Factorization of multivariate lacunary polynomials.

Martin Avendaño.

Universidad de Buenos Aires.

Joint work with Teresa Krick and Martin Sombra.

1. Factorization of dense polynomials.

$$f = \sum_{|i| \le d} \frac{a_i}{b_i} x_1^{i_1} \cdots x_n^{i_n} \in \mathbb{Q}[x_1, \dots, x_n] \quad \text{with } a_i \in \mathbb{Z}, b_i \in \mathbb{N} \text{ and } \gcd(a_i, b_i) = 1$$

It is possible to compute the complete factorization of f in $\mathbb{Q}[x_1, \ldots, x_n]$ in

$$\underline{n=1:} \quad O\left(d^{15}\log^3 H_1(f)\right)$$

$$\underline{n > 1:} \quad \left(\binom{d+n}{n} \log H_1(f) \right)^{O(1)}$$

bit operations, where $d = \deg(f)$ and $H_1(f) = \frac{\gcd(\{b_i : |i| \le d\})}{\gcd(\{a_i : |i| \le d\})} ||f||_1$.

2. Integer roots of a lacunary polynomial $f \in \mathbb{Z}[x]$.

Example:

$$f = -18 - 3x + 3x^{2} + 27x^{9} - x^{12} + 6x^{2007} - 20x^{2008} + 6x^{2009}$$
$$H_{1}(f) = ||f||_{1} = 84 \quad \log_{2} ||f||_{1} \approx 6.392317$$
$$f = (-18 - 3x + 3x^{2}) + x^{9}(27 - x^{3}) + x^{2007}(6 - 20x + 6x^{2})$$
only common root of $-18 - 3x + 3x^{2}$, $27 - x^{3}$ and $6 - 20x + 6x^{2}$ is 3.

The only common root of $-18 - 3x + 3x^2$, $27 - x^3$ and $6 - 20x + 6x^2$ is 3. Note that also 1 is a root of f. 2. Integer roots of a lacunary polynomial $f \in \mathbb{Z}[x]$.

Example:

$$f = -18 - 3x + 3x^{2} + 27x^{9} - x^{12} + 6x^{2007} - 20x^{2008} + 6x^{2009}$$
$$H_{1}(f) = ||f||_{1} = 84 \quad \log_{2} ||f||_{1} \approx 6.392317$$
$$f = (-18 - 3x + 3x^{2}) + x^{9}(27 - x^{3}) + x^{2007}(6 - 20x + 6x^{2})$$
$$\text{mby common root of } -18 - 3x + 3x^{2} - 27 - x^{3} \text{ and } 6 - 20x + 6x^{2} \text{ is } 3$$

The only common root of $-18 - 3x + 3x^2$, $27 - x^3$ and $6 - 20x + 6x^2$ is 3. Note that also 1 is a root of f.

Thm: Let $f = g + x^{\beta}h \in \mathbb{Z}[x]$ with $\deg(g) = \alpha < \beta$. If $\beta - \alpha > \log_2 ||f||_1$ and $r \in \mathbb{Z} - \{0, 1, -1\}$ then

$$f(r) = 0 \quad \Leftrightarrow \quad g(r) = h(r) = 0.$$

3. The proof.

Thm: Let $f = g + x^{\beta}h \in \mathbb{Z}[x]$ with $\deg(g) = \alpha < \beta$. If $\beta - \alpha > \log_2 ||f||$ and $r \in \mathbb{Z} - \{0, 1, -1\}$ then

$$f(r) = 0 \quad \Leftrightarrow \quad g(r) = h(r) = 0.$$

Proof: Suppose that f(r) = 0 and $h(r) \neq 0$. Then

 $r^{\beta}h(r) = -g(r) \qquad \Rightarrow \ |r|^{\beta} \leq |r|^{\beta}|h(r)| = |g(r)| \leq |r|^{\alpha}||f||_{1}$ $\Rightarrow \ 2^{\beta-\alpha} \leq |r|^{\beta-\alpha} \leq ||f||_{1} \qquad \Rightarrow \ \beta-\alpha \leq \log_{2}||f||_{1}.$

4. How to control denominators?

p-adic absolute values: Let $p \in \mathbb{N}$ be a prime number. For every non-zero rational number $x = p^k \frac{a}{b}$ with $k \in \mathbb{Z}$, $p \nmid a$ and $p \nmid b$, we define

$$|x|_p = \frac{1}{p^k}$$

Ultrametric: $|x + y|_p \le \max\{|x|_p, |y|_p\}$ for all $x, y \in \mathbb{Q}$ and $p \in \mathbb{N}$ prime.

Product formula: Let $x \in \mathbb{Q} - \{0\}$. Then $|x| \cdot \prod_{p \text{ prime}} |x|_p = 1$.

Heights: Let $x \in \mathbb{Q}$. Then

$$H(x) = \max\{1, |x|\} \cdot \prod_{p} \max\{1, |x|_{p}\} = \max\{|a|, b\},$$

where $x = \frac{a}{b}$ with $a \in \mathbb{Z}$, $b \in \mathbb{N}$ and $gcd(a, b) = 1$.

5. Rational roots of a lacunary polynomial $f \in \mathbb{Q}[x]$.

Thm: Let $f = g + x^{\beta}h \in \mathbb{Q}[x]$ with $\deg(g) = \alpha < \beta$. If $r \in \mathbb{Q} - \{0, 1, -1\}$ and $\beta - \alpha > \log_2 H_1(f)$,

then f(r) = 0 if and only if g(r) = h(r) = 0.

5. Rational roots of a lacunary polynomial $f \in \mathbb{Q}[x]$.

Thm: Let
$$f = g + x^{\beta}h \in \mathbb{Q}[x]$$
 with $\deg(g) = \alpha < \beta$. If $r \in \mathbb{Q} - \{0, 1, -1\}$ and
 $\beta - \alpha > \log_2 H_1(f)$,
then $f(r) = 0$ if and only if $g(r) = h(r) = 0$.

Proof: WLoG $f \in \mathbb{Z}[x]$ primitive. Let $r \in \mathbb{Q} - \{0, 1, -1\}$ such that f(r) = 0and $h(r) \neq 0$. For the standard and *p*-adic absolute values, we have $\max\{1, |r|_p\}^{\beta - \alpha} |h(r)|_p \leq 1$

$$\max\{1, |r|\}^{\beta - \alpha} |h(r)| \leq ||f||_1 = H_1(f).$$

Using the product formula, we get:

$$H(r)^{\beta-\alpha} \leqslant H_1(f).$$

This implies $2^{\beta-\alpha} \leq H_1(f)$ and $\beta - \alpha \leq \log_2 H_1(f)$.

6. Small degree factors of a lacunary polynomial $f \in \mathbb{Q}[x]$.

Thm: Let $f = g + x^{\beta}h \in \mathbb{Q}[x]$ with $\deg(g) = \alpha < \beta$. If $q \in \mathbb{Q}[x]$ is an irreducible polynomial with degree bounded by s, with a root that is not 0 or a root of the unity, and

$$\beta - \alpha > \frac{s \cdot \log_2^3(3s) \cdot \log_2(H_1(f))}{2},$$

then q|f if and only if q|g and q|h.

6. Small degree factors of a lacunary polynomial $f \in \mathbb{Q}[x]$.

Thm: Let $f = g + x^{\beta}h \in \mathbb{Q}[x]$ with $\deg(g) = \alpha < \beta$. If $q \in \mathbb{Q}[x]$ is an irreducible polynomial with degree bounded by s, with a root that is not 0 or a root of the unity, and

$$\beta - \alpha > \frac{s \cdot \log_2^3(3s) \cdot \log_2(H_1(f))}{2},$$

then q|f if and only if q|g and q|h.

Algorithm: It is possible to compute all the irreducible factors with degree bounded by s of a lacunary polynomial $f \in \mathbb{Q}[x]$ with t terms in

 $(s \cdot t \cdot \log(\deg f) \cdot \log H_1(f))^{O(1)}$ bit operations.

7. The multivariate case.

Thm: Let $f, g, h \in \mathbb{Q}[\underline{x}, y]$ such that $f = g + y^{\beta}h$ and set $\alpha = \deg_y(g)$. Let $p \in \mathbb{Q}[\underline{x}, y]$ be an irreducible polynomial of degree bounded by s which is not "cyclotomic". If

$$\beta - \alpha > 10^4 \cdot s \cdot n^4 \cdot \log_2(H_1(f)) \cdot \frac{\log^3(n \max\{s, 16\})}{\log^3(n \log(n \max\{s, 16\}))},$$

then p|f if and only if p|g and p|h.

7. The multivariate case.

Thm: Let $f, g, h \in \mathbb{Q}[\underline{x}, y]$ such that $f = g + y^{\beta}h$ and set $\alpha = \deg_y(g)$. Let $p \in \mathbb{Q}[\underline{x}, y]$ be an irreducible polynomial of degree bounded by s which is not "cyclotomic". If

$$\beta - \alpha > 10^4 \cdot s \cdot n^4 \cdot \log_2(H_1(f)) \cdot \frac{\log^3(n \max\{s, 16\})}{\log^3(n \log(n \max\{s, 16\}))},$$

then p|f if and only if p|g and p|h.

Thm: Let $f, g, h \in \mathbb{Q}[\underline{x}, y]$ such that $f = g + y^{\beta}h$ and set $\alpha = \deg_y(g)$. Let $p \in \overline{\mathbb{Q}}[\underline{x}, y]$ be an irreducible polynomial of degree bounded by s with at least three terms. If

$$\beta - \alpha > 10^{14} \cdot s \cdot n^{14} \cdot \log_2(H_1(f)) \cdot \frac{\log^5(\max\{ns, 16\})}{\log^4(n\log(\max\{ns, 16\}))},$$

then p|f if and only if p|g and p|h.

8. The tools for the proof I.

Heights of algebraic numbers: Let $r_1 \in \overline{\mathbb{Q}}$. Let $p = a(x-r_1) \cdots (x-r_d) \in \mathbb{Z}[x]$ be the primitive minimal polynomial of r. Then

$$H(r) = \left[|a| \prod_{i=1}^{d} \max\{1, |r_i|\} \right]^{1/d}$$

8. The tools for the proof I.

Heights of algebraic numbers: Let $r_1 \in \overline{\mathbb{Q}}$. Let $p = a(x-r_1) \cdots (x-r_d) \in \mathbb{Z}[x]$ be the primitive minimal polynomial of r. Then

. . .

$$H(r) = \left[|a| \prod_{i=1}^{d} \max\{1, |r_i|\} \right]^{1/d}.$$

Example: Let $p \ge 5$ be a prime number. Let $\xi_p = \cos(\frac{2\pi}{p}) + i\sin(\frac{2\pi}{p})$ be a primitive *p*-th root of the unity. Then

$$H(1+\xi_p) = \left[\prod_{i=1}^{p-1} \max\{1, |1+\xi_p^i|\}\right]^{1/(p-1)} \ge \sqrt{2}^{(p-3)/(2p-2)} \ge 2^{1/8}.$$

9. The tools for the proof II.

GAP Thm: Let $f = f_1 + x_n^{\beta} f_2 \in \overline{\mathbb{Q}}[x_1, \dots, x_n]$ with $\deg_{x_n}(f_1) = \alpha < \beta$. Let $\eta \in \overline{\mathbb{Q}}$ and let ξ_1, \dots, ξ_{n-1} be roots of the unity such that $f(\xi_1, \dots, \xi_{n-1}, \eta) = 0$. If

$$\beta - \alpha > \frac{\log_2 H_1(f)}{\log_2 H(\eta)}$$

then $f_1(\xi_1, \dots, \xi_{n-1}, \eta) = f_2(\xi_1, \dots, \xi_{n-1}, \eta) = 0.$

9. The tools for the proof II.

GAP Thm: Let $f = f_1 + x_n^{\beta} f_2 \in \overline{\mathbb{Q}}[x_1, \dots, x_n]$ with $\deg_{x_n}(f_1) = \alpha < \beta$. Let $\eta \in \overline{\mathbb{Q}}$ and let ξ_1, \dots, ξ_{n-1} be roots of the unity such that $f(\xi_1, \dots, \xi_{n-1}, \eta) = 0$. If

$$\beta - \alpha > \frac{\log_2 H_1(f)}{\log_2 H(\eta)}$$

then $f_1(\xi_1, \ldots, \xi_{n-1}, \eta) = f_2(\xi_1, \ldots, \xi_{n-1}, \eta) = 0.$

Example: Let $f = g + y^{\beta}h \in \mathbb{Q}[x, y]$ with $\deg_y(g) = \alpha < \beta$. Suppose that y - x - 1|f. In particular $f(\xi_p, 1 + \xi_p) = 0$ for all prime $p \ge 5$. If the GAP satisfies

 $\beta - \alpha > 8 \log_2 H_1(f)$

then we have $g(\xi_p, 1 + \xi_p) = h(\xi_p, 1 + \xi_p) = 0$, i.e. y - x - 1|g and y - x - 1|h.

10. The tools for the proof III.

Def: Let $p \in \overline{\mathbb{Q}}[x_1, \dots, x_n]$ and let $w \ge 0$. $C_{p,w} = \left\{ \xi \in G_{\infty}^{n-1} \mid \exists \eta \in \overline{\mathbb{Q}} : p(\xi, \eta) = 0 \land \log_2 H(\eta) \ge w \right\}$ $\lambda(p) = \sup \left\{ w \ge 0 \mid C_{p,w} \text{ is Zariski-dense in } \overline{\mathbb{Q}}^{n-1} \right\}$

10. The tools for the proof III.

Def: Let $p \in \overline{\mathbb{Q}}[x_1, \dots, x_n]$ and let $w \ge 0$. $C_{p,w} = \left\{ \xi \in G_{\infty}^{n-1} \mid \exists \eta \in \overline{\mathbb{Q}} : p(\xi, \eta) = 0 \land \log_2 H(\eta) \ge w \right\}$ $\lambda(p) = \sup \left\{ w \ge 0 \mid C_{p,w} \text{ is Zariski-dense in } \overline{\mathbb{Q}}^{n-1} \right\}$

Lower bound: If p is (absolute) irreducible of degree s and it has at least three terms, then

$$\lambda(p) \ge \frac{10^{-14}}{n^{14}s} \cdot \frac{\log^4(n\log(\max\{ns, 16\}))}{\log^5(\max\{ns, 16\})}.$$

11. The tools for the proof IV.

Lower bound: If $p \in \mathbb{Q}[x_1, \ldots, x_n]$ is irreducible of degree s and it is not divisible by any binomial $x^b - \theta x^c$ with $\theta \in G_{\infty}$, then

$$\lambda(p) \ge \frac{10^{-4}}{n^4 s} \cdot \frac{\log^3(n \log(n \max\{s, 16\}))}{\log^3(n \max\{s, 16\})}.$$