Secant Varieties of Classically Studied Varieties

 (joint work with Giorgio Ottaviani and Chris Peterson)
Hirotachi Abo

Department of Mathematics
University of Idaho
abo@uidaho.edu
http://www.uidaho.edu/~abo
June 2008

Tensors

- Let \mathbb{K} be a field such as \mathbb{Q}, \mathbb{R} and \mathbb{C}.
- The collected data can be represented as elements which have more than two indices.
(e.g., facial images $=$ people \times views \times illuminations \times pixcels)
- Such high order equivalents of vectors $v \in \mathbb{K}^{n}$ and matrices $A \in \mathbb{K}^{m \times n}$ are called tensors.

Tensor Rank

- Let V_{i} be a $\left(n_{i}+1\right)$-dimensional vector space over \mathbb{K}.
- A tensor in $\bigotimes_{i=1}^{k} V_{i}$ of the form $v_{1} \otimes \cdots \otimes v_{k}, v_{i} \in V_{i}$, is called a rank one tensor.
- Any tensor in $\bigotimes_{i=1}^{k} V_{i}$ can be expressed as a linear combination of rank one tensors.
- A tensor in $\bigotimes_{i=1}^{k} V_{i}$ has rank r if it can be written as a linear combination of r rank-one tensors (but not fewer).

Segre Varieties

- The set of rank one tensors can be "embedded" into $\bigotimes_{i=1}^{k} V_{i}$ as follows:

$$
\begin{aligned}
\prod_{i=1}^{k} V_{i} & \longrightarrow \otimes_{i=1}^{k} V_{i} \\
\left(v_{1}, \ldots, v_{k}\right) & \longmapsto v_{1} \otimes \cdots \otimes v_{k}
\end{aligned}
$$

- Projectivizing, we have a Segre map

$$
\prod_{i=1}^{k} \mathbb{P}\left(V_{i}\right) \rightarrow \mathbb{P}\left(\bigotimes_{i=1}^{k} V_{i}\right) .
$$

- Let $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right)$. The image of this map is called a Segre variety and denoted by X_{n}.

Secant Varieties

- Let X be a projective variety.
- Let $\sigma_{s}(X)$ be the Zariski closure of the union of $(s-1)$-secant planes $\left\langle p_{1}, \ldots, p_{s}\right\rangle, p_{i} \in X$.
- $\sigma_{s}(X)$ is a projective variety called the $s^{\text {th }}$ secant variety to X.
- If X is a Segre variety, points on a $(s-1)$-secant plane correspond to tensors which can be written as the sum of s rank-one tensors.

Typical Tensor Rank

- $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right)$.
- What is the least integer $R(\mathbf{n})$ such that a generic tensor in $\bigotimes_{i=1}^{k} V_{i}$ has rank $\leq R(\mathbf{n})$?
- $R(\mathbf{n})$ is called the typical rank of $\bigotimes_{i=1}^{k} V_{i}$.
- The problem of finding $R(\mathbf{n})$ is equivalent to the problem of finding a positive integer s such that

$$
\sigma_{s}(X)=\mathbb{P}^{N-1}
$$

where $N=\prod_{i=1}^{k}\left(n_{i}+1\right)$.

Typical Tensor Rank (cont'd)

- A simple dimension count says the expected dimension of $\sigma_{s}\left(X_{\mathbf{n}}\right)$ is

$$
\min \left\{s\left(\sum_{i=1}^{k} n_{i}+1\right)-1, \prod_{i=1}^{k}\left(n_{i}+1\right)-1\right\}
$$

- We have the following inequality:

$$
\left\lceil\frac{\prod_{i=1}^{k}\left(n_{i}+1\right)}{1+\sum_{i=1}^{k} n_{i}}\right\rceil \leq R(\mathbf{n})
$$

Defective Varieties

- Let X be a projective variety.
- We say that $\sigma_{s}(X)$ is defective if $\sigma_{s}(X)$ does not have the expected dimension.
- X is said to be defective if $\sigma_{s}(X)$ is defective for some s.
- Most of the Segre varieties of the form $\mathbb{P}^{m} \times \mathbb{P}^{n}$ are defective.

Symmetric Tensor, Alternating Tensors, etc

- The definitions of tensor rank and typical rank can be extended to various tensors.

Tensors	Varieties
regular	Segre
symmetric	Veronese
alternating	Grassmann
hybrid of regular tensors and symmetric tensors	Segre-Veronese

- Higher rank tensors of each type are constructed as points on proper secants to the corresponding variety.

Classification of Defective Varieties

Theorem (Alexander-Hirschowitz)

Let $\nu_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{\binom{n+d}{d}-1}$ be the Veronese map and let $X_{n, d}$ be the Veronese variety $\nu_{d}\left(\mathbb{P}^{n}\right)$. Then $\sigma_{s}\left(X_{n, d}\right)$ has the expected dimension except:
(a) $d=2$ and $2 \leq s \leq n$;
(b) $d=3, n=4$ and $s=7$;
(c) $d=4$ and $(n, s)=(2,5),(3,9)$ and $(4,14)$.

Conjecture (Ottaviani-Peterson-A, 2006)

Let $X_{\mathbf{n}}=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}$ be a Segre varietiy. If $k \geq 3$, then $X_{\mathbf{n}}$ is defective if and only if X_{n} falls into one of the following cases:
(a) $X_{\mathbf{n}}$ is unbalanced, i.e.,

$$
n_{k}-1 \geq \prod_{i 1}^{k-1}\left(n_{i}+1\right)-\sum_{i=1}^{k-1} n_{i}
$$

(b) $\mathbb{P}^{2} \times \mathbb{P}^{3} \times \mathbb{P}^{3}$;
(c) $\mathbb{P}^{2} \times \mathbb{P}^{n} \times \mathbb{P}^{n}$ with n even;
(d) $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{n} \times \mathbb{P}^{n}$.

Conjecture

Let $\mathbb{G}(k, n)$ be the Grassmann variety of k-planes in \mathbb{P}^{n}. Then $\sigma_{s}(\mathbb{G}(k, n))$ has the expected dimension unless:
(a) $k=1, n \geq 5$ and $1<s<\left\lfloor\frac{n+1}{2}\right\rfloor$.
(b) $(s, k, n)=(3,2,6),(3,3,7),(4,3,7)$ and $(4,2,8)$.

Remark.

This conjecture was made by Baur-Draisma-de Graaf and Ottaviani independently.

Conjecture (Brambilla-A, 2008)

Let $\mathbf{n}=(m, n) \in \mathbb{N}^{2}$, let $\mathbf{a}=(a, b) \in \mathbb{N}^{2}$ and let $X_{\mathbf{n}, \mathbf{a}}$ be the Segre-Veronese variety $\mathbb{P}^{m} \times \mathbb{P}^{n}$ embedded by
$\mathcal{O}_{\mathbb{P}^{m} \times \mathbb{P}^{n}}(\mathbf{a})$. Then $X_{\mathbf{n}, \mathbf{a}}$ is defective if and only if (\mathbf{n}, \mathbf{a}) falls into one of the following cases:
(a) $b=1$ and $n \geq\binom{ m+a}{a}-m+1$;
(b) $\mathbf{n}=(1, n)$ and $\mathbf{a}=(2 k, 2)$ with $k \geq 1$;
(c) $\mathbf{n}=(4,3),(2, n)$ with n odd and $\mathbf{a}=(1,2)$;
(d) $\mathbf{n}=(1,2)$ and $\mathbf{a}=(1,3)$;
(e) $\mathbf{n}=(2,2),(3,3),(3,4)$ and $\mathbf{a}=(2,2)$.

Terracini's Lemma

- Let $X \subset \mathbb{P}^{N-1}$ be a non-singular variety
- Let $\mathbb{T}_{p}(X)$ be the projective tangent space to X at p.

Theorem (Terracini's lemma)

Let p_{1}, \ldots, p_{s} be generic points of X and let q be a generic point of $\left\langle p_{1}, \ldots, p_{s}\right\rangle$. Then

$$
\mathbb{T}_{q}\left(\sigma_{s}(X)\right)=\left\langle\mathbb{T}_{p_{1}}(X), \ldots, \mathbb{T}_{p_{s}}(X)\right\rangle
$$

Inductive Approach

- Let $V_{1}=V_{1,1} \oplus V_{1,2}$ with

$$
\operatorname{dim} V_{1,1}=n_{1,1}+1 \text { and } \operatorname{dim} V_{1,2}=n_{1,2}+1
$$

- Let $\mathbf{n}_{i}=\left(n_{1, i}, n_{2}, \ldots, n_{k}\right)$ for $i \in\{1,2\}$.
- Consider the following linear transformations:

$$
\pi_{i}: V_{1, i} \otimes \bigotimes_{i=2}^{k} V_{i} \rightarrow \bigotimes_{i=1}^{k} V_{i}
$$

Inductive Approach (cont'd)

- Let $p \in X_{\mathbf{n}_{1, i}} \subset X_{\mathbf{n}}$. The above-memtioned linear transformation gives rise to

$$
0 \rightarrow \hat{\mathbb{T}}_{p}\left(X_{\mathbf{n}_{1, i}}\right) \rightarrow \hat{\mathbb{T}}_{p}\left(X_{\mathbf{n}}\right) \rightarrow g_{i}\left[\hat{\mathbb{T}}_{p}\left(X_{\mathbf{n}}\right)\right] \rightarrow 0
$$

where $\hat{\mathbb{T}}_{p}\left(X_{\mathbf{n}}\right)$ is the affine cone over $\mathbb{T}_{p}\left(X_{\mathbf{n}}\right)$ and $\operatorname{dim} g_{i}\left[\hat{\mathbb{T}}_{p}\left(X_{\mathbf{n}}\right)\right]=n_{1}-n_{1, i}$.

- Let $p_{1} \in X_{\mathbf{n}_{1,1}}$ and let $p_{2} \in X_{\mathbf{n}_{1,2}}$. Then we have

$$
\begin{aligned}
& \left\langle\hat{\mathbb{T}}_{p_{1}}\left(X_{\mathbf{n}}\right), \hat{\mathbb{T}}_{p_{2}}\left(X_{\mathbf{n}}\right)\right\rangle= \\
& \left\langle\hat{\mathbb{T}}_{p_{1}}\left(X_{\mathbf{n}_{1,1}}\right), g_{2}\left[\hat{\mathbb{T}}_{p_{1}}\left(X_{\mathbf{n}}\right)\right]\right\rangle \oplus\left\langle\hat{\mathbb{T}}_{p_{2}}\left(X_{\mathbf{n}_{1,2}}\right), g_{1}\left[\hat{\mathbb{T}}_{p_{2}}\left(X_{\mathbf{n}}\right)\right]\right\rangle .
\end{aligned}
$$

Inductive Approach (cont'd)

- Thus $\sigma_{2}\left(X_{\mathbf{n}}\right)$ has the expected dimension, i.e.,

$$
\operatorname{dim}\left\langle\hat{\mathbb{T}}_{p_{1}}\left(X_{\mathbf{n}}\right), \hat{\mathbb{T}}_{p_{2}}\left(X_{\mathbf{n}}\right)\right\rangle=2\left(\sum_{i=1}^{k} n_{i}+1\right),
$$

if, for each $i \in\{1,2\}$,
$\operatorname{dim}\left\langle\hat{\mathbb{T}}_{p_{i}}\left(X_{\mathbf{n}_{1, i}}\right), g_{i}\left[\hat{\mathbb{T}}_{p_{i}}\left(X_{\mathbf{n}}\right)\right]\right\rangle=\left(n_{1, i}+\sum_{j=2}^{k} n_{j}+1\right)+\left(n_{1}-n_{1, i}\right)$.

- $\mathbb{P}\left\langle\hat{\mathbb{T}}_{p_{i}}\left(X_{\mathbf{n}_{1,1}}\right), g_{i}\left[\hat{\mathbb{T}}_{p_{i}}\left(X_{\mathbf{n}}\right)\right]\right\rangle$ can be viewed as the tangent space of the join of $X_{n_{1, i}}$ and a subvariety of $X_{n_{1, i}}$ of the form $\mathbb{P}\left(V_{1, i}\right) \times\{\mathrm{pt}\} \times \cdots\{\mathrm{pt}\}$.

Results

- The classification of defective $s^{\text {th }}$ secant varieties of Segre varieties and Grassmann varieties has been completed for small s.
- Bryan Wilson implemented the inductive approach into a computer algebra system and checked that there are no defective secant Segre varieties of Segree varieties $\mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}} \times \mathbb{P}^{n_{3}}\left(n_{1} \leq n_{2} \leq n_{3} \leq 20\right)$ except for the known defective cases.

Results (cont'd)

- In 1985 , Lickteig proved that $R(n, n, n)=\left\lceil\frac{(n+1)^{3}}{3 n+1}\right\rceil$ for $n \neq 2$.
- $\mathbf{n}=\overbrace{n, \ldots, n}^{k}$.
- We proved that $R(\mathbf{n})$ is asymptotically equivalent to $\frac{(n+1)^{k}}{k n+1}$ as $n \rightarrow \infty$ and $k \rightarrow \infty$.

Thank you very much for your attention!

