
A Simple Sequential Reasoning Approach for Sound
Modular Verification of Mainstream Multithreaded

Programs

B. Jacobs Jr. J. Smans F. Piessens W. Schulte

May 11, 2007

Introduction

1 Preventing data races
Programming Model
Rules Encoding

2 Invariants and Ownership
Annotations
Rules Encoding

3 Deadlock prevention
Principle
Practically
Rules Encoding

4 Immutable Objects

5 Limitations

Introduction

Writing correct multithreaded programs software is:
1 difficult (Flanagan and Qadeer).
2 notoriously difficult (Jacobs et al.).
3 notoriously tricky (Peyton Jones et al.).

Goal of this work

Verify concurrent object-oriented programs statically.
In a modular way.
To facilitate verification: a programming model is imposed.

3

Introduction

Writing correct multithreaded programs software is:
1 difficult (Flanagan and Qadeer).
2 notoriously difficult (Jacobs et al.).
3 notoriously tricky (Peyton Jones et al.).

Goal of this work

Verify concurrent object-oriented programs statically.
In a modular way.
To facilitate verification: a programming model is imposed.

3

Preventing data races
Programming Model

1

Data race

A data race occurs when 2 threads access the same location simultaneously
and one of them writes.

Each thread t has an access set t.A.
To write to an object, it must be in the current thread’s access set. (1)

An object o is in t’s access set t.A if:
I It has been created by t and it is unshared. (2)
I It is shared and locked by t. (3)

4

Preventing data races
Programming Model

1

Data race

A data race occurs when 2 threads access the same location simultaneously
and one of them writes.

Each thread t has an access set t.A.
To write to an object, it must be in the current thread’s access set. (1)
An object o is in t’s access set t.A if:

I It has been created by t and it is unshared. (2)
I It is shared and locked by t. (3)

4

Preventing data races
Programming Model

1

unshared free locked

share lock

unlock

new

shared

5

Preventing data races
Programming Model

1

unshared free locked

share lock

unlock

new

shared

class Point{
int x,y;

requires this ∈ tid.A ∧
other ∈ this.A;

void add(Point other){
...

}
}

void main(){
Point p = new Point();

share p;

new Thread(p);

synchronized(p){
...

}
}

forward

6

Preventing data races
Rules Encoding

1

o.f := x , (1)
assert o ∈ tid.A;
if (f is shared)
assert x ∈ S;

o.f ← x;

o := new C , (2)
o ← new C;
assume o 6∈ S;
tid.A ← tid.A ∪ {o};

synchronized (o) B , (3)
assert o ∈ S ∧ o 6∈ A;
havoc o.*;
tid.A ← tid.A ∪ {o};
B

tid.A ← tid.A \ {o};

Correct programs ensure access sets of different threads do not intersect.

7

Invariants and Ownership
Annotations

2

Invariant

An invariant may depend on:
Fields of the current class.
rep objects.

State of an object = its fields + fields of its rep objects,

and so on recursively.

8

Invariants and Ownership
Annotations

2

Invariant

An invariant may depend on:
Fields of the current class.
rep objects.

State of an object = its fields + fields of its rep objects,

and so on recursively.

8

Invariants and Ownership
Annotations

2

class Point{
int x,y;

requires this ∈ tid.A ∧ this.inv;

ensures this ∈ tid.A ∧ this.inv;

void move(int dx,int dy){ ... }
}

class Rectangle{
rep Point ul, lr;

invariant ul.x ≤ lr.x ∧
ul.y ≥ lr.y;

requires this ∈ tid.A ∧ this.inv;

ensures this ∈ tid.A ∧ this.inv;

void move(int dx,int dy){
unpack this;

ul.move(dx,dy);

lr.move(dx,dy);

pack this;

}
}

Lock-free access to ul and lr.
synchronized access through their owner (Rectangle).

9

Invariants and Ownership
Rules Encoding

2

unpack o ,
assert o ∈ tid.A;
assert o.inv;
o.inv ← false;
foreach(p ∈ repobjects(o)){
tid.A ← tid.A ∪ {p};
assume p 6∈ S;

}

pack o ,
assert o ∈ tid.A ∧ ¬ o.inv;
assert (∀ p ∈ repobjects(o).

p ∈ tid.A ∧ p 6∈ S ∧ p.inv);
assert Inv(o);
o.inv ← true;
foreach(p ∈ repobjects(o))

tid.A ← tid.A \ {p};

Program invariant:
∀o : T, o.inv =⇒ InvT (o)

10

Deadlock prevention
Principle

3

Deadlock

Thread t has lock l1 and waits for lock l2.
Thread s has lock l2 and waits for lock l1.

Both t and s stuck forever.

11

Deadlock prevention
Principle

3

Deadlock

Thread t has lock l1 and waits for lock l2.
Thread s has lock l2 and waits for lock l1.
Both t and s stuck forever.

11

Deadlock prevention
Principle

3

Deadlock

Thread t has lock l1 and waits for lock l2.
Thread s has lock l2 and waits for lock l1.
Both t and s stuck forever.

Solution:
Partial order between locks, such as l1 < l2.
Threads can only acquire locks in decreasing order.

I lock(l2); lock(l1)
I lock(l1); lock(l2)

11

Deadlock prevention
Practically

3

class Philosopher extends Thread{
shared Fork fork1, fork2;

requires fork1.lockLevel < fork2.lockLevel

Philosopher(shared Fork fork1, shared Fork fork2){ ... }
}

void main(){
locklevel level1 := between({},{});

locklevel level2 := between({level1},{});

locklevel level3 := between({level2},{});
Fork fork1 = new Fork();

share(fork1,level1);

Fork fork2 = new Fork();

share(fork2,level2);

Fork fork3 = new Fork();

share(fork3,level3);

new Philosopher(fork1,fork2).start();
new Philosopher(fork2,fork3).start();
new Philosopher(fork1,fork3).start();

}

12

Deadlock prevention
Rules Encoding

3

share (o,l) ≡
assert o ∈ tid.A ∧ o 6∈ S;
assert o.inv;
o.lockLevel ← l;
tid.A ← tid.A \ {o};
S ← S ∪ {o};

synchronized(o) B ≡
assert o ∈ S;
assert o.lockLevel <

tid.lockStack.top();
tid.lockStack.push(o);
havoc o.*;
tid.A ← tid.A ∪ {o};
B

tid.A ← tid.A \ {o};
tid.lockStack.pop();

13

Immutable Objects
4

Immutable object

An object that is never written (i.e. only read) after its initialization.
Therefore, immutable objects can be accessed without any
synchronization.

Access set split into read set and write set.
share replaced by share immutable and share lockprotected .

When an immutable object is shared, its invariant must hold therefore it
holds at all times.

14

Immutable Objects
4

Immutable object

An object that is never written (i.e. only read) after its initialization.
Therefore, immutable objects can be accessed without any
synchronization.

Access set split into read set and write set.
share replaced by share immutable and share lockprotected .

When an immutable object is shared, its invariant must hold therefore it
holds at all times.

14

Limitations
5

1 Once shared, an object can never revert to the unshared state
(problematic with fork/join patterns). back

2 Lock reentrancy (default Java’s synchronized behavior) forbidden.
3 Protection by locking only provided by this.
4 Truly concurrent objects (i.e. objects where multiple threads can execute

simultaneously) forbidden.

15

	Preventing data races
	Programming Model
	Rules Encoding

	Invariants and Ownership
	Annotations
	Rules Encoding

	Deadlock prevention
	Principle
	Practically
	Rules Encoding

	Immutable Objects
	Limitations

