4×4 matrix.

