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1. Factorization of dense polynomials.

f =
∑

|i|≤d

ai

bi
x

i1
1 · · ·xin

n ∈ Q[x1, . . . , xn] with ai ∈ Z, bi ∈ N and gcd(ai, bi) = 1

It is possible to compute the complete factorization of f in Q[x1, . . . , xn] in

n = 1: O
(

d15 log3 H1(f)
)

n > 1:
((

d+n
n

)

logH1(f)
)O(1)

bit operations, where d = deg(f) and H1(f) =
gcd({bi : |i|≤d})
gcd({ai : |i|≤d})‖f‖1.



2. Integer roots of a lacunary polynomial f ∈ Z[x].

Example:

f = −18 − 3x + 3x2 + 27x9 − x12 + 6x2007 − 20x2008 + 6x2009

H1(f) = ‖f‖1 = 84 log2 ‖f‖1 ≈ 6.392317

f = (−18 − 3x + 3x2) + x9(27 − x3) + x2007(6 − 20x + 6x2)

The only common root of −18 − 3x + 3x2, 27 − x3 and 6 − 20x + 6x2 is 3.

Note that also 1 is a root of f .



2. Integer roots of a lacunary polynomial f ∈ Z[x].

Example:

f = −18 − 3x + 3x2 + 27x9 − x12 + 6x2007 − 20x2008 + 6x2009

H1(f) = ‖f‖1 = 84 log2 ‖f‖1 ≈ 6.392317

f = (−18 − 3x + 3x2) + x9(27 − x3) + x2007(6 − 20x + 6x2)

The only common root of −18 − 3x + 3x2, 27 − x3 and 6 − 20x + 6x2 is 3.
Note that also 1 is a root of f .

Thm: Let f = g + xβh ∈ Z[x] with deg(g) = α < β. If β − α > log2 ‖f‖1 and

r ∈ Z − {0,1,−1} then

f(r) = 0 ⇔ g(r) = h(r) = 0.



3. The proof.

Thm: Let f = g + xβh ∈ Z[x] with deg(g) = α < β. If β − α > log2 ‖f‖ and

r ∈ Z − {0,1,−1} then

f(r) = 0 ⇔ g(r) = h(r) = 0.

Proof: Suppose that f(r) = 0 and h(r) 6= 0. Then

rβh(r) = −g(r) ⇒ |r|β 6 |r|β|h(r)| = |g(r)| 6 |r|α‖f‖1

⇒ 2β−α 6 |r|β−α 6 ‖f‖1 ⇒ β − α 6 log2 ‖f‖1.

�



4. How to control denominators?

p -adic absolute values: Let p ∈ N be a prime number. For every non-zero
rational number x = pk a

b with k ∈ Z, p ∤ a and p ∤ b, we define

|x|p =
1

pk
.

Ultrametric: |x + y|p ≤ max{|x|p, |y|p} for all x, y ∈ Q and p ∈ N prime.

Product formula: Let x ∈ Q − {0}. Then |x| · ∏

p prime |x|p = 1.

Heights: Let x ∈ Q. Then

H(x) = max{1, |x|} ·
∏

p
max{1, |x|p} = max{|a|, b},

where x = a
b with a ∈ Z, b ∈ N and gcd(a, b) = 1.



5. Rational roots of a lacunary polynomial f ∈ Q[x].

Thm: Let f = g + xβh ∈ Q[x] with deg(g) = α < β. If r ∈ Q − {0,1,−1} and

β − α > log2 H1(f),

then f(r) = 0 if and only if g(r) = h(r) = 0.



5. Rational roots of a lacunary polynomial f ∈ Q[x].

Thm: Let f = g + xβh ∈ Q[x] with deg(g) = α < β. If r ∈ Q − {0,1,−1} and

β − α > log2 H1(f),

then f(r) = 0 if and only if g(r) = h(r) = 0.

Proof: WLoG f ∈ Z[x] primitive. Let r ∈ Q − {0,1,−1} such that f(r) = 0
and h(r) 6= 0. For the standard and p-adic absolute values, we have

max{1, |r|p}β−α|h(r)|p 6 1

max{1, |r|}β−α|h(r)| 6 ‖f‖1 = H1(f).

Using the product formula, we get:

H(r)β−α 6 H1(f).

This implies 2β−α 6 H1(f) and β − α 6 log2 H1(f). �



6. Small degree factors of a lacunary polynomial f ∈ Q[x].

Thm: Let f = g+xβh ∈ Q[x] with deg(g) = α < β. If q ∈ Q[x] is an irreducible

polynomial with degree bounded by s, with a root that is not 0 or a root of

the unity, and

β − α >
s · log3

2(3s) · log2(H1(f))

2
,

then q|f if and only if q|g and q|h.



6. Small degree factors of a lacunary polynomial f ∈ Q[x].

Thm: Let f = g+xβh ∈ Q[x] with deg(g) = α < β. If q ∈ Q[x] is an irreducible

polynomial with degree bounded by s, with a root that is not 0 or a root of

the unity, and

β − α >
s · log3

2(3s) · log2(H1(f))

2
,

then q|f if and only if q|g and q|h.

Algorithm: It is possible to compute all the irreducible factors with degree

bounded by s of a lacunary polynomial f ∈ Q[x] with t terms in

(s · t · log(deg f) · logH1(f))O(1) bit operations.



7. The multivariate case.

Thm: Let f, g, h ∈ Q[x, y] such that f = g + yβh and set α = degy(g). Let

p ∈ Q[x, y] be an irreducible polynomial of degree bounded by s which is not

“cyclotomic”. If

β − α > 104 · s · n4 · log2(H1(f)) · log3(nmax{s,16})
log3(n log(nmax{s,16}))

,

then p|f if and only if p|g and p|h.



7. The multivariate case.

Thm: Let f, g, h ∈ Q[x, y] such that f = g + yβh and set α = degy(g). Let

p ∈ Q[x, y] be an irreducible polynomial of degree bounded by s which is not

“cyclotomic”. If

β − α > 104 · s · n4 · log2(H1(f)) · log3(nmax{s,16})
log3(n log(nmax{s,16}))

,

then p|f if and only if p|g and p|h.

Thm: Let f, g, h ∈ Q[x, y] such that f = g + yβh and set α = degy(g). Let

p ∈ Q[x, y] be an irreducible polynomial of degree bounded by s with at least

three terms. If

β − α > 1014 · s · n14 · log2(H1(f)) · log5(max{ns,16})
log4(n log(max{ns,16}))

,

then p|f if and only if p|g and p|h.



8. The tools for the proof I.

Heights of algebraic numbers: Let r1 ∈ Q. Let p = a(x−r1) · · · (x−rd) ∈ Z[x]

be the primitive minimal polynomial of r. Then

H(r) =



|a|
d

∏

i=1

max{1, |ri|}




1/d

.



8. The tools for the proof I.

Heights of algebraic numbers: Let r1 ∈ Q. Let p = a(x−r1) · · · (x−rd) ∈ Z[x]

be the primitive minimal polynomial of r. Then

H(r) =



|a|
d

∏

i=1

max{1, |ri|}




1/d

.

Example: Let p ≥ 5 be a prime number. Let ξp = cos(2π
p ) + i sin(2π

p ) be a

primitive p-th root of the unity. Then

H(1 + ξp) =





p−1
∏

i=1

max{1, |1 + ξi
p|}





1/(p−1)

≥
√

2(p−3)/(2p−2) ≥ 21/8.



9. The tools for the proof II.

GAP Thm: Let f = f1 + x
β
nf2 ∈ Q[x1, . . . , xn] with degxn(f1) = α < β. Let

η ∈ Q and let ξ1, . . . , ξn−1 be roots of the unity such that f(ξ1, . . . , ξn−1, η) = 0.

If

β − α >
log2 H1(f)

log2 H(η)

then f1(ξ1, . . . , ξn−1, η) = f2(ξ1, . . . , ξn−1, η) = 0.



9. The tools for the proof II.

GAP Thm: Let f = f1 + x
β
nf2 ∈ Q[x1, . . . , xn] with degxn(f1) = α < β. Let

η ∈ Q and let ξ1, . . . , ξn−1 be roots of the unity such that f(ξ1, . . . , ξn−1, η) = 0.

If

β − α >
log2 H1(f)

log2 H(η)

then f1(ξ1, . . . , ξn−1, η) = f2(ξ1, . . . , ξn−1, η) = 0.

Example: Let f = g + yβh ∈ Q[x, y] with degy(g) = α < β. Suppose that

y − x − 1|f . In particular f(ξp,1 + ξp) = 0 for all prime p ≥ 5. If the GAP

satisfies

β − α > 8 log2 H1(f)

then we have g(ξp,1 + ξp) = h(ξp,1 + ξp) = 0, i.e. y − x − 1|g and y − x − 1|h.



10. The tools for the proof III.

Def: Let p ∈ Q[x1, . . . , xn] and let w ≥ 0.

Cp,w =
{

ξ ∈ Gn−1
∞ / ∃η ∈ Q : p(ξ, η) = 0 ∧ log2 H(η) ≥ w

}

λ(p) = sup
{

w ≥ 0 / Cp,w is Zariski-dense in Q
n−1

}



10. The tools for the proof III.

Def: Let p ∈ Q[x1, . . . , xn] and let w ≥ 0.

Cp,w =
{

ξ ∈ Gn−1
∞ / ∃η ∈ Q : p(ξ, η) = 0 ∧ log2 H(η) ≥ w

}

λ(p) = sup
{

w ≥ 0 / Cp,w is Zariski-dense in Q
n−1

}

Lower bound: If p is (absolute) irreducible of degree s and it has at least

three terms, then

λ(p) ≥ 10−14

n14s
· log

4(n log(max{ns,16}))
log5(max{ns,16})

.



11. The tools for the proof IV.

Lower bound: If p ∈ Q[x1, . . . , xn] is irreducible of degree s and it is not

divisible by any binomial xb − θxc with θ ∈ G∞, then

λ(p) ≥ 10−4

n4s
· log

3(n log(nmax{s,16}))
log3(nmax{s,16})

.


