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Tropical Geometry

Tropical math arises when considering the tropical semi-ring
(R ∪ {−∞},⊕,⊙) where

⊕ is maximum, and

⊙ is addition.

Two main directions in tropical geometry:
◮ Geometric approach
◮ Algebraic/combinatorial approach



Tropical varieties – Three definitions

The field of Puiseux series C{{t}} has a valuation:

val : C{{t}}∗ → Q.

The valuation extends to

val : (C{{t}}∗)n → Qn
.

Definition
If I ⊆ C{{t}}[x1, . . . , xn] is an ideal then we define

T (I) := −val(V (I)) ⊆ Rn

The tropical variety T (I) is a “shadow” of the usual variety.



Tropical varieties – Three definitions

Example

I = 〈x2 + y2 − 1〉

Variety Gröbner fan Tropical variety



Tropical varieties – Three definitions

Consider the polynomial ring C[x1, . . . , xn]. Let ω ∈ Rn.
◮ The weight of a monomial xa1

1 · · · xan
n with a ∈ Nn is 〈ω, a〉.

◮ The initial form inω(f ) of a polynomial f ∈ C[x1, . . . , xn] is
the sum of terms with maximal weights.
Example:

in(1,2)(x
4
1 + 2x2

2 + x1x2 + 1) = x4
1 + 2x2

2

◮ The initial ideal of an ideal I ⊆ C[x1, . . . , xn] is defined as

inω(I) = 〈inω(f )〉f∈I

Theorem (Speyer, Sturmfels, 2003)

T (I) = {ω ∈ Rn : inω(I) is monomial-free}



Tropical varieties – Three definitions

Example

The tropical variety of a
principal ideal is called a
tropical hypersurface.
T (〈x1 + x2 + x3〉) ⊆ R3

is the union of three 2-
dimensional cones:
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Lemma
Any tropical variety is an intersection of hypersurfaces:

T (I) =
⋂

f∈I

T (〈f 〉)



The tropical variety as a subfan of a Gröbner fan

Let I ⊆ C[x1, . . . , xn] be a homogeneous prime ideal.

◮ Bieri, Groves (1984):
The dimension of T (I) is the dimension of V (I).

◮ Mora, Robbiano (1988):
Define an equivalence relation ∼ on Rn.

u ∼ v ⇔ inu(I) = inv (I)

Equivalence classes form the cones in the Gröbner fan
GF(I).

◮ Collart, Kalkbrener, Mall (1993):
GF(I) may be computed with the Gröbner walk.

◮ Bogart, J., Speyer, Sturmfels, Thomas (2005):
The tropical variety as subfan of GF (I) is connected and
can be traversed with Gröbner walk like methods



Generalized Newton-Puiseux

The classical Newton-Puiseux algorithm:

Input f ∈ C{{t}}[x ]

Output All roots of f up to some degree

Maurer’s generalization (1980):

Input f1, . . . , fm ∈ C{{t}}[x1, . . . , xn]

Output All common roots of f1, . . . , fm up to some degree

◮ Find a tropism of the system, i.e. a vector in T (〈f1, . . . , fm〉).
◮ Let this be the first exponent of a series solution. Find the

coefficients by solving over C.
◮ Substitute and find next term recursively.

Problem: How do we find the tropisms?
Solution: Tropical geometry.
Details were worked out in J., Markwig, Markwig (2007).



Tropical bases

Definition
A finite generating set F of I is a tropical basis if

T (I) =
⋂

f∈F T (〈f 〉).

Cone description VS tropical basis.

Theorem (Bogart, J., Speyer, Sturmfels, Thomas, 2005)
Every ideal I ⊆ C[x1, . . . , xn] has a tropical basis.

An algorithm was presented that based on
⋂

f∈F T (〈f 〉) would
add in elements successively to form a basis.

Essentially as hard as computing the Gröbner fan.



Tropical bases by generic projections

◮ Elimination is projection.
◮ A GLn(Z) multiplicative change of coordinates in

(C{{t}}∗)n results in a linear transformation of T (I).
◮ This allows projection in any direction.
◮ For any rational subspace U ⊆ Rn, T (I) + U can be

computed algebraically.

Theorem (Hept and Theobald, 2007)
Any finite generating set for a prime ideal can be extended to a
tropical basis by adding codimension+1 elements.



Connection to numerical homotopy
The important polyhedral computation

⋂

i

T (〈fi〉)

is closely related to the mixed volume computation.
Difficult combinatorial task based on LP-solving.

The Huber-Sturmfels (1995) polyhedral homotopy method has
this computation as a first step. Carefully studied by T. Y. Li.

Can numerical methods benefit from computational tropical
geometry? Or the other way around?



Application in celestial mechanics

Given 4 bodies in space satisfying Newton laws, does there
exist an infinite number of relative equilibria?

Hampton and Moeckel (2006): “No”

The set of relative equilibria is given by equations

f1, . . . , f9 ∈ R[r12, . . . , r34]

in the 6 pairwise distances.
If there was an infinite number of solutions, there exist a curve
of solutions parametrizable by a Puiseux series.

Carefully checking the mixed faces of the Minkowski sum of the
Newton polytopes and corresponding initial ideals, it is
concluded that no such parametrization exists.



Application for implicitization

Let g1, . . . , gn ∈ C[x±1
1 , . . . , x±1

n−1] and consider

g : (C∗)n−1 → (C)n

x 7→ (g1(x), . . . , gn(x))

Fix the Newton polytopes of the gi ’s and suppose coefficients
are generic.

Sturmfels, Tevelev and Yu (2007) gave a tropical polyhedral
method for computing the Newton polytope for a defining
equation of g((C∗)n−1).



Providing examples in tropical geometry

In ongoing work with Herrmann, Joswig and Sturmfels the
tropical Grassmannian G3,7 has been computed.

Hereby we classify all 94 combinatorial types of generic tropical
2-planes in tropical projective space TP6.

The tropical Grassmannian has 252000 maximal cone and lives
in R35.



Complexity

Several complexity results were proved by Theobald (2006).


