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Implicit Dynamic Frames

Jan Smans, Bart Jacobs, and Frank Piessens

Katholieke Universiteit Leuven, Belgium

Abstract. The dynamic frames approach has proven to be a powerful
formalism for modular specification and verification of object-oriented
programs. However, the approach requires writing and checking frame
annotations.
In this paper, we propose a variant of the dynamic frames approach
that eliminates the need to explicitly write and check frame annotations.
Reminiscent of separation logic’s frame rule, programmers write accessi-
bility predicates inside pre- and postconditions instead of writing frame
annotations. From the precondition one can then infer an upper bound
on the set of locations writable or readable by the corresponding method.
We implemented our approach in a tool, and used it to automatically
verify several challenging examples, including the iterator and observer
patterns.

1 Introduction

Modular verification requires that a method’s contract specifies upper bounds on
the locations read or written by the method. In the dynamic frames approach [1–
4], the programmer specifies these upper bounds in terms of expressions denoting
sets of locations. To preserve information hiding, these expressions can involve
dynamic frames, which are special specification variables that abstract over sets
of locations. A disadvantage of this approach is that frame annotations must be
provided for each method, and that these annotations need to checked explicitly
at verification time.

The contributions of this paper are as follows:

– We propose a variant of the dynamic frames approach inspired by separation
logic that eliminates the need to explicitly write and check frame annota-
tions. Instead, framing information is inferred from accessibility predicates
within pre- and postconditions. This typically leads to more compact con-
tracts.

– The dynamic frames approach [5, Future Work] imposes global acyclicity on
specification variable implementation dependencies to ensure consistency.
We replace this non-modular restriction by modular rules.

– We implemented the approach in a tool, and used it to verify several chal-
lenging programs.

The remainder of this paper is structured as follows. In Section 2, we propose
a solution to the frame problem based on the concept of required access sets. In
Section 3, we combine the approach for framing with data abstraction through
the use of method calls in specifications. Finally, we discuss our results, compare
with related work and conclude in Sections 4, 5, and 6.
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2 Framing

To reason modularly about a method invocation, one must not rely on the callee’s
implementation, but only on its specification. For example, consider the code of
Figure 1(b). To prove that the assertion at the end of the code holds in every
execution, one should only take into account the contracts of Cell’s methods.
However, the given contracts are too weak to prove this assertion. Indeed, setX’s
implementation is allowed to change the program state arbitrarily, as long as
it ensures that x equals v on exit. In particular, the contract does not prevent
c2.setX(10) from changing the value of c1.x.

class Cell module Lib {
int x;

Cell()
ensures this.x = 0;
{ this.x := 0; }

void setX(int v)
ensures this.x = v;
{ this.x := v; }

}
(a)

Cell c1 :=new Cell();
c1.setX(5); //A

Cell c2 :=new Cell();
c2.setX(10);

assert c1.x = 5;

(b)

Fig. 1. A class Cell and some client code.

To prove the assertion of Figure 1(b), we must strengthen Cell’s method
contracts. More specifically, the contracts should additionally specify an upper
bound on the set of memory locations modifiable by the corresponding methods.
This problem is called the frame problem.

Various solutions to the frame problem have been proposed in the litera-
ture [6, 1, 7–9, 4] (see Section 5 for a detailed comparison). The solution proposed
in this paper is as follows. Writing to or reading1 from a memory location o.f
requires o.f to be accessible. Accessibility of o.f is denoted as acc(o.f). Method
implementations are not allowed to mention acc(o.f). In particular, they are not
permitted to branch over accessibility of a memory location. As a consequence,
a location o.f that was allocated before execution of a method m is only known
to be accessible during execution of m if m’s precondition requires accessibility
of o.f. In other words, a method’s precondition provides an upper bound on the
set of locations modifiable by the corresponding method: the method can only
modify an existing location o.f if that location is required to be accessible by
its precondition. As an example, consider the revised version of the class Cell
of Figure 2. Cell’s constructor does not require accessibility of any location, and
1 Requiring accessibility for reading a memory location is not strictly necessary in this

section. However, this restriction will be needed for data abstraction (see Section 3).
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can therefore only assign to fields of the new object. Similarly, setX only requires
accessibility of this.x, and can consequently only update the location this.x.

class Cell module Lib {
Cell()

ensures acc(this.x) ∧ this.x = 0;

void setX(int v)
requires acc(this.x);
ensures acc(this.x) ∧ this.x = v;

}
Fig. 2. A revised version of the class Cell. The implementation has been omitted as it
is equal to the one of Figure 1(a).

Java implicitly allocates memory on the heap whenever a new object is cre-
ated: a fresh memory location is allocated for each field of the new object. We
assume that at the start of a constructor the fields of the new object are ac-
cessible. The Java language however does not provide a mechanism for explicit
memory deallocation, and instead relies on garbage collection for freeing un-
used memory. Since the assertions in our language can only mention allocated
objects, it would be safe to assume the set of accessible locations only grows.
However, this assumption would rule out interesting specification patterns, where
a method “captures” accessibility of a location. Furthermore, this assumption
would break in the presence of concurrency where accessibility of locations can
be passed on to other threads. Therefore, we use the following rule instead: a
method can change accessibility of an existing location only if the location was
required to be accessible by the method’s precondition.

Given the new method contracts for Cell together with the rules for fram-
ing outlined above, we can now prove the assertion at the end of Figure 1(b).
Informally, the reasoning is as follows. At program location A, we know the
postcondition of setX holds: c1.x is accessible and holds the value 5. Since c2’s
constructor does not require anything, it cannot modify the value nor the acces-
sibility of any existing location. In particular, c1.x is still accessible and still holds
5. Similarly, the call c2.setX(10) only requires c2.x to be accessible, and hence
the location c1.x is not affected. We may conclude that the assertion, c1.x = 5,
holds at the end in any execution.

2.1 Formal Details

Language In this section, we consider the following language.

program ::= class s

class ::= class C module M { field method }
field ::= t f;
method ::= constr | mutator
constr ::= C(t x) contract { s }
mutator ::= void m(t x) contract { s }
contract ::= requires φ; ensures φ;

t ::= C | int | bool
s ::= e.f := e; | e.m(e); |

C x := new C(e); | assert φ;
e ::= x | e.f | c
φ ::= acc(e.f) | φ ∧ φ | φ ∗ φ | e = e |

true

FTfJP 2008  - 3



We distinguish two kinds of expressions: ordinary expressions e and specifica-
tion expressions φ. The specification expression φ1 ∗ φ2 is called the separating
conjunction, and denotes that both φ1 and φ2 hold, and that the set of locations
required to be accessible by φ1 is disjoint from the set of locations required to
be accessible by φ2. We do not formalize a type system here, as it is entirely
standard.

Verification Our verifier checks the correctness of a program by generating, via
translation into the intermediate language BoogiePL [10], a set of verification
conditions. The verification conditions are first-order formulas whose validity
implies the correctness of the program. The formulas are analyzed automatically
by satisfiability-modulo-theory (SMT) solvers. In the remainder of this section,
we focus on novel aspects of the translation to BoogiePL.

Notation The heap is modeled in the verification logic as a map from (object
reference, field name) pairs to values. For example, h[o, f] represents the value of
the field f of the object o in the heap h. Allocatedness of objects is tracked by
means of a boolean ghost field alloc. Postconditions in the verification logic can
contain old expressions, old(e), representing the value of e in the method pre-
state. wf(h) denotes whether the heap h is well-formed. Well-formedness implies
(among others) that fields of allocated objects never point to unallocated objects,
and that unallocated objects are not accessible. succ(h1, h2) denotes that heap
h2 is a direct successor (after a field update or mutator invocation) of h1. T JeKh

(respectively DJeKh) denotes the translation (respectively definedness) of the
expression e into the verification logic in a context where h denotes the heap.
Figure 4 of appendix A defines T and D for each expression.

Accessibility To model accessibility in the verification logic, we add to each
object a ghost field acc. The value of the ghost field is a map from field names
to booleans, where each entry indicates the accessibility of the corresponding
location. For example, accessibility of the location o.f is denoted as h[o, acc][f].
Our verifier checks before each field access that the corresponding location is
accessible.

Required Access Set A property of our methodology is that a method can only
modify an existing location if the method’s precondition requires the location to
be accessible. A naive, literal encoding of this property however does not give rise
to good performance with automatic theorem provers. In particular, the combi-
nation of the literal encoding and the approach for data abstraction described
in Section 3 yields verification conditions that are too hard for those automatic
provers. Therefore, we propose a slightly different encoding. More specifically,
we syntactically infer from each method precondition a required access set, i.e.
an expression denoting the set of locations required to be accessible by the pre-
condition. The required access set of a specification expression φ in a heap h is
denoted as RJφKh, and is defined as follows.

RJacc(e.f)Kh ::= { (T JeKh, f) }
RJφ1 ∧ φ2Kh ::= RJφ1Kh ∪RJφ2Kh

RJφ1 ∗ φ2Kh ::= RJφ1Kh ∪RJφ2Kh

RJe1 = e2Kh ::= ∅
RJtrueKh ::= ∅
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R yields expressions of type “set of memory locations”. To support such expres-
sions in the verification logic, we introduced a number of functions and axioms
about sets. For example, we added a parameterless function empty() representing
the empty set, together with an axiom stating that no location is an element of
the empty set. In this paper, we will use the standard mathematical set notations
instead of the actual functions used in the verification logic.

We can now encode the property that a method can only modify an existing
location if the method’s precondition P requires the location to be accessible in
terms of the required access set by adding a free postcondition to each method.

free ensures (∀o, f • old(H)[o, acc][f]⇒
(old(H)[o, f] = H[o, f] ∧ H[o, acc][f]) ∨ (o, f) ∈ RJPKold(H)

);

A free postcondition is a postcondition which can be assumed by callers, but
does not have to be proven explicitly when verifying the implementation.

Another property of our methodology is that the difference of the required
access set of the postcondition Q and the required access set of the precondition
P consists of fresh locations. This property is sometimes called the swinging
pivot requirement, and we also encode it by means of a free postcondition.

free ensures (∀o, f • (o, f) ∈ RJQKH ⇒ ¬old(H)[o, alloc] ∨ (o, f) ∈ RJPKold(H)
);

3 Data Abstraction

Data abstraction is crucial in the construction of modular programs, since it en-
sures that internal changes in one module do not propagate to other modules. In
object-oriented programs, classes typically enforce data abstraction by providing
access to their internal fields only through methods.

The class Cell of Figure 2 however was not written with data abstraction in
mind: (1) client code must directly access the internal field x to query a Cell ob-
ject’s state, and (2) Cell’s method contracts are not implementation-independent
as they mention the field x. Any change to Cell’s internal representation, such as
renaming x to y, would break or at least oblige us to reconsider the correctness
of client code.

To solve issue (1), we add a getter getX to the class Cell as shown in Fig-
ure 3(a). The assertion in the client code of Figure 3(b) can then call getX instead
of directly referring to x. To complete the decoupling between Cell’s internal
representation and client code, we should also solve issue (2) and make Cell’s
method contracts implementation-independent. In this paper, we use method
calls in specifications to achieve this independence. That is, we allow the ef-
fect of one method to be specified in terms of other methods. For example, the
method setX is specified in terms of the getter getX.

In this paper, methods used within method contracts are called pure methods.
The body of a pure method must consist of a single return statement, and the
method itself should be annotated with either pure or predicate. Normal pure
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methods return an ordinary expression, and can be called both within method
bodies and specifications. Predicate pure methods on the other hand return a
specification expression, and can therefore only be called within specifications.
Furthermore, predicates are not allowed to have preconditions. Finally, the rules
for ensuring consistency of the underlying axiomatization differ for normal and
predicate pure methods. This will be discussed in Section 3.1. In our running
example, both getX and valid are pure methods. The former is a normal pure
method, while the latter is a predicate pure method. Predicate pure methods
are typically used to represent invariants and to abstract over accessibility of
memory locations.

class Cell module Lib {
int x;

Cell()
ensures valid() ∧ getX() = 0;

{ this.x := 0; }

void setX(int v)
requires valid();
ensures valid() ∧ getX() = v;

{ this.x := v; }

pure int getX()
requires valid();

{ return this.x; }

predicate bool valid()
{ return acc(this.x); }

void copy(Cell c)
requires c 6= null;
requires valid() ∗ c.valid();
ensures valid() ∗ c.valid();
ensures getX() = old(c.getX());
ensures c.getX() = old(c.getX());

{ this.x := c.getX(); }
}

(a)

Cell c1 :=new Cell();
c1.setX(5); //A

Cell c2 :=new Cell();
c2.setX(10);

assert c1.getX() = 5;

(b)

Fig. 3. A revised version of the class Cell.

To prove the assertion at the end of Figure 3(b), one must show that c2’s
constructor and c2.setX(10) do not affect the return value of c1.getX(). In other
words, it suffices to show that the set of locations modified by those statements is
disjoint from the set of locations c1.getX() depends on. But how can we determine
which locations influence the return value of c1.getX()? The answer is simple.
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We can deduce from the precondition of a normal pure method an upper bound
on the set of locations readable by that method: a normal pure method n can
only read a location o.f if n’s precondition requires o.f to be accessible. Similarly,
a predicate pure method q can only read a location o.f if q itself requires o.f to
be accessible.

Given this property of pure methods, we can now prove the assertion at the
end of Figure 3(b). Informally, the reasoning is as follows. At program location
A, we know that the postcondition of c1.setX(5) holds: c1.valid() and c1.getX()
equals 5. Since c2’s constructor does not require anything, it can only modify
fresh locations. Since the locations required to be accessible by c1.valid() are
non-fresh, c1.valid() still holds and c1.getX() still equals 5. In addition, we know
that the locations required to be accessible by c1.valid() are disjoint from the
locations required to be accessible by c2.valid(), since the the latter set only
contains fresh locations. Since c2.setX(10) can only modify locations required to
be accessible by c2.valid() and since this set is disjoint from the locations required
to be accessible by c1.valid(), c1.getX() is not affected by c2.setX(10). We may
conclude that the assertion, c1.getX() = 5, holds in any execution.

To illustrate the use of the separating conjunction in our approach, we ex-
tended the class Cell of Figure 3(a) with a copy method. copy’s precondition
requires that the receiver and c are “separately” valid, i.e. that both this.valid()
and c.valid() hold and that their required access sets are disjoint. If we would
have used a regular conjunction instead of a separating conjunction, we would
not be able to prove that c.valid() holds after the assignment to this.x.

3.1 Formal Details

Language We extend the language of Section 2 as follows.

method ::= . . . | pure | predicate
pure ::= pure t n(t x) contract { return e; }
predicate ::= predicate bool q(t x) contract { return φ; }
e ::= . . . | e.n(e)
φ ::= . . . | e.q(e)

Verification For every pure method m with precondition P, postcondition Q,
parameters t1 x1, . . . , tn xn, and body return E; declared in class C of module
M, we introduce a function symbol #C.m that that takes the heap, the receiver,
and m’s formal parameters as its arguments. An invocation of a pure method
is modeled by an application of the corresponding function. For example, the
assertion c1.getX() = 5 is represented as #Cell.getX(H, c1) = 5 in the verification
logic.

To reason about the function symbol corresponding to the method m, we
introduce two axioms: an implementation axiom and a framing axiom. The im-
plementation axiom relates the function symbol to m’s implementation. That is,
applying the function equals evaluating the method body.

axiom (∀h, this, x1, . . . , xn • wf(h) ∧ T JPKh ⇒#C.m(h, this, x1, . . . , xn) = T JEKh);
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The implementation axiom for normal pure methods can only be used by muta-
tor methods in the module M, while the axiom for predicate pure methods can
additionally be used in normal pure methods in M. The framing axiom relates
the return value of m in two heaps h1 and h2. The framing axiom of normal
pure methods differs slightly from the framing axiom of predicate pure methods.
More specifically, the framing axiom for normal pure methods states that the
return value of the pure method is equal in h1 and h2, provided the values of
locations in the required access set of m’s precondition are equal.

axiom (∀h1, h2, this, x1, . . . , xn • succ(h1, h2) ∧ T JPKh1 ∧ T JPKh2∧
(∀o, f • (o, f) ∈ RJPKh1 ⇒ h1[o, f] = h2[o, f])⇒

#C.m(h1, this, x1, . . . , xn) = #C.m(h2, this, x1, . . . , xn));

The framing axiom for predicate pure methods states that the return value of
the predicate is equal in both heaps, provided the values of locations in its own
required access set are equal.

axiom (∀h1, h2, this, x1, . . . , xn • succ(h1, h2) ∧#C.m(h1, this, x1, . . . , xn)∧
(∀o, f • (o, f) ∈ RJthis.m(x1, . . . , xn)Kh1 ⇒ h1[o, f] = h2[o, f])⇒

#C.m(h1, this, x1, . . . , xn) = #C.m(h2, this, x1, . . . , xn));

Framing axioms can only be used in mutator methods.

Footprint Functions In this section, we introduced a new kind of specification
expression, namely predicate method invocation. What is the required access
set of such an expression? One obvious solution would be to define the required
access set of a predicate method invocation as the required access set of the pred-
icate’s method body. However, such a definition would expose implementation
details to client code. For example, the required access set of the precondition
of setX of Figure 3(a) would be the singleton containing this.x. Yet, this is just
a detail of the current implementation, and client code should not rely on it.

To address this issue, we propose introducing an extra layer of indirection.
More specifically, for a predicate pure method C.q with body return φ; we intro-
duce an additional function symbol #C.qFP, called the footprint function, which
represents the predicate method’s required access set. The footprint function is
axiomatized as if the source program contained the following method:

pure set C.qFP(t1 x1, . . . , tn xn) requires C.q(x1, . . . , xn); { return RJφKH; }

In addition, a footprint accessible axiom is generated which states that all lo-
cations contained by the footprint function are accessible, provided the corre-
sponding predicate pure method returns true.

Consistency The introduction of new axioms in the verification logic can po-
tentially lead to inconsistencies. We guarantee that these inconsistencies are
detected as follows. For normal pure methods, we ensure consistency by requir-
ing they terminate: the return value can then be used as model for the function
application. More specifically, we use the size of the required access set as a
measure for proving termination. That is, the required access set of the precon-
dition of method n called from the body of a pure method m must be a strict
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subset of the required access set of the precondition of m. For predicate pure
methods, we ensure consistency by syntactically checking that predicate pure
methods are only called in positive positions. The latter check is similar to the
one proposed by [11]. Contrary to Kassios’ acyclicity restriction [5], our rules for
ensuring consistency can modularly handle dynamically bound calls.

4 Experience

To demonstrate the approach described in previous sections is amenable to auto-
matic static verification, we implemented it in a verifier prototype. The prototype
was used to verify several (variations of) programs used in related work. The
time taken to verify each program and a reference to the paper(s) containing the
program is shown in Table 1. The experiments were executed on a regular laptop
with a Pentium Core Duo 1.86Ghz CPU and 2 GB of ram. To discharge the gen-
erated verification conditions, we used the Z3 theorem prover [12]. To the best
of our knowledge, this is the first time the observer pattern (with multiple ob-
servers and data abstraction between the subject, its observers and client code)
is verified automatically. The verifier and the programs referred to in Table 1
can be downloaded from http://www.cs.kuleuven.be/~jans/vericool2.

# lines time taken source

Cell 28 0.3 [13–15]

Interval 52 4.4

ArrayList and Iterator 75 3.7 [1, 11]

Marriage 32 3.2 [16]

Recell,TCell,DCell 129 2.1 [17]

Observer 123 91.3 [18, 4, 15]

Table 1. Table showing the time taken (in seconds) to verify each program.

5 Related Work

In the dynamic frames approach [5, 2, 3], specification variables similar to our
pure methods are used to achieve data abstraction. To solve the frame problem,
Kassios proposes using dynamic frames, special specification variables that re-
turn a set of memory locations. For each mutator method (specification variable
respectively), one must explicitly specify an upper bound on the set of writable
(respectively readable) locations in terms of dynamic frames. In our approach,
no additional frame annotations are needed as the set of accessible locations
is inferred from accessibility predicates in the method precondition. Moreover,
one must explicitly verify in the dynamic frames approach that implementa-
tions respect the specified upper bound and that the swinging pivot requirement
holds, while in our approach this follows from the methodology. To ensure the
definitions of specification variables are consistent, Kassios prohibits cycles in
the implementation of specification variables. This restriction is non-modular
and rules out interesting programming patterns [5, Future Work]. Instead of the
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no-cycles restriction, we ensure consistency by checking termination for normal
pure methods, and by syntactically checking predicates only occur in positive
positions.

Banerjee et al. [4] recently proposed a regional logic for local reasoning about
global invariants. Similarly to dynamic frames, their approach supports region
expressions which are used to explicitly specify read and write effects. These ef-
fect annotations need to be checked at verification time. Our approach does not
require explicit effect annotations nor verification-time checking of those annota-
tions. Instead, at each field access we check the accessibility of the corresponding
location and infer framing information from preconditions.

Our approach was heavily inspired by separation logic [11, 6, 13, 17, 15]. In
particular, our accessibility expression acc(o.f) is similar to the separation logic
predicate o.f 7→ ∗ true (denoted as o.f ↪→ in [6]). To the best of our knowl-
edge, this is the first approach based on verification condition generation and
automatic, first-order theorem proving which captures separation logic’s idea
of inferring from the precondition the set of writable and readable locations.
Parkinson and Bierman’s [13] abstract predicates inspired our pure predicate
methods. Our approach additionally supports using normal pure methods in
specifications.

In [7], the authors propose using data groups to specify side-effects. To en-
sure the soundness, their approach imposes two methodological restrictions: the
pivot uniqueness and owner exclusion restriction. Our approach requires no such
restrictions, and as a consequence it can handle programs that [7] cannot. For
example, the former restriction rules out sharing of representation objects, as is
the case in the iterator pattern.

In the universe type system [8] and the Boogie methodology [9, 14, 16], ab-
stractions (pure methods, model fields or invariants) can depend on the fields
of owned objects and on the fields of peers (i.e. objects with the same owner as
the receiver), provided the abstraction is visible to the peer. For example, the
method hasNext of an iterator would have to be visible to the class ArrayList.
Our approach has no such restriction.

Using method calls in specifications to achieve data abstraction is not new.
In particular, our encoding of pure methods is similar in many ways to encodings
proposed in other approaches [19, 20, 14, 2]. However, we are not aware of any
such approach that infers the set of locations a pure method depends on from
the method’s precondition.

6 Conclusion

We proposed a variant of the dynamic frames approach that eliminates the need
to explicitly write and check frame annotations. Instead, framing information is
inferred from accessibility predicates within pre- and postconditions. We replaced
the non-modular acyclicity-restriction of [5] by modular rules. Our approach is
implemented in a tool, which has been used to verify several challenging pro-
grams.

In the future, we plan to extend our approach to concurrent programs.

FTfJP 2008  - 10



Acknowledgments

Jan Smans is a research assistant of the Fund for Scientific Research - Flanders
(FWO). Bart Jacobs is a postdoctoral fellow of the Fund for Scientific Research
- Flanders (FWO).

References

1. Kassios, Y.: Dynamic frames: Support for framing, dependencies and sharing with-
out restrictions. In: Formal Methods. (2006)

2. Jan Smans, Bart Jacobs, F.P., Schulte, W.: An automatic verifier for a java-like
language based on dynamic frames. In: Formal Aspects of Software Engineering.
(2008)

3. Schoeller, B.: Making classes provable through contracts, models and frames. PhD
thesis, ETH Zurich (2007)

4. Anindya Banerjee, D.A.N., Rosenberg, S.: Regional logic for local reasoning about
global invariants. In: Twenty-second European Conference on Object-oriented Pro-
gramming. (2008)

5. Kassios, Y.: A Theory of Object-Oriented Refinement. PhD thesis, University of
Toronto (2006)

6. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science. (2002)

7. Leino, K.R.M., Poetzsch-Heffter, A., Zhou, Y.: Using data groups to specify and
check side effects. In: Programming Language Design and Implementation. (2002)

8. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
PhD thesis, FernUniversität Hagen (2001)

9. Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology 3(6)
(2004)

10. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research
Redmond, USA (2005)

11. Parkinson, M.: Local Reasoning for Java. PhD thesis, University of Cambridge
(2005)

12. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Conference on Tools
and Algorithms for the Construction and Analysis of Systems. (2008)

13. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: 32nd Symposium
on Principles of Programming Languages. (2005)

14. Jacobs, B., Piessens, F.: Inspector methods for state abstraction. Journal of Object
Technology 6(5) (2007)

15. Distefano, D., Parkinson, M.: jStar: Towards practical verification for java. In:
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions. (2008)

16. Leino, K.L.M., Müller, P.: Object invariants in dynamic contexts. In: European
Conference on Object-Oriented Programming. (2004)

17. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In:
35nd Symposium on Principles of Programming Languages. (2008)

18. Parkinson, M.: Class invariants: The end of the road? In: International Workshop
on Aliasing, Confinement and Ownership. (2007)

FTfJP 2008  - 11



19. Darvas, A., Leino, K.R.M.: Practical reasoning about invocations and implemen-
tations of pure methods. In: Formal Aspects of Software Engineering. (2007)

20. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In: European
Symposium on Programming. (2008)

A Translation

T JxKh ::= x
T Je.fKh ::= h[T JeKh, f]
T JcKh ::= c
T Jacc(e.f)Kh ::= h[T JeKh, acc][f]
T Jφ1 ∧ φ2Kh ::= T Jφ1Kh ∧ T Jφ2Kh

T Jφ1 ∗ φ2Kh ::= T Jφ1 ∧ φ2Kh ∧ (RJφ1Kh ∩RJφ2Kh = ∅)
T Je1 = e2Kh ::= T Je1Kh = T Je2Kh

T Je.n(e1, . . . , ei)Kh ::= #C.n(h, T JeKh, T Je1Kh, . . . , T JeiKh)
where C is the class declaring n.

T Je.q(e1, . . . , ei)Kh ::= #C.q(h, T JeKh, T Je1Kh, . . . , T JeiKh)
where C is the class declaring q.

DJxKh ::= true
DJe.fKh ::= DJeKh ∧ T JeKh 6= null ∧ h[T JeKh, acc][f]
DJcKh ::= true
DJacc(e.f)Kh ::= DJeKh ∧ T JeKh 6= null
DJφ1 ∧ φ2Kh ::= DJe1Kh ∧ (T Je1Kh ⇒ DJe2Kh)
DJφ1 ∗ φ2Kh ::= DJφ1 ∧ φ2Kh

DJe1 = e2Kh ::= DJe1Kh ∧ DJe2Kh

DJe.n(e1, . . . , ei)Kh ::= DJeKh ∧ DJe1Kh ∧ . . . ∧ DJeiKh ∧ DJeKh 6= null∧
T Jφ[e/this, e1/x1, . . . , ei/xi]Kh

where φ is the precondition of n,
and x1, . . . , xi are n’s parameters.

DJe.q(e1, . . . , ei)Kh ::= DJeKh ∧ DJe1Kh ∧ . . . ∧ DJeiKh ∧ DJeKh 6= null

Fig. 4. Translation and definedness of expressions.
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Ownership, Pointer Arithmetic and Memory Separation
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Abstract. Ownership systems provide a way to reason about data structures in
a hierarchical fashion. We propose a small but extensible language featuring an
ownership system and data invariants. It is then extended with pointer arithmetic,
showing how to specify array invariants. We show how to express the global
properties of the ownership system in the logic. This method can be used with a
memory model featuring memory separation, and provides a practical way to use
invariants in deductive verification of programs. We implemented the proposed
system in the Why platform and applied it to C and Java programs.

1 Introduction

One way of proving computer program properties is to annotate programs with specifi-
cations, and then use a verification condition generator (VCG) to produce proof obliga-
tions. These obligations, once proven, ensure the adequation of programs with respect
to their specification.

The specification language can feature data invariants. For instance, a balanced bi-
nary search tree has two invariants: it is sorted, and it is balanced. A program breaking
the “balanced” invariant will not be as efficient; and a program breaking the “sorted”
invariant will not even be sound. Thus, the VCG must produce proof obligations ensur-
ing that data invariants are not broken. For instance, the soundness of a search function
might rely on the “sorted” invariant. Handling data invariants in a sound way is not
trivial, in particular for object-oriented programs [12].

A key issue is to choose an invariant policy saying when an invariant is supposed
to hold. A strong invariant policy, where invariants hold permanently, is too constrain-
ing. For instance, when inserting a new element into a binary search tree, its invariants
might temporarily be broken. In the Java Modeling Language (JML) [5], invariants are
supposed to hold at method boundaries for all accessible objects. This policy is difficult
to support, both for static and dynamic verification tools.

Ownership is a particular invariant policy where objects can own other objects. By
preventing owned objects to be modified, the language can allow the invariant of an
object to depend on its owned objects. Barnett et al. [2] use ownership in the Boogie
methodology, which is used to prove C# programs using the Spec# language. Dietl and
Müller use ownership in JML, using the Universe type system [6]. Boulmé and Potet
use ownership to interpret invariant composition in the B method [4].
? This work is partly supported by the ARC INRIA “CeProMi”

(http://www.lri.fr/cepromi/) and by the “CAT” grant ANR-05-RNTL-00302
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Ownership and invariant systems have global properties such as: “every object built
by the program verifies its invariants”, that are important to prove a program specifica-
tion. It is tempting to provide these properties as axioms to the user, but the predicate
“built by the program” is hard to express in the logic. The VCG cannot just enumerate
objects in memory and add their invariants in hypotheses, as the number of these objects
is unknown, and would be too big anyway.

In the Why platform [8], functions are specified using pre-conditions and post-con-
ditions, as in Hoare logic [9]. The Why VCG, based on Dijkstra’s weakest pre-condition
calculus [7], computes proof obligations from these specifications. The Why platform
contains an intermediate language called Jessie, whose memory model features pointer
arithmetic and memory separation using the “component-as-array” model of Burstall
and Bornat [3]. This model causes problems to implement an ownership system:

– because of pointer arithmetic, a field of a structure can represent several ownable
objects;

– because of memory separation, the global invariants of the ownership system are
harder to express.

Memory separation allows to reason about pointer modification without having to
worry about pointer aliases, as memory is syntactically split into several regions. In
particular, this simplifies modular reasoning about programs. Other works tackle this
problem, such as separation logic [14] or systems where the user himself may define
region variables as location sets [1]. Dynamic frames [11, 15], in particular, allow these
variables to be modified during the execution. These systems allow finer memory sepa-
ration than in Jessie, at the cost of verbosity.

This paper proposes a small formal language with ownership and invariants, com-
patible with the memory model of Jessie, i.e., with pointer arithmetic and memory sep-
aration. We also show how to use invariants when proving the proof obligations of a
program. This proposal generalizes the work of Barnett et al. in Spec# and was imple-
mented in Jessie, allowing to test it on C and Java programs.

2 Invariants and Ownership

In this section, we give an intuitive description of our ownership system, which is
mostly the same than the one used in Spec# [2].

In this paper, the term “object” does not necessarily refer to an instance of a class.
In fact, an object is any reference (or pointer) to any data structure.

Objects Are Boxes If a box 2 is inside a box4, then 2 is owned by4. If4 is itself
inside another box 3, then 2 is also owned by 3, because 2 is also inside 3. This
defines the ownership relation on objects.

The ownership relation is the transitive closure of the direct ownership relation. 2

is directly owned by 4 if 2 is owned by 4, and if for all boxes 3 owning 2, 3 = 4
or 3 owns4. In other words, there is no box between 2 and its direct owner.

The direct owner is unique. It doesn’t have to exist, though: a box which is not
inside any other box is not owned, nor directly owned.
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Boxes Can Be Open or Closed To modify the content of a box, it must be open. And
to open a box, it must be outside any other box, i.e., it must not be owned. This means
that to modify an owned object, one must open its owner first. Of course, this owner
might be in another bigger box that we might need to open before.

Before closing a box, we must check that all the boxes it contains are already closed.
In other words, an object can only own – directly or not – closed objects, and an open
object cannot be owned.

Invariants on Closed Boxes The problem with an invariant is that it can be broken.
Let’s say that you have an integer x, and an invariant saying that x 6= 0. Nothing
prevents the programmer from assigning 0 to x.

Except if the structure is closed. If we always check its invariant before closing
x, we know that x 6= 0 always holds when x is closed, because x cannot have been
modified since its invariant was checked. By transitivity, if a box is closed, every object
it contains also verifies its invariants.

Invariants on Multiple Objects If an invariant depends on several objects, we have to
check it each time one of these objects is closed, and we can only assume it if all the
objects are closed. This constraint is too heavy.

In the ownership system of Spec#, invariants are associated to objects. The invari-
ants of 2 can only depend on the objects that 2 owns. Thus, it is sufficient to check
the invariant of 2 only when closing 2, because the other boxes on which the invariant
depends are already closed, as they are owned by 2.

3 Core Language

In this section we define a small core language featuring pointers on values. These
values are our boxes: they contain an invariant and may be open or closed. We show
how to express and prove the soundness of the ownership system.

Due to space limitation, we omitted typing rules and the soundness proof of the
ownership system. They can be found in the extended version of this article at
http://romain.bardou.fr/papers/jcownlong.pdf.

Syntax The syntax of our core language is defined in Fig. 1. Values are expressions
which cannot be reduced. They may be constants or pointers. Pointers are not directly
used when programming; they are the result of allocation. They are annotated with
their types. The language has basic expressions: let-binding, sequence, while loops and
if-then-else tests.

A pointer p is allocated using new 〈v; I; r〉. The value v can be accessed by deref-
erencing using !p or modified using p := e. Pointers are the boxes of the ownership
system: they have an invariant I which is given at allocation. I may depend on the con-
tents of p and a set of pointers r, which are also given at allocation. We assume given a
syntax for sets of pointers, such as in assignable clauses of JML. These are the reps
pointers of p (standing for “representation” pointers). Finally, pointers can be closed or
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Expressions:
e ::= v Values
| x Variables
| let x = e in e Binding
| e; e Seq
| while e do e Turing-completion
| if e then e else e Test
| new 〈e; I; r〉 Allocation
| !e Dereferencing
| e := e Assignment
| pack e Closing boxes
| unpack e Opening boxes

Values:
v ::= c Constants
| p : 〈τ〉 Pointers

Types:
τ ::= unit | bool | · · · Base types
| 〈τ〉 Pointers

Environments:
∆ ::= ε |∆,x : τ Typing
Γ ::= ε | Γ, p = 〈e; I; r〉2 Memories
2 ::= ◦ | × | ⊗ Box state

Fig. 1. Core language syntax

opened using pack or unpack. As in Spec#, ownership transfer on a pointer p can be
achieved to change the ownership hierarchy by unpacking the owner of p and packing
another owner which has p as a rep.

We do not specify the logic used to write invariants. We only need to be able to
know if an invariant holds, given the state of the memory. We assume that modifying a
pointer which is not a rep of a pointer p cannot break the invariant of p.

As an example, the following expression E has one free variable: x which is an
integer pointer. It returns a new pointer which has an invariant: it is greater than x. The
invariant is a function which takes its future associated pointer as an argument (here p).

E = let y = new 〈0;λp. (!p >!x);x〉 in y :=!x+ 1; pack y; y

Note that the invariant does not necessarily hold initially, as x might be stricly greater
than 0. This is allowed because the pointer is initially open.

This example also shows that in our core language, invariants may be associated
with any pointer and may depend on any pointers. This is more general than the owner-
ship system of Spec#where the reps of an object are defined in its type and are restricted
to its fields.

Semantics We define a small-step semantics for our core language.→ is a relation on
states, and states are couples of a memory and an expression. The following:

Γ1; e1 → Γ2; e2

should be read: “e1 in memory Γ1 reduces to e2 in memory Γ2”.
The→ relation is the smallest fixpoint of the rules given in Fig. 2, plus some context

rules which define the evaluation order (for example, the test cannot be reduced if its
condition has not been reduced already). We suppose that the substitution used when
reducing let-bindings does not capture variables.

Rules for let-binding (1), sequence (2), loop (3) and test (4, 5) are easy to read.
The interesting rules are the ones for allocation (6), pointer dereferencing (7) or assign-
ment (8), packing (9) and unpacking (10), as they can read and write in memory. The
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Γ ; let x = v in e→ Γ ; e[v/x] (1)

Γ ; (unit; e)→ Γ ; e (2)

Γ ; while e1 do e2 → Γ ; if e1 then (e2; while e1 do e2) else unit (3)

Γ ; if true then e1 else e2 → Γ ; e1 (4)

Γ ; if false then e1 else e2 → Γ ; e2 (5)

Γ ; new R→ Γ, p = R◦; p (where p is fresh in Γ ) (6)

Γ, p = 〈v; I; r〉2; !p→ Γ, p = 〈v; I; r〉2; v (7)

Γ, p = 〈v1; I; r〉◦; p := v2 → Γ, p = 〈v2; I; r〉◦; unit (8)

Γ,

„
p = 〈v; I; p1 · · · pn〉◦
p1 = R×1 , · · · , pn = R×n

«
; pack p→

Γ,

„
p = 〈v; I; p1 · · · pn〉×
p1 = R⊗1 , · · · , pn = R⊗n

«
; unit

(If I(Γ ) holds) (9)

Γ,

„
p = 〈v; I; p1 · · · pn〉×
p1 = R⊗1 , · · · , pn = R⊗n

«
; unpack p→

Γ,

„
p = 〈v; I; p1 · · · pn〉◦
p1 = R×1 , · · · , pn = R×n

«
; unit

(10)

We omitted rules concerning evaluation order.

Fig. 2. Core language semantics

memory is a set of allocated pointers with their value, their invariant and their reps (the
pointers their invariant may depend on). Syntax for memories Γ is given in Fig. 1; they
are maps from pointers to their values, invariant and reps. Each pointer can be open (◦),
closed (×), or owned (⊗); this is also stored in memory Γ .

To allocate a new pointer, one first needs a fresh pointer p. This pointer is entered
in memory with its state R which contains its value, its invariant and the pointers it
depends on. Initially, the pointer is open.

Pointer access and modification are just reading or modifying the value associated
to the pointer in memory. Access can be done whatever the state of the pointer is, but
assignment can only be done on open pointers.

Closing a pointer p with pack does not only change the state of p from ◦ (open) to
× (closed); it also changes the state of its reps from× to⊗ (owned). This prevents them
from being opened and modified. Opening a pointer with unpack is similar, except that
the pointer state goes from × to ◦ and the state of its reps goes from ⊗ to ×. Packing
can only be done if the invariant holds.

Our example expression E reduces as follows, in a memory where pointer x has
value 42 (omitting some trivial reductions):

x = 〈42; true; ∅〉× let y = new 〈0;λp. !p >!x;x〉 in · · ·
x = 〈42; true; ∅〉×, p = 〈0; !p >!x;x〉◦ let y = p in y :=!x+ 1; pack y; y
x = 〈42; true; ∅〉×, p = 〈0; !p >!x;x〉◦ p :=!x+ 1; pack p; p
x = 〈42; true; ∅〉×, p = 〈43; !p >!x;x〉◦ pack p; p
x = 〈42; true; ∅〉⊗, p = 〈43; !p >!x;x〉× p
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Safety A memory is consistent if all closed pointers verify their invariants, all reps
pointers of all closed pointers are owned, and all owned pointers have a unique owner.

Definition 1 (Memory Consistency and Pointer State). A memory Γ is valid, written
Valid(Γ ), when:

– for all 〈v; I; p1 · · · pn〉2 in Γ where 2 ∈ {×,⊗}, I holds and for all i, the state of
pi in Γ is ⊗;

– for all p = R⊗ in Γ , there is a unique 〈v; I; r〉2 in Γ such that 2 ∈ {×,⊗} and
p ∈ r.

The safety of the ownership system is given by the following property: the memory
stays consistent when executing the program.

Theorem 1 (Ownership Safety). If Valid(Γ1) and Γ1; e1 →? Γ2; e2 then Valid(Γ2)

The proof is basically the same as the one of Barnett et al. [2] but adapted to our simpler
core language.

4 Pointer Arithmetic

This section shows how to extend our core language with pointer arithmetic. This can
also be used to model arrays.

Pointer Shifting and Difference We assume an operation ⊕, called shift, which takes
a pointer and an integer offset and returns a pointer. This operation should verify the
following properties:

p⊕ i = p ⇐⇒ i = 0
(p⊕ i)⊕ j = p⊕ (i+ j)

We also assume an operation 	 which takes two pointers and return an integer offset.
This operation should verify the following property:

p′ 	 p = i ⇐⇒ p′ = p⊕ i

Note that the axiomatisation of⊕ does not necessarily mean that all pointers are related
through an offset shift. This means that 	 does not have to be defined for all pairs of
pointers. For instance, 	 allows to model pointer difference in C programs. The ANSI
semantics of C specifies that the result is undetermined if the two pointers are not in the
same block.1 This property will be useful when defining arrays (see Sect. 4).

The syntax of expressions is extended to handle the ⊕ and 	 operations. The se-
mantics of the syntax constructions ⊕ and 	 is simply to reduce into the value returned
by the respective operations, without changing the memory.

1 In the Why platform, pointer difference generates a proof obligation requesting that the two
pointers are in the same block.
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Allocation Pointer shifting can be used to build new pointers, but nothing ensures that
these pointers have been allocated. If they are not in memory, the access reduction rule
cannot be applied.

We extend allocation by adding an expression n of type int in brackets. This integer
is the size of the allocated block. The invariant is now parameterized by the offset of
the pointer. The semantics of new is defined by the following reduction rule:

Γ ; new R[n]→ Γ, p = R(0), p⊕ 1 = R(1), · · · , p⊕ n− 1 = R(n− 1); p

whereR denotes λo. 〈v; I(o); r(o)〉 and p is a fresh pointer such that p⊕1 · · · p⊕(n−1)
are also fresh in Γ .

This extended new can be used to allocate several pointers at the same time. These
pointers are all accessible by shifting the pointer returned by the allocation, and their
invariants can be different.

Arrays The pointer arithmetic extension can be used to build arrays. For example, the
following expression allocates a new array of positive integers:

new λo. 〈0;λp. !p ≥ 0; ∅〉[n]

However, the invariant of this array is split into each cell, which is handled sepa-
rately. A better solution would be to have one single invariant for the whole array:

let p = new 〈0; true; ∅〉[n] in
new 〈p; (λp′. !p′ ≥ 0); p⊕ [0..(n− 1)]〉

Note that the size of the rep pointer set depends on n. Another solution is to use the set
constructor p[?] meaning: “all valid shifts of p”.

This supposes that the cells of an array are exactly the valid shifts of its first cell.
This is possible in our extension thanks to the unconstrained operator ⊕ which doesn’t
have to link all pointers together; otherwise there could be only one array in the whole
program.

For pratical purposes, it is also handy to add packing and unpacking operations on
blocks p[?] of pointers. Without them, the user has to write a loop everytime an array is
opened or closed.

5 Using Invariants in Proofs

We assume that we can statically determine the invariant of a pointer. This strong re-
striction can be obtained by typing: the user defines a finite set of invariants and the
invariant of a pointer is added to its type. In Spec# or in Jessie, all objects of the same
class or structure have the same invariant.
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Problem Let’s assume that exampleE in section Sect. 3 has !p >!x as a post-condition
P . The generated proof obligation looks like (universal quantifications are omitted):

Γ x
1 = (x = 〈42; true; ∅〉) ⇒ Sx

1 = (x = ×) ⇒
Γ p

1 = (p = 〈0; !p >!x;x〉) ⇒ Sp
1 = (p = ◦) ⇒

Γ p
2 = store(Γ p

1 , p, 43) ⇒ Sx
2 = store(Sx

1 , x,⊗) ⇒
Sp

2 = store(Sp
1 , p,×) ⇒ select(Γ p

2 , p) > select(Γ x
1 , x)

where store and select are logic functions to, respectively, change and read the value of
a pointer in a memory map. For example, !p becomes select(Γ, p) in the logic, where Γ
is the current memory. Note how memory separation such as the “component-as-array”
model [3] or even finer separation using regions [10] allow to split Γ into several maps.
Here, we separated pointers x and p. We also separated values and states of pointers
using two maps: Γ and S respectively.

One way of proving P is to read the values of x and p using the hypotheses about
Γ x

1 and Γ p
2 . In this example, this is trivial; but usually it is not so simple. A much easier

solution would be to use the last hypothesis (p is closed) to apply the invariant of p. To
do so we need to apply Valid . But one cannot just add an axiom such as:

∀Γ, Valid(Γ ) (11)

This axiom is inconsistent; the quantification on Γ should be restricted to memories that
are actually produced by the program. In Spec# this is done using a predicate called
IsHeap. The VCG adds instances of this predicate in the proof-obligation hypotheses
and (11) becomes:

∀Γ, IsHeap(Γ ) ⇒ Valid(Γ ) (12)

With memory separation, we cannot instanciate IsHeap on all memory parts, oth-
erwise one could prove inconsistent instances of Valid such as Valid(Γ x

1 , Γ
p
1 , S

x
2 , S

p
2 )

which implies 0 > 42.

Solution In Jessie, we choose to bypass the use of IsHeap: the Valid predicate is in-
stantiated everytime the user might need it, and this instantiation is added as an assump-
tion in the hypotheses of the obligations the user has to prove. We add the following
hypotheses to the proof obligation for example E:

Valid(Γ x
1 , S

x
1 ) Valid(Γ x

1 , S
x
1 , Γ

p
1 , S

p
1 )

Valid(Γ x
1 , S

x
1 , Γ

p
2 , S

p
1 ) Valid(Γ x

1 , S
x
2 , Γ

p
2 , S

p
2 )

In theory, the user might need the Valid predicate to be instantiated everytime the
memory is modified, but this would pollute proof obligations with too many hypotheses.
In practice, we only instantiate Valid at the beginning of function bodies and loops, and
when the memory is modified. It is instanciated on the needed memory parts only.

Another possibility is to instantiate Valid only at the beginning of functions; the
user can then deduce the other instances of Valid . However, proving Valid can some-
times be quite difficult. Another drawback would be that we would lose some separa-
tion properties. Thanks to memory separation, memory can be split into (Γ, S) where
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Γ contains pointer values, and S contains pointer states (◦, × or ⊗). For example:

let x = new 〈1;λp. !p > 0; ∅〉 in e

A theorem prover can easily deduce that !x > 0 if it knows that e returns x packed, but
only if Valid has been added as an assumption after e.

Well-foundedness We are using Valid to prove some proof obligations, but Valid
only holds if the proof obligations have been proven. In this section, we show that this
is well-founded.

The proof obligations ensure, among other things, that an expression e1 which is
not a value reduces without errors:

If Valid(Γ1) then there exist Γ2, e2 such that Γ1; e1 → Γ2; e2 (13)

In particular, this means that invariants hold before packing, assigned pointers are open,
and so on.

We apply Theorem 1 (which does not depend on proof obligations) to extend (13):

If Valid(Γ1) then there exist Γ2, e2 such that Γ1; e1 → Γ2; e2 and Valid(Γ2) (14)

By applying (14) inductively, we show our final theorem:

Theorem 2. All instances of Valid introduced as assumptions are correct.

6 Example

This example is inspired by some Java code due to Müller [13]. We suppose an integer
array t of size n+ 1. The following Java code counts the number of positive integers in
the array, and then copies them into a new array u:

int i, j, count = 0;
for (i=0; i < t.length; i++)

if (t[i] > 0) count++;
int u[] = new int[count];
for (i=0, j=0; i < t.length; i++)

if (t[i] > 0) u[j++] = t[i];

We can encode this in our core language:

let i = new 〈0; true; ∅〉 in
let j = new 〈0; true; ∅〉 in
let count = new 〈0; (λp. !p = Card{k | 0 ≤ k ≤ n ∧ !(t⊕ k) > 0}); t⊕ [0..n]〉 in
while !i ≤ n do

(if !(t⊕!i) > 0 then count :=!count+ 1;
i :=!i+ 1);

pack count;
let u = new 〈0; true; ∅〉[!count] in
i := 0;
while !i ≤ n do

(if !(t⊕!i) > 0 then (u⊕!j :=!(t⊕!i); j :=!j + 1);
i :=!i+ 1)
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Pointer count has an invariant saying that its content is the number of strictly positive
integers in t. We prove it when packing count using a loop invariant on the first loop.

This illustrates several features of our core language: invariants on any pointer and
not just objects, pointer arithmetic, and memory separation support. Memory separation
is key to prove the safety of the accesses to u in the second loop. Indeed, j < count is
a loop invariant; but to show it we need to know that t is not modified by updates to u.
Memory separation gives this for free by separating t and u [10].

To show that j < count we also need the invariant of count, given by instanciating
the following predicate:

Valid(Γ t, Γ count, St, Scount) ≡
∀count, select(Scount, count) ∈ {×,⊗} ⇒
select(Γ count, count) = Card{k | 0 ≤ k ≤ n ∧ select(Γ t, (t⊕ k)) > 0}

This predicate is instanciated using the memory parts corresponding to the last time
count was modified, i.e., when it was packed. We only show the part of the predicate
needed to deduce the invariant of count.

7 Conclusion

We introduced a small language with pointers, an ownership system and invariants. It
was shown to be safe, and then extended with pointer arithmetic. As far as we know, this
work is the first attempt to formalize an ownership system with pointer arithmetic, and
thus applicable to the C language, although the VCC tool [16] implements a solution.
This extension offers multiple ways to specify array invariants: they can be split in each
cell, or a pointer on the array can be allocated with a global invariant for the array.

Our core language could be extended with several other features. In particular,
pointers could contain extensible records, which would model objects. As for pointer
arithmetic, this is mostly independent from the ownership system itself. Our language
is an attempt to generalize the Spec# methodology: invariants are not limited to object
fields and may depend on any pointer. This simplifies formal reasoning, and can be used
in languages without objects, or with invariants which are not necessarily defined for a
whole class.

We also showed how the safety properties of the ownership system can be instan-
tiated to be used when proving the proof obligations of the program. This was already
done with simple memory models, although to the best of our knowledge, formalizing
this method and proving its soundness is new. Moreover, our solution can be used when
the memory model features memory separation, as in the Jessie language in which is
was implemented.

Another lead for research could be the separation properties of the ownership system
shown in Sect 5. Invariant properties on the whole memory can be deduced from a small
part of the memory.

Acknowledgements Thanks to Claude Marché, Yannick Moy, to all the members of the
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Lock Inference Proven Correct
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Abstract. With the introduction of multi-core CPUs, multi-threaded
programming is becoming significantly more popular. Unfortunately, it
is difficult for programmers to ensure their code is correct because current
languages are too low-level.
Atomic sections are a recent language primitive that expose a higher
level interface to programmers. Thus they make concurrent program-
ming more straightforward. Atomic sections can be compiled using trans-
actional memory or lock inference, but ensuring correctness and good
performance is a challenge. Transactional memory has problems with IO
and contention, whereas lock inference algorithms are often too imprecise
which translates to a loss of parallelism at runtime.
We define a lock inference algorithm that has good precision. We give
the operational semantics of a model OO language, and define a no-
tion of correctness for our algorithm. We then prove correctness using
Isabelle/HOL.

1 Introduction

Programmers increasingly need to write multi-threaded programs to make full
use of the available hardware. When writing multi-threaded code, programmers
typically use the same data-structures and algorithms as sequential code. How-
ever, many simple sequential assumptions that allow local reasoning about pro-
gram behaviour no longer hold in a concurrent setting. For instance, one can
no-longer assume that the value stored in a variable is the value last written by
the local thread. Writing code that is robust enough to remain correct, despite
these weak semantics, is a mammoth task compared to writing sequential code
where the assumptions always hold.

In order to stay productive, programmers often try to make operations atomic

[15], using locks. If a block of code is atomic, a programmer can once again
make sequential assumptions and reason locally about the behaviour of his code.
Unfortunately, locks are extremely unforgiving. Small errors can cause the silent
loss of atomicity (an atomicity violation). Even if the locking code is sufficient for
atomicity, there are extra constraints that must be met to avoid deadlock. Finally,
even if programmers understand these details, they can have great difficulty when
writing large programs that have many complicated thread interactions.

Programmers create large programs using encapsulation. This allows them
to concentrate on small parts of the program without worrying about the rest.
However, in a concurrent scenario, it is not possible to lock successfully with-
out having intimate knowledge of the behaviour of any called functions. If the
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internal behaviour of a function changes, it may be necessary to update locking
code in distant parts of the program, to reflect these changes. Thus programmers
lose encapsulation and consequently have to reason about much more than just
the local code and state. The loss of encapsulation results in the perception of
concurrent programming as prohibitively difficult.

The difficulty of using locks has led to the introduction of a new language
primitive - the atomic section. Using this primitive, programmers need only des-
ignate an arbitrary block as an atomic section and the implementation does any
global reasoning and instrumentation required so that sequential assumptions
hold. Thus, programmers can make these assumptions, without having to write
complex locking code, and without losing the benefits of encapsulation.

The problem moves from the application programmer to the language imple-
mentation, which must output code without atomicity violations, and without
sacrificing parallel performance. Whatever mechanisms are used by the imple-
mentation, they must be used carefully. Any emergent behaviours such as dead-
locks must be prevented or otherwise not exposed to the programmer, who should
be able to use atomic sections free from implementation-specific constraints.

Current implementations of atomic sections use either transactional memory
[1, 17] or lock inference [11, 9, 5, 3]. Transactional memory relies on being able to
rollback blocks of code whose atomicity has been violated, but in general this
means it cannot allow I/O or system calls in atomic sections. This restriction
cannot in general be hidden from the programmer. Lock inference does not have
this problem, but relies on precise static approximation of program behaviour.
The more precise the inference, the more threads are allowed to execute in paral-
lel. Programmers should not have to design their code so that the lock inference
can easily understand it.

Our lock inference algorithm [5] is designed to give good precision. Whereas
previous work relies on pointer analysis to statically model program behaviours,
we use a more direct approach that has more in common with how programmers
infer locks manually. However since our approach does not make such extensive
use of proven technology, its correctness is brought into question. The contri-
bution of this paper is a notion of correctness for our analysis, and an account
of our experience proving it in the Isabelle proof assistant. In Section 2 we give
examples showing how our analysis works. In Section 3 we formalise a model
Object-Oriented language, our lock inference algorithm, the notion of correct-
ness that binds them together, and describe our experience with Isabelle. In
Section 4 we compare to related work and we conclude with Section 5.

2 Approach

We use a two phase locking protocol [8]. We derive a set of locks that we acquire
before the atomic section and release afterwards. Our inference therefore takes
an atomic section as input, which we call a program. We henceforth assume
that atomic sections have already been converted into Control Flow Graphs
(CFGs) and are therefore ready for program analysis. For simplicity, we assume
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Fig. 1. Two example atomic sections

that atomic blocks are never nested1. We use a runtime mechanism that detects
when a thread’s lock acquisition would cause a deadlock [14] and rolls back all
the lock acquisitions of that thread. Since lock acquisitions are together at the
beginning of the atomic section, no transaction log is required to facilitate the
roll back. We also assume everything accessed from an atomic section is shared
between threads, and everything shared between threads is only accessed from
atomic sections. We will discuss sharing more in section 5.

Consider the atomic section in Fig. 1. We use a backwards ‘may’ analysis to
infer a set of locks at each edge. We assume every object has a lock that protects
it, as in Java. Starting at node 6, we first infer a lock to protect the access of the
object tmp_tyre. This propagates towards the beginning of the atomic section,
where lock acquisition code is inserted. However, we have to translate locks as
they are propogated to account for the statements they pass through. E.g. at
node 5, bus.tyre is assigned to tmp_tyre, so acquiring the lock on tmp_tyre

before node 5 does not help us ensure atomicity since it is not the object accessed
at node 6. However, the correct object is held in bus.tyre so we can lock that
instead. Also at node 5, a lock is inferred to protect the access of bus.

At node 4, we infer a lock to protect the veh access, but we also need to
lock spare_tyre. This is because veh and bus may be aliases, and thus it may
have been spare_tyre that was pressurised. In general we do not know, so we
approximate. In this case we include both the bus.tyre lock (not aliased case)
and the spare_tyre lock (aliased case).

In both branches of the conditional, there is a copy statement. At node 3,
we translate veh to bus but since the set already contains bus, we effectively
lose veh. Node 2 is similar. Since we do not know which branch will be chosen
at node 1, we take the union of the two branches to form the final result. It is
this set of locks that we hold for the duration of the atomic section.

1 At runtime, one can set a flag that disables the inferred locks of inner atomic sections.
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The right hand side of Fig. 1 is an atomic section that iterates over objects.
Here, the algorithm as described above would not terminate. To force the analysis
to terminate, we use a nondeterministic finite automaton (NFA) [12] at each
edge, instead of the set of locks. When they contain a cycle, NFAs can finitely
represent the unbounded set of objects accessed by such iterations. We call such
NFAs path graphs.

There are many subtle mechanisms at work in our approach – e.g. the transla-
tion of locks across assignments, the handling of aliasing, and the use of NFAs to
force termination. One could be forgiven for not immediately having confidence
in the correctness of our algorithm. Fortunately, we can prove its correctness, as
we will shortly demonstrate.

3 The Formal System

We will now give a syntax and semantics for a small Java-like language, the
program analysis transition functions over this language, and then prove that the
given transition functions infer correct locking information. Notation: A ⇀ B

is the type of a partial map, [a 7→ b, c 7→ d] is a partial map that maps a to b

and c to d. We use _ to indicate an anonymous variable. We denote the empty
sequence with ε and use . to prepend values onto sequences. Sometimes, for
readability, we use commas instead of logical conjunctions (∧).

3.1 Syntax and Semantics

We analyse atomic sections independently, which we refer to as Programs. We
assume programs have already been converted to a control flow graph (CFG)
representation, where function calls are handled using bounded callstrings to
approximate recursion at a fixed depth [18].

We let x, y, z range over local stack variables, f, g range over fields. Every
CFG node has a unique id n chosen from some countable set Node. Thus our
program P is defined in Fig. 2. In order, the statements are copy assignment,
object construction, heap load, heap store, and condition. Every statement has a
given successor n which is where execution proceeds after that statement, except
the condition 〈n; n′〉 which non-deterministically chooses to continue execution
from either n or n′. If a node has the successor n where P (n) is undefined then
the atomic section terminates. The right-hand program in Fig. 1 is therefore
P = [1 7→ 〈3; 2〉, 2 7→ [x = x.n; 1]], note that P (3) is undefined.

We now give a model of the accesses incurred by an execution of a program
P (we are not interested in the resulting heap or stack). This model is abstract,
but not static. We have a judgement P ⊢ h, σ, n  A. The intuition is that the
sequence of actions A are performed by an execution of P , from the initial heap
and stack h, σ and from the initial CFG node n. To represent non-terminating
executions, we allow the execution to cease at any point. The sequence A may
thus be shorter than a completed execution. However, our correctness theorem
generalises over A, so it covers complete as well as incomplete executions. Note
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P ∈ Program = Node ⇀ Statement
st ∈ Statement ::= [x = y;n] | [x = new; n] | [x = y.f ; n] | [x.f = y; n] | 〈n; n′〉

a ∈ Addr = N
v ∈ V alue ::= a | null
h ∈ Heap = Addr ⇀ Object

Object = Field → V alue

f, g ∈ Field
σ ∈ Stack = V ar ⇀ V alue

x, y, z ∈ V ar
α ∈ Action = a | τ

(Stop)

P ⊢ h, σ, n ε

P (n) = [x = y;n′] (Copy)
P ⊢ h, σ[x 7→ σ(y)], n′

 A

P ⊢ h, σ, n τ.A

P (n) = 〈n′; n′′〉 (Cond)
P ⊢ h, σ, n′

 A ∨ P ⊢ h, σ, n′′
 A

P ⊢ h, σ, n τ.A

P (n) = [x.f = y; n′] (Store)
a = σ(x)
P ⊢ h[(a, f) 7→ σ(y)], σ, n′

 A

P ⊢ h, σ, n a.A

P (n) = [x = new; n′] (New)
a /∈ dom(h)
P ⊢ h[a 7→ λf.null], σ[x 7→ a], n′

 A

P ⊢ h, σ, n τ.(A[a 7→ τ ])

P (n) = [x = y.f ; n′] (Load)
a = σ(y)
P ⊢ h, σ[x 7→ h(a, f)], n′

 A

P ⊢ h, σ, n a.A

Fig. 2. Syntax and Semantics of Execution Model

that while the language does not allow assignment of null, the runtime uses null
as a default field value, and allows null to be stored on the stack. Assignment
of null can thus be encoded by reading an uninitialised field.

We can consider the execution of the above example P in the heap h = [1 7→
(n 7→ 2), 2 7→ (n 7→ 3), 3 7→ (n 7→ 3)] and the stack σ = [x 7→ 1]. The heap is
undefined at addresses other than 1, 2, 3, and by abuse of notation, fields other
than n are null. The execution would normally not terminate because the “list”
contains a cycle. However, the judgement P ⊢ h, σ, 1 1.2.3.ε holds regardless.
It is also true that P ⊢ h, σ, 1 1.2.ε and in fact ∀P, h, σ, n : P ⊢ h, σ, n ε.

Note that we do not record accesses of objects that are constructed by P , due
to the substitution in (New). This is because the locks that we infer will ensure
that the new object remains thread-local until the end of the atomic section, so
we do not have to infer a lock for constructed objects.

3.2 Analysis Transition Functions

To infer locks that make P execute atomically, we use a backwards ‘may’ analysis
to infer a static approximation of the set of objects, the path graph, accessed by
P . This is in contrast to the complete set of possible A such that P ⊢ h, σ, n A,
which cannot be known statically.

Our representation of P is a control flow graph (CFG). At each CFG edge
we accumulate a path graph, which is a special kind of nondeterministic finite
automaton where every state is an exit state. A path graph is a finite repre-
sentation of a potentially infinite set of locks, e.g. for the iteration example in
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Fig. 1, we do not infer the infinite set of locks {x, x.n, x.n.n, . . .}, rather the
finite path graph {x → 2, 2 →n 2}. First we will give a formal definition of
path graphs, then we give the formal transition functions that show how path
graphs are pushed around the CFG as the analysis reaches its fixed point. The
definitions are in Fig. 3. We lock a path graph using multi-granularity locks. We
first remove nodes involved in cycles, locking all objects that have the same type
as those nodes. We then take the set of paths through the path graph and lock
them in prefix order, ignoring any objects whose types are already locked.

Edge ::= x → n | n →f n′

G ∈ PathGraph = P(Edge)
X ∈ AnalysisState = Node → PathGraph

acc : Node → Statement → PathGraph
tr : Node → Statement → PathGraph → PathGraph

acc(n)[x = y;_] = ∅
acc(n)[x = new;_] = ∅

acc(n)[x = y.f ;_] = {y → n}
acc(n)[x.f = y;_] = {x → n}

tr(n)[x = y;_](G) = G \ {x → n′|x → n′ ∈ G} ∪ {y → n′|x → n′ ∈ G}
tr(n)[x = new;_](G) = G \ {x → n′|x → n′ ∈ G}
tr(n)[x = y.f ;_](G) = G \ {x → n′|x → n′ ∈ G} ∪ {n →f n′|x → n′ ∈ G}
tr(n)[x.f = y;_](G) = G \ {n′ →f _|x → n′ ∈ G,

(∄z 6= x : z → n′ ∈ G),

(∄n′′′ : n′′′ →_ n′ ∈ G)}
∪ {y → n′|_ →f n′ ∈ G}

Fig. 3. The analysis

The state of the analysis, X , stores a path graph at each CFG node, which
represents the path graph at the edges pointing into that node. For conditional
nodes P (n) = 〈n′; n′′〉, we simply have X(n) = X(n′) ∪ X(n′′), as is standard
with backwards ‘may’ analyses. For all other nodes n, where P (n) = [st; n′],
we calculate X(n) as follows: X(n) = acc(n)(st) ∪ tr(n)(st)(X(n′)). The access
function acc provides the locks required to protect accesses performed by the
local node n. The translation function tr translates path graphs from below n

so that their meaning is preserved in spite of the changes to the heap and stack
caused by n.

The access function adds locks to protect load and store statements, and
otherwise adds nothing. The translation functions we will explain one at a time.
Copy statements are handled simply by replacing x → n′ with y → n′ (for
any n′). Construction is similar except it only removes edges. Accesses are ‘lost’
when they propagate through construction because the analysis realises that
the object accessed is actually thread-local and therefore does not need to be
locked. Loads are similar to copies, except that the x → n′ edge gets replaced by
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a n →f n′ edge. This only makes sense if we can guarantee that an edge y → n

exists in the new path graph. This is easily shown, however, since the access
function adds precisely this edge. The case for store is (as one would expect) the
most complicated. First, we can see that it adds an edge from y to any node
in the path graph that might have been affected by the assignment to the f

field. This is because we conservatively assume everything can be an alias of
everything else. However, we know syntactically that x is an alias of x, so we
can remove any x.f accesses from the path graph. At node 4 of Fig. 1, we have
veh.tyre = spare_tyre, and below we have X(5) = {bus → 5, 5 →tyre 6}. We
therefore add the edge {veh → 4} due to the access function acc. We also add
{spare_tyre → 6} due to the last part of the translation function tr. There is
no veh → 5 in X(5), but even if there was, we would still not subtract 5 →tyre 6
from X(5) because bus → 5 is present.

When the analysis reaches a fixed point, we know that the path graph X(n)
at every node n satisfies the constraints in Fig. 3. We denote this with P ⊢ X .

3.3 Soundness

We want our inferred path graph at the initial edge X(n) to represent at least
the addresses accessed by the program as it executes. For this we need a con-

cretisation function γ that interprets X(n) in a given stack and heap to reveal
which addresses it statically represents. We overload this function to also extract
the addresses from a sequence of actions A (i.e. ignoring duplicate addresses and
τ actions). We can state the theorem we want to prove:

Theorem 1. Soundness:

P ⊢ h, σ, n A

P ⊢ X

}

=⇒ γ(A) ⊆ γ(h, σ, X(n))

Proof: Induction over length of A.

This intuitively says that whatever may be accessed by an execution beginning
from n, these accesses will be represented by the path graph at that node in the
fixed point of the analysis. It remains to see how to define γ in the case of path
graphs.

3.4 Assigning meaning to path graphs

We now consider an arbitrary path graph G and an assignment ϕ which maps
each node in this path graph to a set of addresses. We will define γ by flatten-
ing an appropriate ϕ, i.e. just keeping the set of addresses mapped by ϕ and
forgetting at which node they occur.

Definition 1. Valid assignments:

h, σ ⊢ G : ϕ ⇐⇒ (∀x 7→ n ∈ G : σ(x) ∈ ϕ(n)) ∧
(∀n →f n′ ∈ G : {h(a, f)|a ∈ ϕ(n)} ⊆ ϕ(n′))
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The intuition is that if the path graph contains the edge x → n then we want
ax = σ(x) to be present in ϕ at n. However, if the stack is undefined at that
variable, or if it is null then we ignore it. If the stack contains a valid address
ax for x, and G also contains n →f n′ then we want h(ax, f) to be present at n′,
unless that address is not defined on the heap2 or the field contains null. We
want addresses to flow around the path graph, initially with stack lookups, and
then using the heap to follow field edges and find more addresses. Even if the
path graph contains a cycle, such as with our linked list example, then the set
of addresses involved can remain finite since the heap is finite. This is a purely
theoretical mechanism to allow us to realise a path graph in a given stack and
heap. At run-time we will use multi-granularity locks to effectively lock many
more addresses than ϕ. To formally represent the flowing around the path graph,
we give a judgement h, σ ⊢ G : ϕ, and we let γ(h, σ, G) be the flattened minimal
ϕ that satisfies h, σ ⊢ G : ϕ. We say that an assignment is valid in the context
of some h, σ, G if it satisfies this judgement.

Note that there will likely be many valid ϕ for a given h, σ, G. In particular,
∀h, σ, G : h, σ ⊢ G : ϕmax where ϕmax = λn.Addr. There will, however, be
one minimal ϕ for a particular h, σ, G. We can define a partial ordering over
assignments by lifting ⊆ point-wise: ϕ1 ⊑ ϕ2 ⇐⇒ ∀n.ϕ1(n) ⊆ ϕ2(n). We also
let ϕ1 ⊓ϕ2 = λn.ϕ1 ∩ϕ2, i.e. the point-wise intersection of the two assignments.

Theorem 2. Valid assignments join to make valid assignments:

h, σ ⊢ G : ϕ1

h, σ ⊢ G : ϕ2

}

=⇒ h, σ ⊢ G : (ϕ1 ⊓ ϕ2)

Proof: Follows from the definitions.

If we define the minimal assignment:

Φ(h, σ, G) =
d
{ϕ|h, σ ⊢ G : ϕ}

Using the above theorem, we know that h, σ ⊢ G : Φ(h, σ, G). Clearly, there
cannot be any other valid ϕ ⊏ Φ(h, σ, G). Now we can finish our notion of
correctness by defining γ(h, σ, G) = flatten(Φ(h, σ, G)).

3.5 Proof

We have proved correctness in Isabelle/HOL using Proofgeneral [2]. The file is
800 lines long, takes 30 seconds to process on a 3GHz P4, and is available online
[6]. Aside from basic notation, explicit quantifiers, and explicit handling of the
cases where partial maps do not contain a mapping from a particular value, the
Isabelle/HOL formalism is identical to the one considered here.

Theorem 2 and many auxiliary lemmas were proved automatically. Theorem
1 was a long proof but often the final stages of each case were automatic. In

2 Although this cannot happen in a language like Java, for simplicity our formalism
permits initial stacks/heaps to contain undefined addresses.
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particular, the extra details that are required in a proof assistant (but usually
omitted in a hand-written proof) can usually be handled automatically at the
beginning or end of the proof. We originally proved correctness with a slightly
different formalism that had an extra parameter in the execution judgement to
accumulate the constructed objects and needed only primitive recursion on A

in the (New) rule. We later converted this to the form given in the paper. The
conversion required us to manually intervene in the proof, but in all cases except
(New) this was very easy, needing only the removal of any references to the
extra parameter. Our overall experience with Isabelle was positive, and we enjoy
having greater confidence in the correctness of our proof.

4 Related Work

As our work is an implementation of atomic sections we compare it first with the
more popular atomic section implementation technique of transactional memory
and then with other lock inference techniques.

Transactional memory [10, 1, 17] has trouble with I/O, which presents no
problem with lock inference approaches. Conversely, transactions (being dy-
namic) can handle reflection easily, whereas lock inference has to be conservative.
Particularly, plugin systems can cause problems for lock inference, but we expect
that JIT techniques would be a solution. Transactional memory needs compiler
support to instrument code with logging mechanisms, but lock inference requires
much more compiler support in the form of complex analyses. Conversely, trans-
actions use a lot of runtime mechanisms to detect conflict and rollback, whereas
lock inference only needs locks at runtime. In terms of performance, transac-
tions can waste cycles rolling back, but have perfect granularity. Lock inference
must use conservative approximation and thus will always have worse granular-
ity than transactional memory. However, the granularity of lock inference is still
reasonable, and can be very good if ownership types are available [4].

Lock inference algorithms have become more precise over time. Initially they
used only points-to sets to statically characterise objects with very coarse granu-
larity [19, 11], or if they did have better precision, they restricted assignment and
required annotations [16]. More recently, custom alias analyses have been used
to allow instance locks without annotations, falling back to static locks if aliasing
is uncertain [7, 9], but the choice of instance/static locks was still on a per-object
basis. Only recently [5, 3] have multi-granularity locks been used to allow the in-
stance/static distinction on a per-atomic-section basis. Also, only recently have
analyses begun to use translation techniques to handle assignment [5, 3] without
coarsening the lock granularity. One key difference between our approach and [3]
is that they force termination with a simple static bound, whereas we represent
cycles accurately within an NFA. The program analysis used by Khedker et al.
[13] was very similar to ours, but there it is used to infer object liveness for the
purpose of accelerating garbage collection. We believe our approach is the only
one that prevents deadlock with a dynamic mechanism. The other approaches
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attempt to statically order lock acquisitions, falling back to static locks if this is
not possible.

One contribution of Cherem et al. [3] is a framework for specifying and com-
bining lock inference approaches. Although they distinguished between derefer-
encing and object offset, whereas we just use fields, we believe our NFA approach
can be represented in this framework. However, it is less useful because our ap-
proach is monolithic, supporting all the features we need without needing to be
combined with other analyses. Another contribution of the above is a notion of
correctness that is intuitively similar to ours, but specialised for their approach.

5 Conclusion

We have proved that our lock inference infers at least the objects accessed by
the body of an atomic section. Since we use a two phase locking discipline,
we therefore know that the atomic section executes atomically. It may not be
clear why we used a single-threaded semantics; e.g., how can we be sure that
other threads won’t change the state so that the locked object was not the one
accessed? We get this property for free from the locking discipline, since we lock
any shared memory accessed.

We assume that all shared memory accesses occur in atomic blocks, a prop-
erty that all the more efficient atomic section implementations require. In prac-
tice, both lock inference and transactional memory would greatly benefit from
a type system to distinguish between thread-local and shared memory (e.g. [17,
1]), since thread-local state need not be protected by locks or logged by a trans-
action. Some may argue that such a type system would restrict programmers,
but choosing between shared and thread local memory is already an important
design decision that programmers often document with comments. The type
system would enforce these comments by ensuring that local memory is never
shared, and shared memory is always accessed within atomic sections.

Our analysis supports read/write locks for better precision, but we omitted
this detail for simplicity. We could extend the proof to additionally require that
the path graph node where an address is represented is the same as the CFG node
where the access occurs during execution. Knowing the statement is sufficient
to know what kind of access occurred there. The path graphs already store this
information, but in the proof presented here we “flattened” this detail.

Our previous paper gave an implementation that released locks as early as
possible, by calculating the difference between the CFG edges either side of each
node. It would be good to prove that this is correct and we hope to do that
soon. We are working on an implementation for Java, using Soot, that correctly
handles features like arrays, functions, exceptions, constructors, finalizers, static
initializers, and static members. Extending the proof to cover these constructs
is also left as further work.

We believe that using ownership types would give us much better granularity
when converting path graphs to actual locking code [4]. For instance, we could
lock only the nodes that are iterated through, in a list, rather than every node
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in the system. We have avoided using ownership types until now because of the
type annotations required. Inferring ownership type annotations would therefore
be a useful subject for further work. We believe that with ownership types and
knowledge of thread locality, we can infer locks with granularity equivalent or
better than manual locking, and additionally with guaranteed correctness.

Acknowledgements We thank the anonymous reviewers for their helpful com-
ments.
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An Operational Semantics including “Volatile”
for Safe Concurrency?
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Abstract. In this paper, we define a novel “write-key” operational se-
mantics for a kernel language with fork-join parallelism, synchronization
and “volatile” fields. We prove that programs that never suffer write-key
errors are exactly those that are “data race free” and also those that are
“correctly synchronized” in the Java memory model. This 3-way equiv-
alence is proved using Twelf.

1 Introduction

This work is motivated by the desire to define a type system for a Java-like
language to prevents data races. Data races are intrinsically a multi-threaded
issue. However a scalable type system or program analysis analyzes each thread,
indeed every method body separately, using invariants and annotations to ensure
that interactions follow desired patterns. It is well known that deadlock can be
prevented by requiring that mutexes be acquired in strictly increasing order.
Here we show how we can characterize programs without data races in a similar
way, that is without explicitly needing to refer to multiple threads.

There are different understandings of what a data race is. At an intuitive
level, a data race occurs when an execution of a multi-threaded program leads
to the point where two conflicting accesses in two different threads occur “at the
same time.” Two accesses are conflicting if they are to the same object’s field
and one of them is a write. Somewhat more precisely, the current Java mem-
ory model (JMM) [15] defines a “happens before” partial order; a program is
correctly synchronized if in all sequentially consistent executions, two conflict-
ing accesses are always ordered by “happens before.” Reading and writing of
“volatile” fields affect the “happens before” order and thus whether a program
is correctly synchronized. Both of these techniques explicitly involve reasoning
about multiple threads at once.

This paper addresses this situation with the following contributions:

– It defines a simple imperative language with Java-style (re-entrant) monitors,
volatile fields and fork-join parallelism. A novel aspect of the operational

? Work supported in part by the National Science Foundation (CCF-0702635). The
opinions expressed here are not necessarily those of the National Science Foundation
or the US Government.
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semantics is that the system constructs and passes “write keys” to simulate
the “happens before” relation.

– The paper defines that a program is data-race free if no execution has a
“write-key error” in which a thread attempts to access a (non-volatile) field
for which it does not possess the write key.

– It is proved that this characterization is equivalent both to the intuitive con-
cept of lack of “simultaneous” conflicting accesses, and to the JMM-inspired
definition of “happens before”-ordered accesses. The proof is mechanically
checked in Twelf’s metalogic [17].

A corollary to the last contribution is that the two earlier conceptions of data-
race freedom are equivalent, a result that I have not seen previously.

The advantage of the “write-key error” conception for data races is that
write-key errors are detected (and can be prevented) thread locally. In other
words, if a type system can ensure for each thread that it always possesses the
write keys for the (non-volatile) fields that it accesses and that it has exclusive
access to fields it writes, then the entire program is thread safe. Moreover, since
a write-key error causes a thread to get stuck in our semantics, and since (full)
deadlocks always means the program as a whole is stuck, then if a type system
enjoys “progress” and “preservation” over the operational semantics, then per
force the type system will also prevent race conditions.

2 Background on the Current Java Memory Model

This section briefly describes multi-threading primitives in Java and the “hap-
pens before” relation of the current Java Memory Model.

In Java, a new thread can be started which executes a given run method; we
call this a fork action. At the other end, one may wait for a thread t to complete
execution by executing t.join(); this is a join action. Thread mutual exclusion
is effected by “synchronizing” on an object o: synchronized (o) { body }. The
runtime system ensures that two separate threads that both synchronize on
the same object (known by its role as a mutex ) mutually exclude each other’s
“body” instructions. When a synchronized block is executed, it first attempts
to acquire the mutex, blocking if some other thread is currently executing a
synchronized block on the same object. Once acquisition is successful, the body
is executed after which the mutex is released. Synchronized statements in Java
are “re-entrant” in that if a synchronization block is nested dynamically within
another synchronization block on the same object, the inner synchronization
succeeds immediately.

Fields in Java may be declared as “volatile.” This designation may be seen as
a declaration that these fields will be read and written without mutual exclusion.
More importantly, accesses to volatile fields (denoted readv and writev) constrain
the memory model.

A memory model is a contract between the programmer on the one hand and
the compiler and the runtime system on the other hand. The most informative
model for programmers is a “sequentially consistent” model that indicates that
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execution will always be consistent with a system in which the thread interleaving
of instructions ensures that each instruction fully executes before the next starts.
Sequential consistency however is very limiting for a compiler. Consider the
following situation where two threads are executing in parallel, x and y represent
shared mutable locations and rn represent thread local “registers.”:

Initially x = y = 0
x = 1 r2 = y
y = 2 r1 = x

In a sequentially consistent execution, no interleaving of the threads could result
in r1 = 0, r2 = 2. Thus a compiler would not be permitted to reorder the two
write actions even though they have no data dependencies.

For such reasons, most memory models only guarantee sequential consistency
for fields declared “volatile.” For other fields, threads must use mutual exclusion
techniques. The (intuitive) guarantee for normal (non-volatile) fields is that if
a program is data-race free, that is, if no sequentially consistent execution ever
exhibits a “race condition” for a normal field, then that program will enjoy
sequentially consistent semantics. A race condition is when one thread is ready
to write an object’s field when another thread is ready to read or write the same
object’s field. If a program could exhibit a race condition under a sequentially
consistent semantics, then most memory models usually do not guarantee a
sequentially consistent semantics. In the small example given above, there is a
race condition. Thus a compiler is justified if it wishes to reorder the statements,
even though this reordering violates sequential consistency.

In the current Java memory model (JMM) [15], the guarantee is expressed
in a different way. First, a “synchronizes with” relation is defined:

1. A release action synchronizes with an acquire action on the same object;
2. A writev action synchronizes with a readv action on the same object’s field;
3. A fork action synchronizes with the first action in the spawned thread;
4. The last action in a thread synchronizes with a join action on that thread.

Additionally the default initialization of a field (with null for reference types)
synchronizes with all actions in all threads.

Then the “happens before” partial order is defined as the transitive closure
of (1) the intra-thread execution order and (2) the “synchronizes with” relation
over actions already ordered by the execution.

Specifically of interest to the present paper, the JMM defines what it means
to be “correctly synchronized”:

A program is correctly synchronized if and only if in all sequentially
consistent executions, all conflicting accesses to non-volatile variables
are ordered by “happens-before” edges.

The JMM (and generalizations [18]) guarantees that a correctly synchronized
program will observe sequentially consistent semantics. This guarantee appears
rather different than that expressed concerning “data race free” but as proved
in Sect. 5, the definitions are equivalent for our small concurrent language.

FTfJP 2008  - 38



class Node {

Node next;

Node(Node n) { next = n; }

Node getNext() { next; }

int count() {

if this == null then 0

else 1 + next.count();

}

Node copy() {

if this == null then null

else new Node(next.copy());

}

Node nap(Node n) {

if this == null then n

else (next = next.nap(n);

this);

}

void add1() {

this.nap(new Node(null));

}

}

Fig. 1. A simple node class.

class Race {

Node nodes;

Race() { }

int get() {

nodes.count();

}

void inc() {

nodes = nodes.add1();

}

}

class Main {

void main() {

let t = new Race() in

( fork { t.inc(); t.get(); }

t.inc(); t.get() );

}

}

Fig. 2. A class with an unprotected field;
and a test harness.

3 Example

Figure 1 declares a node class. The surface syntax resembles Java, but method
bodies contain expressions, not statements. For instance, getNext() returns the
next field. The count method shows another difference: since the language omits
dynamic dispatch for simplicity, one can call methods on null references. In the
body, one may test for null. In this way, we can model so-called “static” methods.
The copy method performs a deep copy; nap does a destructive append; add1
extends the list by one node. The Node class has mutable state and thus cannot
be safely used in a concurrent program without additional restrictions.

We now define several different classes wrapping a node list with the same
interface: an inc method that adds to the list and a get method that counts the
size of the current list. The first implementation, Race (Fig. 2), does nothing to
protect the list. The main program forks off a thread that calls inc and get and
then proceeds to do the same calls in its own thread. Lacking synchronization,
the call t.inc() in one thread conflicts with t.inc() or t.get() in the other.

The traditional technique (“standard practice”) for protecting mutable state
is to designate a protecting object for each piece of mutable state (one object may
protect many others) and ensure that all accesses to the state occur dynamically
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class Traditional {

Node nodes;

int get() {

synch (this) do

nodes.count();

}

void inc() {

synch (this) do

nodes = nodes.add1();

}

}

Fig. 3. Traditional approach.

class UsingVolatile {

volatile Node nodes;

int get() {

nodes.count();

}

void inc() {

synch (this) do

nodes = nodes.copy().add1();

}

}

Fig. 4. Using volatility.

only within a synchronization on the protecting object. For example, see class
Traditional in Fig. 3; the bodies of the methods get() and inc() include
synchronizations around the access of the mutable state.

If get() calls are frequent and updates very infrequent, one can do better
with a less-known pattern using volatile variables. Figure 4 shows how a volatile
field can substitute for synchronization. The reading method can simply access
the nodes directly using a volatile field read, and then traverse the list without
synchronization. The incrementing method copies the structure before modifying
it, to avoid interfering with get calls. Furthermore, inc is synchronized to ensure
that two increments are not carried out in parallel (to preserve “atomicity” [9],
an important concept beyond the scope of this paper). We permit interleaving
of get() and inc() calls since the inc() method never updates state the get()
method can see, except for the volatile field.

4 Operational Semantics

This section defines the syntax and dynamic semantics of the paper’s kernel
concurrent language. The set of all fields is F . A subset FV ⊆ F are “volatile”
and one (Lock ∈ FV ) holds the state of the mutex associated with each object.

4.1 Syntax

Figure 5 gives the syntax. For simplicity, we omit primitive types and arithmetic
operators. Expressions include literal object references (natural numbers) and
uses of local variables. A new object can be allocated with the given set of fields.
Fields of objects can be read or written. The “let,” “if” and “while” constructs
are conventional. Procedure calls are included, but not dynamic dispatch because
the details would obscure the emphasis of this work.

The concurrency-related terms are fork-join terms (fork creates a new thread
and starts it; and join waits for it to terminate) and synchronization (synch
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e ::= expression term:
o literal reference
x program variable
new (f) allocation
e.f field read
e.f:=e field write
let x=e in e local
if c then e else e conditional
while c do e loop
m(e) procedure call
fork e fork a thread
join e get thread result
synch e do e synchronization
hold o do e . . . in execution
e1;e2

∆
= let =e1 in e2

c ::= conditional term:
true true
not c negation
c and c conjunction
e == e equality

false
∆
= not true

c or c′
∆
=

not(not c and not c′)

t ::= e | c term
d ::= m(x) = e procedure definition
g ::= d;...;d program

Fig. 5. Syntax.

and hold). A hold expression is used to indicate that this thread is currently
executing a synch statement.

The examples in the previous section use a surface syntax with classes, meth-
ods and types. A simple translation (not shown) can strip out these features.

4.2 Semantics

This section defines the small-step operational semantics. Novel here is the use
of “write keys.” Write keys allow us to separate the notion of “happens before”
from considering the execution of multiple threads and instead look at a single
thread at a time. A (possibly new) write key (a natural number) is generated
whenever a normal field is written. This field is added to the knowledge of the
thread that performed the write. Knowledge is monotonically non-decreasing.
Write keys are passed from one thread to another during synchronization actions
indirectly through memory. In this way, if a write in one thread happens before
the read in the other thread, the read is guaranteed to have the necessary key.

The main evaluation relation (µ; θ;κ) −→
g

(µ′; θ′;κ′) relates triples:

µ maps a location (o.f) to a pair (W, o′) of a set of write keys and a value. For
a normal field, W = {w}, where w is the key from the most recent write; for
a volatile field, W is the set of keys from all threads having written it.

θ maps a thread identifier (natural number) to the expression that the thread
is currently executing.

κ maps a thread identifier to its set of known write keys.
g lists the procedure definitions.

The following notation is used for map update:

f [x 7→ v](x′) =
{

v if x = x′

f(x) otherwise f [x
©7→ v] = f [x 7→ f(x) © v]
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T[•] ::= • | T[•].f | T[•].f := e | o.f := T[•] | m(o,T[•],e)
| let x=T[•] in e | if T[•] then e else e | synch T[•] do e
| hold o do T[•] | T[•] and c | not T[•] | T[•] == e | o == T[•]

Eval
θp = T[t] (µ; θ;κ; t)

p−→
g

(µ′; θ′;κ′; t′)

(µ; θ;κ) −→
g

(µ′; θ′[p 7→ T[t′]];κ′)

E-Call
g = ...; m(x) = e; ... |x| = |o|

(µ; θ;κ;m(o))
p−→
g

(µ; θ;κ; [x 7→ o]e)

E-Let
(µ; θ;κ; let x = o1 in e2)

p−→
g

(µ; θ;κ; [x 7→ o1]e2)

E-If
(µ; θ;κ; if c then etrue else efalse)

p−→
g

(µ; θ;κ; ec)

E-While
(µ; θ;κ; while c do e)

p−→
g

(µ; θ;κ; if c then e; while c do e else 0)

E-NotNotTrue
(µ; θ;κ; not false)

p−→
g

(µ; θ;κ; true)
E-AndTrue
(µ; θ;κ; true and c)

p−→
g

(µ; θ;κ; c)

E-AndFalse
(µ; θ;κ; false and c)

p−→
g

(µ; θ;κ; false)

E-EqualTrue
o = o′

(µ; θ;κ; o==o′)
p−→
g

(µ; θ;κ; true)

E-EqualFalse
o 6= o′

(µ; θ;κ; o==o′)
p−→
g

(µ; θ;κ; false)

Fig. 6. Non-concurrency-related evaluation rules.

Evaluation proceeds using Eval: a thread is chosen non-deterministically
and evaluates one step. Here (µ; θ;κ; t)

p−→
g

(µ′; θ′;κ′; t′) states that thread p in

program g makes progress by converting t into t′ while side-effecting µ, θ and κ.
For explanatory reasons, the evaluation rules are presented in two groups.

The first group of evaluation rules (Fig. 6) are those that have no side-effects. A
procedure call uses rule E-Call once all the parameters are evaluated: we find a
procedure in the program with the correct number of arguments and replace the
call with the procedure body, substituting the parameters. A let-bound variable
is substituted in the body once its value is ready. An if with a constant boolean
is evaluated by choosing the appropriate branch. A while loop is converted
immediately into an if. Conditions use short-circuit evaluation (E-AndFalse).

Figure 7 includes the remaining evaluation rules. As mentioned previously,
normal fields are associated with a write key that indicates what knowledge
is needed to read the field. When a new expression is encountered, all of the
fields are initialized with null using a write key (0) that all threads know. (This
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E-New
f0 = Lock (o,Lock) /∈ Dom(µ) fi distinct

(µ; θ;κ; new (f1,...,fn))
p−→
g

(µ[(o, fi) 7→ ({0} , 0) | 0 ≤ i ≤ n]; θ;κ; o)

E-Read
µ(o.f) = ({w} , o′)
w ∈ κ(p) f 6∈ FV

(µ; θ;κ; o.f)
p−→
g

(µ; θ;κ; o′)

E-Write
µ(o.f) = ({w} , )

w ∈ κ(p) f 6∈ FV w′ arbitrary

µ′ = µ[o.f 7→ (
˘
w′

¯
, o′)] κ′ = κ[p

∪7→
˘
w′

¯
]

(µ; θ;κ; o.f:=o′)
p−→
g

(µ′; θ;κ′; o′)

E-ReadV
µ(o.f) = (W, o′) Lock 6= f ∈ FV

κ′ = κ[p
∪7→W ]

(µ; θ;κ; o.f)
p−→
g

(µ; θ;κ′; o′)

E-WriteV
µ(o.f) = (W, ) Lock 6= f ∈ FV

µ′ = µ[o.f 7→ (W ∪ κ(p), o′)]

(µ; θ;κ; o.f:=o′)
p−→
g

(µ′; θ;κ; o′)

E-Fork
(p,Lock) /∈ Dom(µ)

(µ; θ;κ; fork e)
p−→
g

(µ[(p′,Lock) 7→ ({0} , 0)]; θ[p′ 7→ e];κ[p′ 7→ κ(p)]; p′)

E-Join
θ(p′) = o

(µ; θ;κ; join p′)
p−→
g

(µ; θ;κ[p
∪7→ κ(p′)]; o)

E-Re-Enter
µ(o.Lock) = (∅, p)

(µ; θ;κ; synch o do e)
p−→
g

(µ; θ;κ; e)

E-Acquire
µ(o.Lock) = (W, 0) W 6= ∅

µ′ = µ[(o.Lock) 7→ (∅, p)] κ′ = κ[p
∪7→W ]

(µ; θ;κ; synch o do e)
p−→
g

(µ′; θ;κ′; hold o do e)

E-Release
µ(o.Lock) = (∅, p)

µ′ = µ[(o.Lock) 7→ (κ(p), 0)]

(µ; θ;κ; hold o do o′)
p−→
g

(µ′; θ;κ; o′)

Fig. 7. Remaining evaluation rules.

follows the JMM—default initialization synchronizes with the first action in
every thread.) Every object is allocated with a mutex (special field Lock).

Field reads and writes of non-volatile fields (E-Read, E-Write) require that
the thread has knowledge of the write that produced the value: w ∈ κ(p). For a
write, an arbitrary write key w′ is used to label the new write. In general, this
may be one that no thread is aware of. Using such a key would cause the Race
program in earlier Fig. 2 to get stuck when the second increment executes.

One way in which knowledge of writes can be transmitted is through volatile
fields (E-ReadV, E-WriteV). Writing a volatile field adds the thread’s knowl-
edge κp to the memory with the written value. When the volatile field is read,
the reading thread picks up this knowledge. This follows the JMM rule that says
that writing a volatile field synchronizes with all following reads.

For E-Fork, the new thread gets the knowledge of the “forker.” This corre-
sponds to the JMM rule that a fork synchronizes with the first action in the new
thread. An object is allocated to represent the thread. In E-Join, this thread
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can only progress if the other thread has finished execution (down to a value).
It gets a copy of all the thread’s knowledge. This follows from the JMM’s rule
that the final action in a thread synchronizes with a thread that “joins” it.

During synchronization, the lock’s value is replaced with the number of the
acquiring thread, and the knowledge is replaced by the empty set. In E-Re-
Enter, if we synchronize on a lock that this thread already has acquired, the
body is simply executed without any effect on the lock. This last rule corresponds
to Java’s re-entrant monitors; here, we avoid the need to count multiple entrances
because the evaluation rule drops the release action as well as the acquire action.

If the lock is not held by any thread (E-Acquire), the lock field is assigned
the number of this thread, and we get the keys from the lock. The synchro-
nization block is then converted into a hold block. When the body has finished
evaluation (E-Release), the lock is given the knowledge of the current thread.
This knowledge is thus made available for the next thread which acquires the
lock. These rules again follow from the JMM.

The semantics defined here is sequentially consistent, but if a thread lacks
the necessary write key, it gets stuck. Thus if the program has race conditions, it
may get stuck (but may not, for instance if an old key is chosen by E-Write).
A type system for this language that enjoys progress and preservation for all
executions will prevent this (and the other problems not mentioned). We have
designed a type system [19] based on fractional permissions [5, 6] that we believe
will achieve this goal, but space precludes including it here.

5 Equivalence

Programs that execute in our operational semantics without ever blocking be-
cause of missing write keys are “correctly synchronized” according to (our vari-
ant) of the Java Memory Model and to the traditional definition of “race free.”
In other words, we show a three-way equivalence.

In order to prove equivalence, we need to formally define the aspects we are
showing equivalent. To start with, we restrict programs so that they do not in-
clude arbitrary object reference constants or partially executed synchronizations:

Definition 1. A program g is valid if every declaration m(x̄) = e in g has no
instance of hold nor any literal object reference except the null reference 0.

Execution starts by calling the main procedure in thread 0, which starts with
no knowledge except write key 0.

Definition 2. The initial state I is the state

I = ([(0,Lock) 7→ ({0} , 0)][0 7→ main()][0 7→ {0}]) .

We formalize what it means for there to be a write key error in a program:

Definition 3. A program g = d has a write key error if for some execution
I
∗−→
g

(µ, θ, κ) in which a read or write access on a non-volatile field o.f is ready

to execute in thread p (θp = T[o.f:=o′] or θp = T[o.f ], where f 6∈ FV ), and the
thread does not have the required write key: (µ(o.f) = ({w} , ) and w 6∈ κp).
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Definition 4. Two terms t1 and t2 are conflicting accesses of a non-volatile
field o.f (f 6∈ Fv) if one of them is a write to this field (ti = o.f:=o′) and the
other is a write (t3−i = o.f:=o′′) or a read (t3−i = o.f) of the same field.

Next, we formalize what it means to have a “race condition”: a write access
to a field happens at the “same time” as a read access to the same field, and
that field is not volatile:

Definition 5. A program g = d; e0 exhibits a race condition if there is some
execution I

∗−→
g

(µ, θ, κ) such that for two threads p1 6= p2 we have θ(pi) = T (ti)

and t1, t2 are conflicting accesses.

Before we can define what it means to be “correctly synchronized,” we must
define an “action” and the “happens-before” relation for actions:

Definition 6. An action λ is an evaluation (µ; θ;κ; t)
p−→
g

(µ′; θ′;κ′; t′). An eval-

uation sequence I ∗−→
g

(µ, θ, κ) induces the actions above the line for each instance

of Eval: λ1, λ2, . . . , λn.

Definition 7. Given an execution λ1, . . . , λn, we define a happens-before (writ-
ten i @ j) relation on the subset of natural numbers {1, . . . , n}. It is smallest
transitive relation that includes the following pairs:

1. i @ j if i < j and λi is an instance of E-Release and λj is an instance of
E-Acquire on the same object.

2. i @ j if i < j and λi is an instance of E-WriteV and λj is an instance of
E-ReadV on the same field.

3. i @ j if i < j and λi =
p−→
g

and λj =
p−→
g

.

4. i @ j if i < j and λi = (µ; θ;κ; fork t)
p−→
g

(µ′; θ′;κ′; q) and λj =
q−→
g

.

5. i @ j if i < j and λi =
q−→
g

and λj = (µ; θ;κ; join q)
p−→
g

(µ′; θ′;κ′; t).

It can be easily shown that @ is a partial order compatible with <.

Our final definition is for correctly synchronized in the style of the JMM:

Definition 8. A program g = d; e is correctly synchronized if for any execution
of g: λ1, . . . , λn and any i for which λi is an instance of E-Write and any j
for which λj is an instance of E-Read or E-Write for the same field, then
either i @ j or j @ i.

It might seem that because our operational semantics detects race conditions,
the conflicting access would never execute and thus could not demonstrate an
incorrect synchronization, but because write keys are arbitrary, the write could
use 0 and thus enable execution. The semantics does not ensure that all execu-
tions of a program with race conditions will get stuck, just that there will be
some execution that does.

We now show the three-way equivalence between the three conceptions of
race-freedom:
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Theorem 1. The following statements about a valid program g are equivalent:

1. g exhibits a race condition;
2. g has a write key error;
3. g is incorrectly synchronized.

Proof. (Sketch)
(1) ⇒ (2): Suppose we have a program with a race condition. Starting with

the execution state that exhibits the race condition, we choose to evaluate the
write first. If this write cannot execute because of a missing write key, we are
done. Otherwise we choose a new write key not known by the other thread, and
we now have a write key error.

(2)⇒ (3): We prove the contrapositive: if the program is correctly synchro-
nized, there will be no write-key error. This is because if there is a happens-before
connection between two actions, the thread knowledge of the second will include
that produced by the first, and thus the second access will succeed. The con-
nection between write key knowledge and happens-before follows from the fact
that the knowledge never decreases (the first case for happens-before) and the
other cases for happens-before involve the reader/acquirer getting all the write
keys left by the writer.

(3) ⇒ (1): Suppose we have an incorrectly synchronized program, in which
the code of the first action λi is a write executed in thread p and the second
action λj is an access executed in thread q. (The case that λi is a read and λj

is a write is analogous.)
If the actions are already consecutive, we have the required race condition in

the state just before the first executed. Otherwise, we consider how evaluation
actions can be reordered (between different threads, never within a thread) to
get the accesses adjacent. We partition the intervening actions into those that
happen before j and those which do not. The second must include action i,
from the definition of incorrect synchronization. We find the last action λ∗ in
the second group. It cannot be “happens before” any in the first group, or a
transitive happens-before relation would exist putting it in the first group. Now
we reorder it step-by-step with all later actions until it is after λj . If λ∗ was
λi, then the last reordering would have resulted in the required race condition.
Otherwise, now that it is after λj we have reduced the number of intervening
instructions. This process must terminate at some point.

6 Extensions

Extending the simple language here to full Java is almost entirely just a matter of
complex but uninteresting details. Static fields and static synchronization can be
modeled using instance fields and instance synchronization of singleton objects.
Types, primitive values and dynamic dispatch have no effect on concurrency.
Java 5 adds a new library of synchronization primitives, but it has a reference
implementation in core Java. Timeout and timing issues can be modeled by
claiming that each step of execution takes 1 nanosecond.
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The Thread class includes a number of deprecated methods that permit one
thread to suspend or terminate another. These we can omit from the formalism.
Other methods such as holdsLock (because one can only use it to query the
current thread) can be implemented without affecting the proof substantially.

Java’s wait/notify system would require substantive changes to the formal-
ism. When a thread calls wait, it first releases the object’s lock, then it waits
to be “notified” and then it waits to re-acquire the lock. The lock release and
acquisition lead to the corresponding standard happens-before relations. An-
other missing piece is thread interruption (and the corresponding interrupted
exception). My guess is that the proof could be modified to handle wait and
interruption.

7 Related Work

The current Java memory model is much more complex than what is modeled
here. In particular it gives semantics for programs that are not properly synchro-
nized. Since its publication, it has been generalized [18], Apsinall and Ševč́ık [1]
formally prove the main guarantee—that correctly synchronized programs will
have a sequentially consistent semantics (whereas the work described here as-
sumes sequential consistency). The initialization of reference fields causes some
concern which we avoid by using a universally known write key for initialization.

Cenciarelli, Knapp and Sibilio [8] give a vastly different semantics of the
Java Memory Model based on configuration structures. As with the papers just
reviewed, it handles all Java programs, not just properly synchronized ones, and
does not assume sequential consistency. The present author must confess that
he was unable to understand the details.

Type systems have been proposed that prevent race conditions and some-
times deadlocks in concurrent programming languages. Flanagan and Abadi [10,
11] define two separate type systems for avoiding races, both of which are ac-
companied by operational semantics. One is based on Gordon and Hankin’s
concurrent object calculus [13] in which mutable objects are represented in the
syntax as concurrent processes. The other uses a conventional store. Neither se-
mantics directly detects race conditions, nor includes “volatile.” In either case,
a race condition is defined as the (global) possibility that a write could occur
at the same time as a read of the same field. (In one system [11], two “simul-
taneous” reads are also considered a race.) The type system maintains certain
invariants that are shown to prevent data races.

Later work (such as Flanagan and Freund [12], Greenhouse [14] and Boyapati
and Rinard [4, 3]) omit formal specification of operational semantics, implicitly
following the same approach just outlined. Volatile fields, if they are handled at
all, are simply regarded as loopholes in the type system.

Permandla and Boyapati [16] define a small-step semantics for a subset
of Java virtual machine language (JVML) including synchronization (but not
volatile fields) and show that well-typed programs are free of concurrency er-
rors. The semantics however enforces an ownership model and uses method an-
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notations that indicate required locking state. The operational semantics is not
independent of the type system.

Guava [2] uses a type system to prevent races in a dialect of Java. Guava
permits reader/reader parallelism, but omits volatiles. Guava is defined by (infor-
mally described) compilation to Java byte-code. Guava is intended as a practical
programming language rather than as a minimal concurrent language.

Brookes [7] gives the semantics of a concurrent program by defining its set of
“action traces.” Roughly this means that all possible interleavings are considered.
A race condition in which a write to mutable state is directly interleaved with
another access to the same state is “catastrophic,” in that this particular trace
immediately aborts. The semantics omits “volatile.”

8 Conclusions

This paper defines an operational semantics of volatile fields that enables a type
system to reason compositionally about them. It uses write keys to detect thread-
ing violations. It shows that write-key errors occur if and only if the program
may exhibit a race condition, if and only if it is not correctly synchronized.
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Abstract. We propose an extension to the security model of Java. It
allows for specifying, analysing and enforcing history-based policies. Poli-
cies are defined by finite state automata recognizing the permitted execu-
tion histories. Programmers can sandbox an untrusted piece of code with
a policy, which is enforced at run-time through its local scope. A static
analysis allows for optimizing the execution monitor, that will only check
the program points where some security violation may actually occur.

1 Introduction

A fundamental concern of security is to ensure that resources are used correctly.
Devising expressive, flexible and efficient mechanisms to control resource usages
is therefore a major issue in the design and implementation of security-aware
programming languages. The problem is made even more crucial by the current
programming trends, which allow for reusing code, and exploiting services and
components, offered by (possibly untrusted) third parties. It is common practice
to pick from the Web some scripts, or plugins, or packages, and assemble them
into a bigger program, with little or no control about the security of the whole.

Stack inspection, the mechanism adopted by Java [23] and the .NET CLR [31],
offers a pragmatic setting for access control. Roughly, each frame in the call stack
represents a method; methods are associated with “protection domains”, that
reflect their provenance; a global security policy grants each protection domain
a set of permissions. Code includes local checks that guard access to critical re-
sources. At run-time, an access authorization is granted when all the frames on
the call stack have the required permission (a special case is that of privileged
calls, that trust the methods below them in the call stack). Being strongly biased
towards implementation, this mechanism suffers from some major shortcomings.
First, local checks must be explicitly inserted into code by the programmer. Since
forgetting even a single check might compromise the safety of the whole applica-
tion, programmers have to carefully inspect their code. This may be cumbersome
even for small programs, and it may lead to unnecessary checking. Second, many
security policies are not enforceable by stack inspection, because a method re-
moved from the call stack no longer affects security. This may be harmful, e.g.
when trusted code depends on the results supplied by untrusted code [22].

History-based access control has been receiving major attention as an alterna-
tive to stack inspection. Differently from stack inspection, the run-time security
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state depends on (a suitable abstraction of) the whole execution. History-based
policies and mechanisms have been studied at both levels of foundations [3, 21,
35] and of language design and implementation [1, 18]. A common drawback of all
these approaches is that the security policy is a global invariant, that must hold
at any point of the execution. This may involve guarding each resource access,
and ad-hoc optimizations are then in order to recover efficiency, e.g. compiling
the global policy to local checks [16, 28]. Furthermore, a large monolithic policy
may be hard to understand, and not very flexible either.

Local policies [6], formalise and enhance the concept of sandbox [23], while
being more flexible than global policies and local checks spread over program
code. In the spirit of history-based security [1], local policies can inspect the
whole trace of security-relevant events generated by a running program. Local
policies smoothly allow for safe composition of programs with their own security
requirements, and they can drive call-by-contract composition of services [9]. In
mobile code scenarios, local policies can be exploited e.g. to model the inter-
play among clients, untrusted applets and policy providers: before running an
untrusted applet, the client asks the trusted provider for a suitable policy, which
will be locally enforced by the client throughout the applet execution.

In this paper, we outline the design of an extension to the Java language, so
to enhance its security mechanism with local policies. In the spirit of JML [27],
policies are orthogonal to Java code and they are specified as comments. Our
policies are defined through a special kind of finite state automata (FSA), where
the input alphabet comprises the security-relevant events, parametrized over
resources. So, policies can express any regular property on execution histories.

The first contribution of this paper is the design of a run-time mechanism
for enforcing local policies in Java. Apart from the specification of policies and
sandboxes, this requires no intervention by the programmer in the source code.

The second contribution is an optimization of the run-time enforcement
mechanism. This is based on a static analysis that detects the policies violated by
a program in some of its executions [8]. The analysis is performed in two phases.
The first phase over-approximates the patterns of resource usages in a program.
The second phase consists in model-checking the approximation of a program
against the policies on demand. We have implemented this phase in [10], as a
polynomial-time algorithm on the size of the approximation and of the policies.
Summing up, we optimise the run-time security mechanism, by discarding the
policies guaranteed to never fail, and by checking just the events that may lead
to a violation of the other policies.

An example. Consider a trusted component NaiveBackup that offers static meth-
ods for backing up and recovering files. Assume that the file resource can be
accessed through the following interface:

public File(String name, String dir);

public String read();

public void write(String text);

public String getName();

public String getDir();
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q1

q2

q0

new(f,"/tmp")

new(f,d) when d!="/tmp"

read(f)

write(f)

where new(f,d) and read(f) stand for:
f = new File(n,d)

f.read()

Fig. 1. File confinement policy file-confine(f,d).

The constructor takes as parameters the name of the file and the directory where
is is located. A new file is created when no file with the given name exists in the
given dir. The meaning of the other methods is as expected.

In the class NaiveBackup, the method backup(src) copies the file src into a
file with the same name, located in the directory /bkp. The method recover(dst)
copies the backed up data to the file dst. As a näıve attempt to optimise the
access to backup files, the last backed up file is kept open.

class NaiveBackup {

static File last;

public static backup(File src) {

if(src.getName() != last.getName())

last = new File(src.getName(), "/bkp");

last.write(src.read());

}

public static recover(File dst) {

if(dst.getName() != last.getName())

last = new File(dst.getName(), "/bkp");

dst.write(last.read());

}

}

Consider now a malicious Plugin class, trying to spoof NaiveBackup so to obtain
a copy of a secret passwords file. The method m() of Plugin first creates a file
called passwd in the directory "/tmp", and then uses NaiveBackup to recover
the content of the backed up password file (i.e. /bkp/passwd).

class Plugin {

public void m() {

File g = new File("passwd","/tmp");

NaiveBackup.recover(g);

}

}

To prevent from this kind of attacks, the Plugin is run inside a sandbox, that
enforces the following policy. The sandboxed code can only read/write files it has
created; moreover, it can only create files in the directory "/tmp". This policy
is modelled by the automaton file-confine(f,d) in Fig. 1. The edge from q0

to q1 represents creating a file f in the directory "/tmp" (the name of the file
is immaterial). The edge from q0 to q2 labelled read(f) prohibits reading the

FTfJP 2008  - 52



file f if no new(f,d) has occurred beforehand (the double circle means q2 is
offending). Similarly for the edge labelled write(f). The edge from q0 to q2

labelled new(f,d) when d!="/tmp" prohibits creating a file in any directory d

different from "/tmp".

class Main {

public static void main() {

File f = new File("passwd","/etc");

NaiveBackup.backup(f);

PolicyPool.sandbox("file-confine", new Runnable() {

public void run() {

new Plugin().m();

}});

}

}

The class Main first backs up the passwords file through the NaiveBackup. Then,
it runs the untrusted Plugin inside a sandbox enforcing the policy file-confine.
The Plugin will be authorized to create the file "/tmp/passwd", yet the sand-
box will block it while attempting to open the file "/bkp/passwd" through the
method NaiveBackup.recover(). Indeed, Plugin is attempting to read a file
it has not created, which is prohibited by file-confine. Note also that any
attemp to directly open/overwrite the password file will fail, because the policy
only allows for opening files in the directory "/tmp". Note that our sandbox-
ing mechanism enables us to enforce security policies on the untrusted Plugin,
without intervening in its code.

2 Local policies: specification and enforcement

We start by introducing resources, events and policies. The specification of sand-
boxes and of their run-time enforcement mechanism follows.

2.1 Resources and Events

We model resources R1, R2, . . . as objects, and security-relevant events as method
calls. For notational convenience, we use aliases for events. An alias ev for a
method signature (y : C).m(y1 : C1, ..., yn : Cn) is defined as:

alias ev(x1, ..., xk) = (y : C).m(y1 : C1, ..., yn : Cn)

where ∀j ∈ 1..k : xj ∈ {y, y1, . . . , yn}. For instance:

alias new(f,d) = (f:File).File(string name, string d)

alias read(f) = (f:File).File.read()

alias write(f) = (f:File).File.write(String t)

FTfJP 2008  - 53



means new(f,d) is an alias for the constructor File(string name,string d)

of the class File, while read(f) (resp. write(f)) is an alias for the method
read() (resp. write(String t)) of the same class. The parameter f is the
target resource, in this case an object of type File. The method parameters not
involved in the definition of a policy can be omitted, e.g. we simply write alias

ev = C.m(x1,...,xk) when all the parameters are immaterial.

2.2 Policies

Usage policies (Def. 1) constrain the usage of resources to obey a regular property
on the program trace, i.e. the sequence of method calls occurred at run-time. E.g.,
a file usage policy file-usage(x) might require that before reading or writing
a file x, that file must have been opened, and not yet closed. A usage policy
gives rise to an finite state automaton (FSA) when the formal parameters are
instantiated to actual resources (see [8] for further details). These automata will
be exploited in Sec. 2.4 to implement the execution monitor for usage policies.

Definition 1. Usage policies

Let Ev be a set of aliases, and let Res be the set of resources. A usage policy
p(x1, . . . , xk) is a 5-tuple 〈S,Q, q0, F,E〉, where:

– S is the input alphabet, defined as follows:

S = { ev(R1, . . . , Rk) | ev(x1, . . . , xk) ∈ Ev and R1, . . . , Rk ∈ Res }

– Q is a finite set of states,

– q0 ∈ Q \ F is the start state,

– F ⊆ Q \ {q0} is the set of final “offending” states,

– E ⊆ Q×Z×Q is a finite set of labelled edges, where Z is defined as follows:

Z = { ev(Z1, . . . , Zk) when <cond> | ev(x1, . . . , xk) ∈ Ev ∧ Zi ∈ Res ∪ {xi} }

where the condition <cond> is defined with the following syntax:

<cond> ::= true | Zi != Z | <cond> and <cond> (Z ∈ Res ∨ Z = xj)

Usage policies resemble non-deterministic FSA, from which they differ in two
points. First, the input alphabet is infinite; second, it does not coincide with the
set of labels in the transition relation. Indeed, the parameters Zi in the edges of
a usage policy can be of two kinds: Zi = R for a static resource R, or Zi = xi. By
binding the formal parameters x1, . . . , xk to actual resources R1, . . . , Rk we obtain
a FSA p(R1, . . . , Rk), to be used in recognizing those traces respecting the policy.
Roughly, the transformation into a FSA amounts to: (i) instantiating xi to Ri,
while respecting the conditions in the when clauses, (ii) maintaining Zi = R for
R static, and (iii) adding self-loops for all the events not explicitly mentioned in
the policy (see [8] for details).

A trace η respects a policy p(x1, . . . , xk) when, for all the relevant instantia-
tions of the formal parameters x1, . . . , xk to actual resources R1, . . . , Rk in η, we
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have that η is not in the language of the FSA p(R1, . . . , Rk) – i.e. it is not possible
to reach an offending state on η. For instance, consider the following traces:

η0 = new(f0,"/tmp") read(f1)

η1 = new(f0,"/tmp") read(f0)

η2 = new(f0,"/tmp") read(f0) new(f1,"/etc")

The trace η0 violates the policy file-confine, because it drives the instan-
tiation file-confine(f1,"/tmp") to the offending state q2. The trace η1 re-
spects the policy, because the read event is performed on a newly created file
f in the directory "/tmp" (recall that instantiations have a self-loop labelled
read(f) on q1). Instead, η2 violates the policy, because it drives the instantia-
tion file-confine(f1,"/etc") to the state q2. Indeed, instantiating the when

clause results in an edge labelled new(f1,"/etc") from q0 to q2.
We advocate an extension of JML [27, 15] as an instrument for the formal

specification of usage policies. The following comment specifies the file confine-
ment policy of Fig. 1. The first part introduces the needed aliases. The usage
policy follows, where states, start, final, and trans stand respectively for
the sets Q, q0, F and E of Def. 1.

\*@ alias new(f,d) = (f:File).File(String name, string d)

@ alias read(f) = (f:File).File.read()

@ alias write(f) = (f:File).File.write(String t)

@ name: file-confine

@ states: q0 q1 q2

@ start: q0

@ final: q2

@ trans: q0 -- new(f,"/tmp") --> q1

@ q0 -- new(f,d) --> q2 when d != "/tmp"

@ q0 -- read(f) --> q2

@ q0 -- write(f) --> q2

@*/

Note that policies can only control methods known at static time. In the case
of dynamically loaded code, where methods are only discovered at run-time, it
is still possible to specify and enforce policies on statically-known methods. For
instance, system resources – which are accessed through the JVM libraries only
– can always be protected by policies.

2.3 Sandboxes

The programmer defines the scope of a local policy through the method sandbox()
of the static class PolicyPool. This signature of sandbox() is:

public static void sandbox(String pol,Runnable c) throws SecurityException

The string pol is the name of the policy to be enforced through the execution
of the code c. For instance:
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PolicyPool.sandbox("file-confine", new Runnable() {

public void run() {

// sandboxed code

...

}

});

The set of policies to be checked at run-time is passed as an option to the
java command, with the following syntax (where p1, . . . , pk are policy names):

java -Dcheck=<value> class where value ::= NONE | ALL | p1; · · · ; pk

When value = NONE, no policy is checked at run-time; when value = ALL, all
the policies mentioned in the program are checked; in the other case, only the
policies p1, . . . , pk are checked. Typically, the set of policies that need to be
checked at run-time will be provided by the static analysis in Sec. 3.

2.4 Run-time enforcement

The implementation of the execution monitor for local policies goes through the
following steps:

– as a preprocessing step, the specification of the policies to be enforced is
extracted from the source code and translated into Java code.

– a custom class loader is set up, to act as a proxy for method invocations.
– when starting the execution of a method sandbox(p,c), the policy p is

activated.
– the proxy dispatches a monitored method call to the actual class, only if the

call respects all the active policies.
– when leaving a sandbox(p,c), the policy p is deactivated.

The first step is straightforward. For the second step, we use a statically
generated proxy for wrapping method calls, similarly to JavaCloak [34]. Before
dispatching the call to the actual class, the proxy updates the state of the policy
automata. If an active policy is violated, then the proxy throws an exception.

public class SecurityProxy implements InvocationHandler {

private Object obj;

...

public Object invoke(Object proxy, Method meth, Object[] args)

throws Throwable {

Object result;

if(PolicyPool.check(obj, meth, args)) // monitor call

result = meth.invoke(obj, args); // method call

else throw new SecurityException(meth.toString());

}

}
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The method PolicyPool.check() is the core of the enforcement mechanism.
For each active usage policy, it tracks the states of all the needed instantia-
tions. States are modelled as sets of pairs ((R1, . . . , Rk), q), where (R1, . . . , Rk)
is a tuple of weak references 4 to the resources upon which the policy is in-
stantiated, and q is the current state of the automaton. The result of check()

is true if and only if no policy automaton reaches an offending state. If so,
the method call is authorized and forwarded to the actual class; otherwise, a
SecurityException is thrown. For instance, consider the policy file-confine

of Fig. 1. Assume that the policy is active when the proxy traps a call to the
constructor File("passwd","/tmp"). The check() method looks up the aliases
table and finds the event new(f0,"/tmp") associated with the constructor. Fir-
ing this event updates the states of the policy file-confine to:

{((f0, "/tmp"), q1), ((f1, "/tmp"), q0)}

Assume now the method read() is invoked on the file f1. The state becomes:

{((f0, "/tmp"), q1), ((f1, "/tmp"), q2)}

Since the offending state q2 has been reached, the call to read() is not dispatched
by the proxy, which instead throws a SecurityException.

3 Static analysis and optimizations

We statically analyse programs to detect those policies that are always respected
in all possible executions, so to avoid checking them at run-time. For those
policies that may fail, our static analysis finds the method calls that may lead
to violations. This allows for optimizing the execution monitor, that will only
check the program points where some security violation may actually occur.

The static analysis consists in two phases, briefly described below.

– first, we extract the program control flow graph (CFG), and we transform it
into a history expression.

– then, we model-check the history expression against the usage policies en-
forced by the sandboxes used in the program.

The CFG of a program is a static-time data structure that represents all the
possible run-time control flows. In particular, we are interested in constructing
a CFG the paths of which describe the possible sequences of method calls. This
construction is the basis of many interprocedural analyses, and a large amount of
algorithms, with different tradeoffs between complexity and precision, have been

4 Weak references [17] are used to avoid interference with the garbage collector. Us-
ing standard references would indeed prevent the garbage collector from disposing
resources referenced by the PolicyPool only, so potentially leading to memory ex-
haustion. An object referenced only by weak references is considered unreachable,
and so it may be disposed by the garbage collector.
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new(g,"/tmp")

read(last)

write(g)

f
i
l
e
-
c
o
n
f
i
n
e

new(last,"/bkp")

new(f,"/etc")

read(f)

write(last)

new(last,"/bkp")

νf. new(f,"/etc") · νlast. (ε + new(last,"/bkp")) · read(f) · write(last) ·

file-confine[νg. new(g,"/tmp") · νlast. (ε + new(last,"/bkp")) · read(last) · write(g)]

Fig. 2. CFG and history expression of the method main(). Sequential composition is
modelled by the operator ·, while + stands for non-deterministic choice. The scope of
a dynamically created resource n is defined by the binder νn.

developed [24, 32]. CFGs hide most of the data flow, so approximating the actual
behaviour. This approximation is safe, in the sense that each actual execution
flow is represented by a path in the CFG. Yet, some paths may exist which
do not correspond to any actual execution. A typical source of approximation
is dynamic dispatching. When a program invokes a method on an object O,
the run-time environment chooses among the various implementations of that
method. The decision is not based on the declared type of O, but on the actual
class O belongs to, which is unpredictable at static time. To be safe, CFGs over-
approximate the set of methods that can be invoked at each program point.

Once a context-sensitive CFG has been extracted, it is transformed into
a history expression [6], a sort of context-free grammar enriched with special
constructs for dealing with policies and resources. To do that, we suitably adapt
the classical state-elimination algorithm for FSA [14]. E.g., the CFG and the
history expression associated with the main() of Sec. 1 are depicted in Fig. 2.

The second phase consists in model-checking history expressions against us-
age policies. As a first step, history expressions are transformed into Basic Pro-
cess Algebras (BPAs, [13]), so to enable us to exploit standard model-checking
techniques [20]. Roughly, one checks the emptiness of the pushdown automaton
resulting from the conjunction of the BPA obtained in the previous step, and
the negation of the policy. The transformation into BPA preserves the validity
of the approximation, i.e. the traces of the BPA respect the same policies as
those of the history expression. The two main issues are dealing with dynamic
creation of resources (not featured by BPAs), and with redundant sandboxes,
i.e. nested occurrences of the same sandbox. For the first item, we devised a sort
of Skolemization of history expressions, which uses a finite number of witness
resources in place of the ν-binders. For the second item, we transformed history
expressions to remove the redundant sandboxes therein. Full details about our
technique and our model-checking tool can be found in [8, 10].
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4 Conclusions

We have presented a proof-of-concept for an extension of the security mechanism
of Java. This is based on history-based local policies. These policies are naturally
expressed through a sort of finite state automata, the edges of which are para-
metric over resources. The use of these automata is new in the context of Java.
It required extending the formal model of [7] with polyadic events, that model
method invocations. We have proposed a programming construct for specify-
ing sandboxes, and designed an execution monitor for enforcing them. We have
devised a static analysis that optimizes the run-time enforcement of policies.
The analysis exploits call-graph construction and model-checking to predict the
policies that will always be obeyed, and to single out the program points where
run-time checks are needed. An implementation of our framework is currently
under development; only the model-checking tool is already available [10]. It
runs in polynomial time in the size of the history expression extracted from the
analysed program.

Extensions. A significant improvement to our model consists in extending the
language of policies by allowing for more logical operators in conditions. The
expressive power can be increased by including the usage of JML boolean ex-
pressions, like e.g. the evaluation of pure methods without side effects. This
would allow to directly specify policies that depend on implicit counters (e.g.
no more than N kilobytes of data can be transmitted). The impact of such a
refinement on the static analysis requires further investigation.

Related work. Many authors [16, 19, 28, 36] mix static and dynamic techniques
to transform programs and make them obey a given policy. Our model allows
for local, polyadic policies and events parameterized over dynamically created
resources, while the above-mentioned papers only consider global policies and
no parameterized events. Polymer [12] is a language for specifying, composing
and enforcing (global) security policies, based on edit automata [11]. Run-time
monitoring is necessary to enforce policies, while our model-checking tecnique
may avoid this overhead. A typed λ-calculus with primitives for creating and
accessing resources, and for defining their permitted usages, is presented in [25].
A type system guarantees that well-typed programs are resource-safe, yet no
effective algorithm is given to check compliance of the inferred usages with the
permitted ones. The policies of [25] can only speak about the usage of single

resources, while ours can span over many resources, e.g. a policy requiring that
no socket connections can be opened after a local file has been read. Wang,
Takata and Seki [37] propose a model for history-based access control. They use
control-flow graphs enriched with permissions and a primitive to check them,
similarly to [5]. The run-time permissions are the intersection of the static per-
missions of all the nodes visited in the past. The model-checking technique can
decide if all the permitted traces of the graph respect a given regular property
on its nodes. Unlike our local policies, that can enforce any regular policy on
traces, the technique of [37] is less general, because there is no way to enforce
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a policy unless it is encoded as a suitable assignment of permissions to nodes.
Pandey and Hashii [33] enhance the access control model of Java, by specifying
fine-grained constraints on the execution of mobile code. A method invocation
is denied when a certain condition on the dynamic state of the system is false.
Since this condition may be the result of calling an arbitrary method, this mech-
anism is quite general, yet is has some drawbacks. First, the process of deciding
if an action must be denied might not terminate. Second, the dynamic condi-
tions in the policy might prevent from static optimizations. Our local policies
and static analysis can be smoothly adapted to the case of mobile code. This
extension requires analysing bytecode instead of source code when extracting
usage policies and when constructing the CFG. Martinelli et al. [2, 29, 30] model
security policies as process algebras. They implement a custom JVM, with an
execution monitor that traps system calls and fires them concurrently to the
policy. When a trapped system call is not permitted by the policy, the execution
monitor tries to force a corrective event – if possible – otherwise it aborts the
system call. Being interested in efficient run-time enforcement, this framework
neglects static optimizations, which however might be unfeasible because of dy-
namic conditions in the policies. In [26] a customization of the JVM/KVM is
proposed for extending the Java run-time enforcement to a wider class of security
policies, mainly designed for devices with reduced computational capabilities. As
before, the presented framework does not feature any static analysis. JACK [4]
is a tool for the validation of Java applications, both at the levels of bytecode
and of source code. Programmers specify application properties through JML
annotations, which are equi-expressive with first-order logics. These annotations
give rise to proof obligations, to be statically verified by a theorem prover. The
verification process might require the intervention of the developer to resolve
the proof obligations, while in our framework the verification is fully automated.
JACK can specify history-based policies by using ghost variables spread over
JML annotations to mimick the evolution of a finite-state automaton defining
the policy. Our formalism allows for expressing history-based policies in a more
direct and compact way, although our syntax is not pure JML. The problem of
wrapping method calls has been widely studied, and several frameworks have
been proposed in the last few years. Some approaches, e.g. the Kava system [38],
use bytecode rewriting to obtain behavioural run-time reflection. This amounts
to modifying the structure of the bytecode, by inserting additional instructions
before and after a method invocation. A less invasive solution, adopted e.g. by
JavaCloak [34], consists in exploiting the Java core package java.lang.reflect.
This approach seems particularly appropriate in our framework. Indeed, we can
use a custom class loader to substitute a dynamic proxy for the classes involved
in the enforcement of security policies. Notably, this solution does not require
custom JVMs.
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Abstract. To realize object adaptability with a clear conceptual frame-
work, a role model Epsilon was proposed. The novelty of Epsilon model is
its ability to change object’s behavior dynamically. However, such kind of
flexibility also easily brings type-unsafety and other unreliabilities. This
paper proposes a small core language ε that formalizes some key concepts
of object adaptation, which is informally described in the Epsilon model.
In ε, three kinds of objects, context instances, role instances, and class
instances exist at run-time. A role instance is a member of a context
instance where how role instances are collaborating with each other is
encapsulated. A class instance can dynamically assume a role by binding
itself with a role instance, and can also throw the role away. Their re-
lationship can change during computation, and ε’s type system assures
that the computation does not go wrong, even though some exceptional
cases concerning downcasting exist. This formalization clarifies the es-
sential features of the object adaptation incorporated in Epsilon model
and provides a solid base for program analysis and language processor
implementation.

1 Introduction

Considerable research efforts have been devoted to make objects in object-
oriented systems more flexible and adaptable. The recent interest in self-managed
(or autonomic, self-healing, adaptive) systems/computing indicates renewed at-
tention on this target.

Objects in the conventional object-oriented languages are created from fixed
templates defined as classes and once they are created, it is hard to change their
structures and behaviors dynamically. One way of enabling dynamic changes
to objects is to fully employ the mechanism of meta-programming or reflection
and allow free transformation of objects at run-time. Some languages such as
Ruby[27] provide dynamic object structure change capability as their innate
feature. The obvious problem with such a feature and meta-programming in
general is performance decline. But even if performance is somehow ensured at
a certain level, taking advantage of sophisticated optimizing techniques, there
will still remain the problem of programming difficulties and error-proneness.

In [25], Tamai et al. proposed a role model Epsilon and a language based
on the model EpsilonJ (the revised version is also available in [26]). The aim of
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this model was to realize object adaptability with a clear conceptual framework.
A collaboration field called environment or context can be defined by a set of
roles that interact with each other. An object can dynamically participate in a
collaboration field and assume one of its roles so that it acquires functions of
the role and capability of collaborating with other roles in the field. An object
may assume multiple roles of different collaboration fields at a time so that it
grows into a complex object with rich functions but its behavior can be clearly
comprehensible from the base behavioral properties of roles.

However, such kind of flexibility also easily brings type-unsafety and other
unreliabilities. To avoid such unreliabilities, constructs of Epsilon should for-
mally be defined. In [25] or [26], however, only a brief description (described by
examples) on the semantics of the language EpsilonJ was provided. A full lan-
guage specification is released on the Web[24] but its description is informal. In
fact, even though there are many formal studies on collaboration-based design,
relatively few efforts have been made on formalizing object adaptation.

In this paper, we propose a small core calculus ε that formalizes some key
concepts of object adaptation, described in [25]. In ε, three kinds of objects,
context instances that represent collaboration fields, role instances, and class
instances exist at run-time. A role instance is a member of a context instance
where collaboration between role instances is encapsulated. A class instance can
dynamically assume a role by binding itself with a role instance, and can also
throw the role away. Their relationship can be changed during computation, and
ε’s type system assures that the computation does not go wrong, even though
some exceptional cases concerning downcasting exist.

Even though ε is quite similar to EpsilonJ, it is not designed to be a small
subset of EpsilonJ. Instead, the aim of this work is to understand the essences
of object adaptation; therefore, there are some differences between EpsilonJ and
ε. In short, ε puts more emphasis on stating clear language semantics, while
EpsilonJ provides much liberal ways for writing programs. Nevertheless, this
formalization clarifies the essential features of the object adaptation mechanism
incorporated in EpsilonJ and provides a solid base for program analysis and
language processor implementation.

2 An Overview of Object Adaptation

To make this paper self-contained, we briefly summarize the main features of
object adaptation that are formerly described in [25] as Epsilon model. In this
section, we informally describe these features by using Java-like syntax.

In the Epsilon model, three kinds of objects, context instances, role instances,
and class instances, exist at run-time. A context instance is a collaboration field
where role instances interact with each other. A role instance is a member of
a context instance, and there may be multiple role instances associated with a
context instance. A set (or a sequence) of role instances associated with a context
instance is called a role group. Behind the scenes, contexts are augmented by
an internal field representing the role group. A class instance is the same as in
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context Company {

role Employer {

void pay() {

Employee.getPaid();} }

role Employee {

int save, salary;

Employee(int salary) {

this.salary = salary;}

void getPaid() {

save += salary; } } }

class Person {

int money; }

Person tanaka = new Person();

Person komiyama = new Person();

Company todai = new Company();

todai.Employer.newBind(komiyama);

todai.Employee.newBind(tanaka,1000);

((Company.Employer)komiyama).pay();

Fig. 1. Declaration of the context Company and object adaptation.

conventional Java-like languages, except that it can dynamically participate in
a collaboration field (represented by a context instance) by assuming one of its
role instances so that it acquires functions of the role instance and capability
of collaborating with other role instances. Behind the scenes, classes are also
augmented by an internal field representing the set of assuming roles.

How a context is declared is demonstrated in Fig.1. A context is declared
using context declaration that begins with the keyword context followed by the
name of context (that is Company in Fig.1). A Role is declared as a member of the
context using role declaration that begins with the keyword role. In Fig.1, two
roles, Employer and Employee, are declared. Each context and role is declared
with fields, methods and constructors just like classes.

A role group is associated with the enclosing context instance and referred
by the role name. We can access each instance of role group by using an iterator
that iterates over the role group. In Fig.1, however, we use a more convenient
syntactic sugar; we can apply a method declared in the role to the whole role
group, and the method is invoked for all the role instances. Thus, the method
call Employee.getPaid() is interpreted as calling the method getPaid of all
the Employee’s instances.

In Epsilon model, contexts and roles are the first class constructs at runtime
as well as at model description time. A context is instantiated by the new ex-
pression; the expression new Company() creates an instance of Company. A role
instance is created by a special operation newBind that performs two things;
(1) it creates a role instance that is a member of the receiver context; and (2)
it binds the role instance with the class instance provided as an argument of
newBind. In Fig.1, the instances of Person, komiyama and tanaka, assume the
roles todai.Employer and todai.Employee, respectively. Note that the second
and the following arguments, if any, of newBind call are arguments for construc-
tor call of roles. After the binding, the object bound to the role acquires an
access to the role instance and thus can use the role methods. Furthermore, it
acquires type of the role, and the role methods are invoked through type-casting.
In fact, the type of expression (Company.Employer)komiyama is a mixin compo-
sition[17] Company.Employer::Person, where :: is a composition operator, thus
we can safely access the pay() method declared in Company.Employer. Whether
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komiyama can be cast to Company.Employer or not (i.e. whether komiyama as-
sumes a role instance of Company.Employer or not) is checked at run-time.

The binding of a class instance and a role instance may be dissolved at run-
time; for this purpose, any role implicitly declares unbind method. For example,
the following piece of code

((Company.Employee)tanaka).unbind();

firstly casts tanaka to its role Company.Employee, then calls unbind. After call-
ing unbind, the connection between tanaka and Company.Employee is dissolved,
and the dissolved role instance becomes garbage. Instead, another class instance
may assume the unbound role instance if we use the swap method, which is also
implicitly declared in a role. For example, the following code

Person sato = new Person();
((Company.Employee)tanaka).swap(sato);

results in that sato takes over tanaka’s Company.Employee role.
There should be some interaction between a class instance and a role instance

that are bound together so that the state and the behavior of the class instance
should be affected by the binding. For this purpose, there is a way of defining an
interface to a role and this is used at the time of binding with a class instance,
requiring the class instance to supply the interface. This interface is declared
with the requires phrase as follows.

role Employee requires { void deposit(int); } {
void sendSalary(int salary) { deposit(salary); } }

When a required interface is declared to a role, methods can be imported to
the role from the class instance. For example, suppose the class Person has a
method deposit:

class Person { ... int money;
void deposit(int s) { money+=s; } }

After the binding of todai.Employee.newBind(tanaka) in the previous pro-
gram piece, the method deposit(int) of tanaka is imported to the Employee
role instance through the interface. When an interface method is overridden by
the corresponding role method, the replacing method of the binding object be-
comes hidden. If there is a need for invoking the hidden method in the context,
either in the body of the overriding method or in other role (or context) meth-
ods, it is possible to invoke it by attaching the qualifier super to the method
name.

Since the role instance requires the class instance to supply the requires
interface, the class has to implement it. Note that the requires interface may
be anonymous, just as shown in the above program. In other words, the class
has to be a structural subtype of the requires interface. A similar mechanism is
also found in [17].
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A ::= C | X
T ::= A | X.R | X.R :: C

TS ::= T | { M̄I }
LC ::= class C � D { T̄ f̄ ; M̄ }
LR ::= role R requires { M̄I }{T̄ f̄ ; M̄}
LX ::= context X { T̄ f̄ ; M̄ L̄R }
M ::= T m(T̄ x̄){ return e; }

MI ::= T m(T̄ x̄);
r ::= e0.R(ē)
e ::= x | e.f | e.m(ē) | (new C(ē), r̄) | new X(ē) | e0.R.newBind(e, d̄) |

e0.unbind() | e0.swap(e) | (X.R)e
v ::= (new C(v̄), r̄) | new X(v̄) | (X.R)(new C(v̄), r̄)

Fig. 2. Abstract syntax

Finally, we note that a class instance may assume multiple roles; for example,
a person can be a customer, a patient, and an employee depending on the context.
Current context of the person may change through downcasting. Furthermore,
a class instance may change roles even within a context; for example, a person
can change its role from an employee to an employer, which is possible because
a class instance may discard a role and assume another role dynamically. By
using the swap operation, the state of the old employer (e.g., unfinished tasks,
responsibilities, and so on) is taken over by the new employer.

3 ε: the core calculus of Epsilon

This section provides a small core calculus ε of Epsilon model. This formaliza-
tion is based on FJ[16], a minimum core language of Java, but includes some
additional features found in the full Java language such as super calls that are
needed to model important features of object adaptation.

Syntax. The abstract syntax of ε is shown in Fig.2. In this paper, the metavari-
able A ranges over class or context names; S, T , and U range over named types;
TS ranges over types (including requires interface); C, D and E range over
class names; R ranges over role names; X ranges over context names; LC ranges
over class declarations; LR ranges over role declarations; LX ranges over context
declarations; f and g range over field names; M and N range over method dec-
larations; MI ranges over interface method declarations; m ranges over method
names; b, c, d and e range over expressions; x ranges over variables; r and s
range over role instances; v and w range over values.

We put an over-line for a possibly empty sequence. Furthermore, we ab-
breviate pairs of sequences in a similar way, writing “T̄ f̄” as a shorthand for
“T1 f1, · · · , Tn fn”, where n is the length of T̄ and f̄ , and so on (the same way
introduced in [16]).
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Object adaptation can be realized with some imperative features. However,
imperative features will introduce complexity in the type system. We can take
another approach to concentrate on the new features incorporated in Epsilon
model. We design ε as a purely functional calculus; i.e. the state of context
instance never changes after the constructor invocation (in this paper, construc-
tor declarations are abbreviated and constructor invocations become implicit).
To model the dynamic semantics of object adaptation, we regard each class in-
stance as a pair of a constructor invocation and a sequence of roles that the
class instance is bound with. Therefore, ε is considered as a runtime expression
language, since the programmer does not write (new C(ē), r̄) but only new C(ē),
which is identical to (new C(ē), ·). The role instances r̄ are generated during the
evaluation and needed in the rules to check and maintain the roles of the class
instance.

In ε, there are two kinds of types: named types and interface types. A named
type is represented by a class name, a context name, a role name prefixed by
a context name, or a mixin composition in the form of X.R :: C. These types
may appear in field declarations, formal parameter types and return types. On
the other hand, interface types, denoted by { M̄I }, may appear only in the
requires clause.

As in FJ, we assume that the set of variables includes the special variable
this, which is considered to be implicitly bound in every method declaration.
Furthermore, we also assume that the set of variables includes the special vari-
able super, which is considered to be implicitly bound in every role method
declaration.

For the reduction and typing rules, we need a few auxiliary definitions, given
in Fig.3. We write m 6∈ M̄ to mean that the method definition of the name m
is not included in M̄ . The fields of type T , written fields(T ), is a sequence T̄ f̄
pairing the type of each fields with its name. The type of method m in type
TS , written mtype(m,TS), is a pair, written T̄ → T0, of a sequence of formal
parameter types T̄ and its return type T0. If T is a role type X.R and m is not
found in X.R, its requires interface is searched. If T is a mixin composition,
the left operand of :: is searched first. Similarly, the body of method m in
type T , written mbody(m,T ), is a pair, written (x̄, e), of a sequence of formal
parameters x̄ and an expression e.

We also present a rule that checks whether a role can be bound to a class
instance or not. The following predicate bindable is used for this checking. An
instance of role X.R can be bound to an instance of class C if C is a subtype of
X.R’s required interface { M̄I }.

Subtyping rules of ε are shown in Fig.4. Subtyping is a reflexive and transitive
closure induced by the subclassing relation. Furthermore, a class is a subtype
of an interface if the class implements all the methods declared in the interface.
This subtyping rule is used in checking whether a role can be bound to a class
or not. There also exists some straightforward subtyping rules regarding mixin
composition.
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Field lookup:

class C � D { T̄ f̄ ; M̄ }
fields(D) = S̄ ḡ

fields(C) = S̄ ḡ, T̄ f̄

context X { T̄ f̄ ; N̄ L̄R}
role R requires { · · · }{ S̄ ḡ; · · · } ∈ L̄R

fields(X.R) = S̄ ḡ

context X { T̄ f̄ ; N̄ L̄R }
fields(X) = T̄ f̄

fields(X.R) = S̄ ḡ fields(C) = T̄ f̄

fields(X.R :: C) = T̄ f̄ ; S̄ ḡ

fields(T ) = T̄ f̄

ftype(fi, T ) = Ti

Method body lookup:

class C � D { T̄ f̄ ; M̄ }
T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, C) = (x̄, e)

class C � D { T̄ f̄ ; M̄ } m 6∈ M̄

mbody(m, C) = mbody(m, D)

context X { · · · M̄ L̄R }
T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, X) = (x̄, e)

context X { · · · L̄R }
role R requires { M̄I }{ · · · M̄ } ∈ L̄R

T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, X.R :: C) = (x̄, e)

context X { · · · L̄R } m 6∈ M̄
role R requires { M̄I }{ · · · M̄ } ∈ L̄R

mbody(m, X.R :: C) = mbody(m, C)

Method type lookup:

class C � D { T̄ f̄ ; M̄ }
T m(T̄ x̄){ return e; } ∈ M̄

mtype(m, C) = T̄ → T

class C � D {T̄ f̄ ; M̄} m 6∈ M̄

mtype(m, C) = mtype(m, D)

context X { T̄ f̄ ; N̄ L̄R }
T m(T̄ x̄){ return e; } ∈ M̄

role R requires {M̄I}{· · · M̄} ∈ L̄R

mtype(m, X.R) = T̄ → T

context X {T̄ f̄ ; N̄ L̄R} m 6∈ M̄
role R requires {M̄I}{· · · M̄} ∈ L̄R

mtype(m, X.R) = mtype(m, {M̄I})

T m(T̄ x̄);∈ M̄I

mtype(m, {M̄I}) = T̄ → T

mtype(m, X.R) = T̄ → T

mtype(m, X.R :: C) = T̄ → T

mtype(m, X.R) is undefined

mtype(m, X.R :: C) = mtype(m, C)

context X { T̄ f̄ ; M̄ L̄R }
T m(T̄ x̄){ return e; } ∈ M̄

mtype(m, X) = T̄ → T

Binding check:

C <: {M̄I} context X {· · · L̄R}
role R requires {M̄I}{ · · · } ∈ L̄R

bindable(X.R, C)

Fig. 3. Auxiliary definitions
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TS <: TS

class C � D { · · · }
C <: D

C <: D D <: E

C <: E

T m(T̄ x̄);∈ M̄I ⇒ mtype(m, C) = T̄ → T

C <: {M̄I}

X.R :: C <: C X.R :: C <: X.R
D <: C

X.R :: D <: X.R :: C

Fig. 4. Subtyping rules

An ε program is a pair (CT, e) of a class table CT and an expression e. A
class table is a map from class names and context names to class declarations
and context declarations, respectively. The expression e may be considered as
the main method of the “real” program. The class table is assumed to satisfy the
following conditions: (1) CT (C) = class C · · · for every C ∈ dom(CT ); (2)
CT (X) = context X · · · for every X ∈ dom(CT ); (3) all roles R in CT (X)
are uniquely named; (4) T ∈ dom(CT ) for every class name, context name, and
role name appearing in range(CT ).

Dynamic semantics. The reduction rules of ε are shown in Fig.5. The reduc-
tion relation is of the form e −→ e′, read “expression e reduces to expression e′

in one step.” We write −→∗ for the reflective and transitive closure of −→.
There are two rules for field access (as in FJ, we assume that all the field

names are distinct); one is field access to a class instance or context instance (the
rule R-FIELD)1, and the other is field access to a role instance through type
casting (the rule R-RFIELD). Note that R-RFIELD shows that a field access
to a role instance reduces to the corresponding actual argument for the role
constructor. During the computation, a class instance has to retain the states
of the role instances which the class instance is bound with, which is why we
formulate a class instance as a pair of a class constructor invocation and a
sequence of role instances.

Similarly, there are two rules for method invocation. The method invocation
reduces to the expression of the method body, substituting all the parameters x̄
with the argument expressions ē and the special variable this with the receiver
of method invocation. The rule R-RINVK shows the case of role method invo-
cation, where the variable super is also substituted with the receiver of method
invocation (removing type casting). The rule R-BIND shows that a newBind ex-
pression takes a class instance as an argument, creates a role instance, and binds
it with the argument class instance. The rule R-UNBIND shows that an unbind
expression reduces to the receiver class instance of unbind, removing the desig-
nated role (by r̄ − r, we mean the role r is removed from the sequence r̄). The
rule R-SWAP shows that a swap expression takes a class instance as an argument
1 We use new X(ē) and (new X(ē), ·) interchangeably.
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fields(A) = T̄ f̄

(new A(ē), r̄).fi −→ ei

(R-FIELD)

fields(X.R :: C) = T̄ f̄ (new X(d̄)).R(ē) ∈ r̄ b̄, ē = c̄

((X.R)(new C(b̄), r̄)).fi −→ ci

(R-RFIELD)

mbody(m, A) = (x̄, e0)

(new A(ē), r̄).m(d̄) −→ [d̄/x̄, (new A(ē), r̄)/this]e0

(R-INVK)

mbody(m, X.R :: C) = (x̄, e0) (new X(d̄)).R(c̄) ∈ r̄

((X.R)(new C(ē), r̄)).m(d̄) −→
[d̄/x̄, (X.R)(new C(ē), r̄)/this, (new C(ē), r̄)/super]e0

(R-RINVK)

(new X(b̄)).R(d̄) 6∈ r̄

(new X(b̄)).R.newBind((new C(ē), r̄), d̄) −→
(new C(ē), r̄(new X(b̄)).R(d̄))

(R-BIND)

(new X(ē)).R(d̄) ∈ r̄

((X.R)(new C(c̄), r̄)).unbind() −→
(new C(c̄), r̄ − (new X(ē)).R(d̄))

(R-UNBIND)

(new X(ē)).R(ē′) ∈ r̄

((X.R)(new C(c̄), r̄)).swap((new D(d̄), s̄))
−→ (new D(d̄), s̄(new X(ē)).R(ē′))

(R-SWAP)

Fig. 5. Reduction rules

and binds it with the designated role, removing the class instance that is the
receiver of swap from the context instance where the designated role resides.

Reduction rules may be applied to any subexpressions of an expression, so
we also need the obvious congruence rules, which are omitted in this paper.

Typing. The typing rules for ε expressions are shown in Fig.6. An environment
Γ is a finite mapping from variables to types, written x̄ : T̄ . The typing judgment
for expressions has the form Γ ` e : T , read “in the environment Γ , expression
e has type T .”

The rules are syntax directed, with one rule for each form of expressions.
The typing rules for method invocations and constructors check that each actual
parameter has a type of the corresponding formal parameter. The rule T-INVK

checks that the type of receiver of method invocation may be an interface type,
thus method call to super is allowed. The rule T-NEW checks that all the role
instances with which the class instance binds are also well-typed; i.e., the context
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Expression typing:

Γ ` e0 : S ftype(f, S) = T

Γ ` e0.f : T
(T-FIELD)

Γ ` e0 : TS Γ ` ē : S̄
mtype(m, TS) = T̄ → T S̄<:T̄

Γ ` e0.m(ē) : T
(T-INVK)

fields(C) = T̄ f̄
Γ ` ē : S̄ S̄<:T̄

for rj ∈ r̄ rj = (new Xj(c̄j)).Rj(d̄j)
Γ ` new Xj(c̄j) : Xj

fields(X.R) = T̄j ḡj

Γ ` d̄j : S̄j S̄j<:T̄j

Γ ` (new C(ē), r̄) : C
(T-NEW)

Γ ` e : C bindable(X.R, C)
Γ ` e0 : X S̄<:T̄

fields(X.R) = T̄ f̄ Γ ` d̄ : S̄

Γ ` e0.R.newBind(e, d̄) : C
(T-BIND)

Γ ` x : Γ (x) (T-VAR)

Γ ` e : X.R :: C

Γ ` e.unbind() : C
(T-UNBIND)

Γ ` e : X.R :: C
Γ ` d : D bindable(X.R, D)

Γ ` e.swap(d) : D
(T-SWAP)

fields(X) = T̄ f̄ Γ ` ē : S̄
S̄<:T̄

Γ ` new X(ē) : X
(T-CNEW)

Γ ` e : C

Γ ` (X.R)e : X.R :: C
(T-CAST)

Wellformed definitions:

x̄ : T̄ , this : C ` e0 : T0

class C � D{ · · · }
T0 m(T̄ x̄){ return e0; } OK IN C

(T-METHOD)

M̄ OK IN C

class C � D{ T̄ f̄ ; M̄} OK

(T-CLASS)

x̄ : T̄ , this : X.R, super : { M̄I } ` e0 : T0

context X { · · · L̄R}
role R { M̄I }{ · · · } ∈ L̄R

T0 m(T̄ x̄){ return e0; } OK IN X.R
(T-RMETHOD)

M̄ OK IN X.R

role R requires { M̄I }{ T̄ f̄ ; M̄ }
OK IN X

(T-ROLE)

x̄ : T̄ , this : X ` e0 : T0

context X { · · · }
T0 m(T̄ x̄){ return e0; } OK IN X

(T-XMETHOD)

M̄ OK IN X L̄R OK IN X

context X { T̄ f̄ ; M̄ L̄R} OK

(T-CONTEXT)

Fig. 6. Typing rules
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instance of each role is well-typed, and each actual parameters of each role
constructor has a type of the corresponding formal parameter. The rules T-
BIND and T-SWAP check that the receiver role and argument class instance of
newBind and swap, respectively, are compatible.

The type system assures that the receiver of newBind is a context, and the
type of receiver of unbind and swap is a mixin composition of a role type and a
class type, i.e., only (role) type casting expressions can be a receiver of unbind
and swap operations.

Finally, we show the typing rules for method declarations, class declarations,
context declarations, and role declarations. The rules for wellformed definitions
are also shown in Fig.6. The type of the body of a method declaration is a
subtype of the return type. The special variable this is bound in every method
declaration, and for every method declaration in roles, a variable super is also
bound. A class declaration is wellformed if all the methods declared in that class
are wellformed. A role declaration is wellformed if all the methods declared in
that role are wellformed. A context declaration is wellformed if all the methods
and roles declared in that context are wellformed.

Finally, we show the properties of ε, which is every well-typed expression
evaluates to a value or an expression containing casts, newBind, unbind, or swap
that cannot be reduced further.

Theorem 1 (Subject Reduction). If Γ ` e : T and e −→ e′, then Γ ` e′ : T ′

for some T ′ <: T .

Theorem 2 (Progress). If ∅ ` e : T and e is neither (1) a value, (2) an
expression containing (X.R)(new C(ē), r̄) where (new X(b̄)).R(d̄) 6∈ r̄ for some
b̄, d̄, (3) an expression containing e0.R.newBind((new C(ē), r̄)) where e0.R(d̄) ∈ r̄
for some d̄, (4) an expression containing ((X.R)(new C(ē), r̄)).unbind() where
(new X(b̄)).R(d̄) 6∈ r̄ for some b̄, d̄, and (5) an expression containing
((X.R)(new C(ē), r̄)).swap((new D(c̄), s̄)) where either (new X(b̄)).R(d̄) ∈ s̄ or
(new X(b̄)).R(d̄) 6∈ r̄ for some b̄, d̄, then e −→ e′ for some e′.

Remark. Because of ε’s ability to assume and discard roles at run time, the
progress theorem shows that there are some unreliabilities associated to adapt-
able objects. The result shows that we have to accept the possibility that access
to role’s fields or methods or newBind/unbind/swap operations can fail at run
time. In the full language, of course, such a failure does not stop whole the pro-
gram; it generates an exception that can be caught by a surrounding exception
handler.

One may consider that a more satisfactory type soundness result would be
obtained by changing the typing rules. For example, we may change the rule T-
NEW to make the result type be (C, r̄) so that the T-BIND rule can check that in
the type (C, r̄) of newBind’s first argument e, there are no instance of X.R in r̄.
However, it is hard to make this approach cooperate with other constructs such
as if statements. With imperative features, some dynamic checking should be
necessary. Even in purely functional languages, there may be a situation where
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we want to change which role the class instance is bound with according to
the condition of if expression, but putting emphasis on type-safety prevents
providing such flexibility. On the other hand, EpsilonJ’s way of thinking is to
provide convenient idioms such as downcasting that most conventional languages
support, to make programmers flexibly bind roles and objects at their own risk.
To our knowledge there are no pieces of work on object adaptation that carefully
inspect the semantics of downcasting.

4 Discussions and Related Work

While developing ε, we found some significant differences between EpsilonJ and
ε. Firstly, in ε every role instance binds with a class instance, and role instance
methods and fields can be accessed only through type casting. EpsilonJ does
not hold this property and we can write unsafe programs by explicitly access-
ing role instances. Another contribution of this work w.r.t. EpsilonJ is that it
provides solid information for language processor implementation. For example,
current implementation of EpsilonJ is based on reflective APIs, which results in
significant performance degradation [26]. On the other hand, ε indicates that we
can employ a more “natural” way to implement the language; e.g. a class may
have a field that contains a set of role instances with which the class instance
binds. Furthermore, type casting is realized as an operation that selects a role
instance from that set, and super calls are modeled as delegations. Indeed, we
have developed an EpsilonJ translator to Java based on this idea [20].

The programming language powerJava[3] is a quite similar language with
EpsilonJ, in that roles and collaboration fields are the first class constructs,
interaction between roles are encapsulated, and objects can participate in the
interaction by assuming one of its roles. As in ε, the type of role depends on the
enclosing context instance. However, powerJava lacks the feature of role groups
that is a powerful mechanism of getting role instances associated with the context
instance reflectively. Furthermore, no formalization is given for powerJava.

Delegation Layers[21] and Object Teams[14] provides more flexible object
based composition of collaborations. For example, Delegation Layers combines
the mechanism of delegation[18, 22] and virtual classes[19, 7], or Family Poly-
morphism[10]; roles may be represented by virtual classes, and composition is
instance-base using delegation mechanism. Both of these approaches, however,
do not successfully represent object adaptation described in this paper. For ex-
ample, in ε the object after assuming a role may dynamically throw the role
away, and even the thrown role may be assumed by another object and states
held in the role instance are taken over by the latter object.

There are pieces of literature that formalize the feature of extending ob-
jects at run-time. Ghelli presented foundations for extensible objects with roles
based on Abadi-Cardelli’s object calculi[1], where coexistence of different meth-
ods introduced by incompatible extensions is considered [12]. Gianantonio et al.
presented a calculus λObj+[13], an extension of λObj[11] with a type assign-
ment system that allows self-inflicted object extension still statically catching
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the “message not found” errors. Drossopoulou et al. proposed a type-safe core
language Fickle[9] that allows re-classification of objects, a mechanism of dy-
namically changing object’s belonging classes which share the same “root” su-
perclass. On the other hand, ε focuses on a foundation of object adaptation for
Java-like languages (based on FJ) and the feature of assuming roles that are
thrown by other objects (by swap operation).

Mixins[6, 2, 17] are similar to roles in EpsilonJ in that mixins form partial
definitions that can be reused with a number of classes that conform the re-
quirements of mixins. Even though mixin composition is originally performed
at compile time, dynamic composition of mixins is also studied in a core calcu-
lus[4], and such kind of object level inheritance is also studied as wrappers[8, 5].
Dynamic trait (a stateless mixin) substitution is also studied in [23]. All of these
pieces of work put more emphasis on type-safety, while ε supports more sophis-
ticated mechanism such as the swap operation and object level downcasting to
roles.

EpsilonJ supports context-oriented programming (COP)[15] in that contexts
(layers in COP terms) are named first-class entities that can be referred to
explicitly at run-time, and context-dependent object behavior can be changed
by activating/deactivating contexts from anywhere in the code. In EpsilonJ, such
activation/deactivation is performed by type casting.

5 Concluding Remarks

This paper reports a minimum core calculus of Epsilon model that has the no-
table feature of representing object adaptation. The calculus ε provides a precise,
formal definition of all key essential features of Epsilon model. Its type system
assures that the computation does not go wrong, even though some exceptional
cases concerning downcasting exist. The formalization clarifies the essential fea-
tures of object adaptation and provides solid information for program analysis
and language processor implementation. For example, ε suggests a natural way
to implement EpsilonJ, which has been partly achieved by the latest implemen-
tation.
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Abstract. Termination analysis tools strive to find proofs of termina-
tion for as wide a class of (terminating) programs as possible. Though
several tools exist which are able to prove termination of non-trivial pro-
grams, when one tries to apply them to realistic programs, there are still
a number of open problems. In the case of Java-like languages, one of
such problems is to find a practical solution to prove termination when
the termination behaviour of loops is affected by numeric fields. We have
performed statistics on the Java libraries to see how often this happens
in practice and we found that in 12.95% of cases, the number of itera-
tions of loops (and therefore termination) explicitly depends on values
stored in fields and, in the vast majority of cases, such fields are numeric.
Inspired by the examples found in the libraries, this paper identifies a
series of difficulties that need to be solved in order to deal with numeric
fields in termination and propose some ideas towards a lightweight anal-
ysis which is able to prove termination of sequential Java-like programs
in the presence of numeric fields.

1 Termination Analysis and Numeric Fields

Termination analysis tools strive to find proofs of termination for as wide a class
of (terminating) programs as possible. Termination analysis is about the study of
loops, which are the program constructs which may introduce non-termination.
Loops may correspond to iterative constructs or to recursion. The boolean con-
ditions which determine whether the loop should be executed again or not are
called guards. Automated techniques for proving termination are typically based
on analyses which track size information, such as the value of numeric data or
array indexes, or the size of data structures. In particular, analysis should keep
track of how the (size of the) data involved in loop guards changes when the
loop goes through its iterations. This information is used for specifying a rank-
ing function for the loop [14], which is a function which strictly decreases on a
? This work was funded in part by the Information Society Technologies program

of the European Commission, Future and Emerging Technologies under the IST-
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well-founded domain at each iteration of the loop, thus guaranteeing that the
loop will be executed a finite number of times.

In the last two decades, a variety of sophisticated termination analysis tools
have been developed. Several analyses and tools exist, primarily for less-widely
used programming languages, including term rewrite systems [8], and logic and
functional languages [11, 6, 10]. Termination-proving techniques are also emerg-
ing in the imperative paradigm [5, 7, 8], even for dealing with large industrial
code [7].

Termination analysis of realistic object-oriented programming languages faces
new difficulties due to the existence of advanced features such as exceptions,
virtual method invocation, references, heap-allocated data-structures, objects,
fields. Focusing on Java, termination analyzers for Java bytecode programs [1]
and for Java source [9] are being developed which are able to accurately han-
dle a good number of the features mentioned above. However, interesting open
problems still remain. In particular, it is well known that the heap poses im-
portant difficulties to static analysis. Some reasons for this are that the heap is
a global data structure whose contents are not accessed using named variables,
but rather using (possibly chained) references. Therefore, the same location in
the heap may be modified using different aliased references and, furthermore,
references may be reassigned several times, and thus they may point to different
locations during execution. When loop guards involve information stored in the
heap, such as object fields, tracking size information becomes rather complex and
accurate aliasing information is required in order to track all possible updates
of the corresponding fields (see e.g. [12]).

A partial solution to this problem is already solved by the path-length do-
main [9] which allows proving termination of loops which traverse acyclic heap-
allocated data structures (i.e., linked lists, trees, etc.). Path-length is an abstract
domain which, for reference values, provides a safe approximation of the length
of the longest reference chain reachable from it. Unfortunately, though the path-
length domain is a useful abstraction for fields which contain references, it does
not capture any information about fields which contain numbers. In this work we
look into the Sun implementation of the Java libraries for J2SE 1.4.2 in order to
estimate how often loop termination depends on numeric values stored in fields
and to try to come up with sufficient conditions for termination which are able
to cover a large fraction of those loops whose termination is not provable using
current techniques, such as those in [9, 1].

2 Motivating Examples from the Java Libraries

Since termination is an undecidable problem, all techniques for proving termina-
tion provide sufficient (but not necessary) conditions for termination. Therefore,
for any termination proving technique it is possible to find terminating pro-
grams where the given technique fails to prove termination. Thus, usually the
practicality of termination analyses is measured by applying the analyses to a
representative set of real programs. In this work, the design of the analysis is
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driven by common programming patterns for loops that we have found in the
Java libraries. By looking at Sun’s implementation of the J2SE (version 1.4.2 13)
libraries, which contain 71432 methods, we have found 7886 loops (for, while, and
do) from which 1021 (12.95%) explicitly involve fields in their guards. By inspect-
ing these 1021 loops, we have observed, among others, the following three kinds
of common patterns in the Java libraries.

Pattern #1: Loops in this category use numeric fields as bounds for loop counters
and, moreover, the value of those fields is not updated within the loop. This is
demonstrated in the following loop of the method public void or(BitSet set) of
library java.util.BitSet, where unitsInUse is a field of type int:

for(; i<set.unitsInUse; i++) bits[i]=set.bits[i];

Pattern #2: Loops in this category are similar to those in the previous cat-
egory. The difference is that, rather than corresponding to the value of a nu-
meric field, the bound of the loop counter corresponds to the length of an array
which is stored in a field. In this case, even if the elements of the array may
be updated within the loop, if the field itself does not, the length of the array
remains constant. This is demonstrated in the following example, correspond-
ing to method public void fixupVariables(java.util.Vector vars, int globalsSize) of
library org. apache.xpath.functions.FunctionMultiArgs where m args is a field of
type Expression[ ]:

for(int i=0; i<m args.length; i++) m args[i].fixupVariables(vars,globalsSize);

Pattern #3: Loops in this category use numeric fields as loop counters, which
means that the field value is updated within the loop, but none of the references
in the path to the field (in this example, the chain just consists of the reference
this) are re-assigned within the loop, i.e., all updates correspond to the same ob-
ject on the heap. This is demonstrated in the following loop of the method public
synchronized void setLength(int newLength) in the library java.lang.StringBuffer,
in which count is a field of type int:

for(; count<newLength; count++) value[count] = ’\0’;

In this paper we concentrate on proving termination of loops that fall in
the above categories by providing (uniform) conditions under which proving
termination of such loops becomes possible. The Java libraries include also other
patterns such as loops that: (1) increase/decrease an integer variable until it
reaches a given upper/lower bound; (2) traverse a non-cyclical data structure or
an array; (3) look for an element in an input stream, which is common in classes
that manipulate structured text such as parsing XML documents; and (4) look
for a non-null element in a given array in a circular way, which is very common
in the multi-threading classes. The first two patterns are the major part of the
loops, and they are already handled in [1]. The other patterns are planned for
future research and are not addressed in this paper.
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3 Dealing with Fields in Termination

In a Java-like language, objects are stored in the heap and they are accessed by
means of references (or pointers). References can take the value null or point to
an object in the heap. Given a reference l which points to an object o, l.f denotes
the value of the field f in the object o. We say that a syntactic construction of
the form l.f is a field access. Each field f has a unique signature, which consists
of the class where it is declared, its type, and its name.

Objects are global in that they survive the execution of methods. Typically,
when a method starts execution, a large number of objects may exist in the heap.
One approach to analyzing programs with objects is to compute an abstraction
of the heap (see [13]) which approximates the execution context of each method.
This usually requires computing abstractions of all possible objects in the pro-
gram, which might turn out to be too expensive in practice if one wants to deal
with real programs. However, in most cases, only a small fraction of such objects
affects the execution of the method. We seek for a more lightweight approach
which tries to approximate the contents of only a subset of the objects in the
heap. The approach must remain correct by making safe assumptions about the
objects (and fields) whose contents are not taken into consideration.

Another disadvantage of computing an abstraction of the heap, in addition
to its computational complexity, is that we end up obtaining termination in-
formation which is context-dependent. Though context dependent analysis is in
principle more precise, the results obtained are not extrapolable to other execu-
tion contexts. In particular, in the case of libraries, ideally we would like to prove
termination in a context-independent way, i.e., regardless of what the contents
of the heap are when the method is executed.

We now introduce the concept of local field access. In particular, we are
interested in finding field accesses which are local to a loop. Though termination
analysis in our context aims at proving termination of methods, in the rest of the
paper we will concentrate on loops since they are the main subject of termination
analysis.

Definition 1 (local field access). We say that a field access l.r1. . . . .rn.f ,
where f is a numeric field, is local to a loop L if

(i) No prefix of l.r1. . . . .rn changes its value within L, i.e., they remain constant.
(ii) If the value of l.r1. . . . .rn.f changes within L, then all write accesses have to

be done explicitly through the field access l.r1. . . . .rn.f .

Condition (i) guarantees that all occurrences of the field access within the loop re-
fer to the same memory location in the heap. Note that the prefixes of l.r1. . . . .rn,
i.e., l, l.r1, l.r1.r2, . . . are references which altogether form a chain to an object
where the numeric field f is stored. Condition (ii) guarantees that all write ac-
cesses to the field can be syntactically identified. Note that this condition can
be violated due to aliasing, since we can have different field access which update
the same memory location.
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Given a loop L, we denote by g-fields(L) the set of field accesses l.r1 . . . rn.f ,
where f is a numeric field, which explicitly appear inside the guard of L. For
instance, for the three loops in Section 2, the sets g-fields(L) are, respectively,
{this.unitsInUse}, {m args.length} and {this.count}. These three fields are locally
accessed within their corresponding loops. The practical implication is: if we
ensure that a field in g-fields(L) is local, then we are able to treat this field
in the same way as if it were a local variable, as regards the analysis of L.
Essentially, given a loop L, the analysis proceeds as follows:

1. Compute the set g-fields(L).
2. Compute the set l-g-fields(L), which is the subset of g-fields(L) which con-

tains the field accesses whose locality condition has been proved.
3. Analyze the termination of L by considering those field accesses in l-g-

fields(L) as if they were local variables.

The method is applied locally to all nested loops in L. Note that the termi-
nation of a method is ensured if all loops involved in its body are terminating.
By involved we mean not only those loops occurring explicitly in the body but
also those coming from possible calls to some other methods.

3.1 Syntactic Inference of the Locality Condition on Field Accesses

The above approach is practical only if we provide effective mechanisms to prove
the locality condition on field accesses. In this section, we consider only loops
that do not contain method invocations. Later, in Section 4, we take method
invocations into account. Now, we present sufficient syntactic conditions for en-
suring that a field access is local. The following conditions ensure that a numeric
field access l.r1. . . . .rn.f is local to a loop L:

1. The reference variable l remains constant in L. This can be ensured by
checking that there is no assignment to l within L.

2. All reference fields l.r1, . . . , l.r1...rn are constant in L. This can be ensured
by checking that there is no assignment within L to a field with the same
signature as any of ri.

3. All assignments to a field with the same signature as f in L are done through
the field access l.r1. . . . .rn.f .

Let us briefly explain each of the above conditions. Conditions 1 and 2 ensure
point (i) of Definition 1. The reason why we separate it into two conditions
is due to the way in which it is syntactically checked in each case. For the
reference variable l, we check that there is no assignment to it. These conditions
guarantee that we do not incorrectly consider a loop of the form while (l.size <
10) {l.size++; l=new C(); } as terminating. Note that this loop is not guaranteed
to terminate since l potentially changes the location of size and hence its value.

Condition 2 guarantees that we do not change any of the intermediary refer-
ence fields l.r1, . . . , l.r1...rn. Note that if we modify a reference field l.r1...ri then
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we fail to ensure constancy of the local field access. For instance, we would fail
to prove termination of this loop while (l.r1.size < 10) {l.r1.size++; l’.r1=z; }.
This is a safe assumption, as without knowledge about the aliasing of l and l′,
we might be changing the reference to size.

Condition 3 is a sufficient condition to ensure that the field is not updated
due to possible aliasing with another object (point (ii) in Definition 1). This
condition is not satisfied in a loop of the form while (l.size < 10) {l.size++;
l’.size--; } and therefore we do not prove termination for it. This is reasonable,
as l and l′ might be aliased during the execution.

Example 1. Reconsider the third loop in Section 2. For clarity, we replace the
access to the field count to explicitly include the this path variable:

for(; this.count<newLength; this.count++) value[this.count] = ’\0’;

We can prove that this.count is local to the loop by checking the syntactic con-
ditions stated above: the reference this does not change; and all updates to
this.count are done through the field access this.count. The key point is that,
since this.count is local, we can safely treat it as local variable. Consequently,
existing termination analysers [3] are able to infer that this.count is increasing at
each iteration. Besides, as newLength remains constant in the loop, the analyzer
finds out that newLength-this.count is a decreasing well-founded measure and
thus termination is guaranteed. 2

4 Termination with (Virtual) Method Invocations

In this section, we address the more challenging problem of proving the termi-
nation of loops which contain method invocations. As notation, we denote by
M(L) the set of methods transitively invoked within the scope of a loop L. We
now study what are the conditions that the methods in M(L) must satisfy in
order to preserve the locality condition on g-fields(L).

Consider a method m invoked within L, we distinguish three possible scenar-
ios. In the first two ones, the implementation of m is available at analysis time
and thus we can apply the techniques to detect local field accesses to the code
in m. As our method is purely syntactic, in order to check the conditions on m,
first we must do a renaming between the variables in the call and the formal
parameters in m, as parameter passing does. Note that, when a method m is
invoked from a reference l, the this reference in m is renamed to l in order to
check the conditions. In the first scenario, method m does not modify the value
of the (numeric) field, whereas in the second one it does. In the third one, the
implementation of m either it is not available (i.e., it is an abstract or native
method) or it has been redefined by means of subclassing. We aim at proving
modular termination of the loop by making assumptions on m. We study these
scenarios in more detail below.

Scenario 1. Consider method test1 at the top of the right-hand column in Fig. 1.
Due to dynamic dispatching, the execution of a.m1() can correspond to method
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class A {
int f,g;
int m1(){return 1;}

};
abstract class B extends A {

int m1(){return 2;}
void m2(){

f = f + 1;
}
abstract void m3();

};
class C extends B {

void m3() { g=g-1; }
};

void test1(A a,int k) {
while (a.f < k) a.f = a.f + a.m1();

}
void test2(B b,int k) {

while (b.f < k) b.m2();
}
void test3(B a,int k) {

while (a.f < k){
a.m3();
a.f = a.f + a.m1();}

}

Fig. 1. Termination with fields and method invocations

m1 in class A or to method m1 in class B. Since, in both cases, the reference
variable a remains constant and the field a.f is not updated within either imple-
mentation of m1, we can guarantee that the field access a.f is local to (the loop
in) test1. Proving termination now is straightforward since both implementations
of m1 return a positive number.

Scenario 2. Now, we consider the case that, even if the field access is local to
the loop, the field is updated during the execution of the invoked method. This
happens, for example, in method test2 where the call b.m2() increments the value
of b.f. Indeed, method m2 is responsible for the termination of test2. In this case,
we need to track the variations in the field b.f in an inter-procedural manner.
One way to do it is by inlining the invoked method. However, this cannot al-
ways be done, as it is problematic for recursive methods. Another approach is
to transform the methods in such a way that they carry as additional param-
eters the fields that must be tracked. When we have virtual invocations and
several instances of the same method can be executed at runtime, we need to do
such transformation to all the possible instances. Doing it at the level of Java
would require a more sophisticated transformation, since parameters are passed
by value. It could, however, be easily integrated in a termination analyzer like
[1], as it works on an intermediate representation with permits multiple output
parameters. We plan to develop this part in an extended version of this work.

Scenario 3. If the code of a method m in M(L) is not available or the implemen-
tation of the method has been redefined, unfortunately we can say very little
about the termination of L. For instance, if m is an abstract method, it is cus-
tomary that the user defines a new class which implements m and it is always
possible that it modifies the fields which affect the termination of the loop. Also,
the new implementation might introduce callbacks which endanger termination.
Clearly, one possibility is, once the implementation is available, to re-analyze

FTfJP 2008  - 83



the loop with the new method. More interestingly, we can try to prove modu-
lar termination of the loop by assuming that (1) the method terminates, (2) it
does not update any field access in g-fields and (3) it does not have callbacks.
Once the new implementation is available, we actually have to ensure that the
method m does not introduce a termination problem in L by checking the first
two syntactic conditions in Sect. 3.1 as well as proving termination of m by
applying our method to m again. For instance, consider method test3, which is
similar to test1, but where a call to the (abstract) method m3 has been added
in the body of the loop. Assume that the class C is not available, then we make
the assumption that m3 is terminating and does not update a.f. Under these
assumptions, we can prove modular termination of the loop. Consider now that
the user defines class C at the bottom. Trivially, this method terminates and
besides we can ensure that a.f is never updated from it. Note that, if the update
inside m3 was on f instead of on g, we would fail to ensure that that m3 does
not interfere with the guard. Indeed, the loop does not terminate in this case.

4.1 Method Invocations in the Java Libraries

It is common to find loops for scenarios 1 and 3 in the Java libraries. For instance,
the loop of Pattern #2 of Section 2 is an example of scenario 3. The method
fixupVariables invoked by m args[i] is an abstract method of the library org.apa-
che.xpath.Expression. The code is not available, thus we can only aim at proving
termination modularly. We first make the assumption that fixupVariables will
not introduce a termination problem in the loop. Under this assumption, we can
prove termination of the loop. Note that, for actual implementation of fixupVari-
ables, we will have to check that the local access condition holds and that it
terminates.

We found many loops for scenario 1. For instance, the following loop appears
in method public int indexOf(Object elem) of the library java.util.ArrayList:

for (int i = 0;i<size;i++)
if (elem.equals(elementData[i])) return i;

where size is a field of type int. Its termination depends on the termination of the
calls to elem.equals(elementData[i]), where elem and elementData[i] are objects of
class java.lang.Object. The implementation of equals is available and contains as
unique instruction return (this==obj), which ensures the local field access of size.
Thus the loop is definitely terminating. It is rare in the libraries to find loops
for scenario 2, indeed we have not found any. Though we believe it is necessary
to provide solutions for them in order to handle the termination of user-defined
programs which rely on the libraries and define methods which actually update
the fields.

It is important to note that the solution we have proposed for this scenario
is valid as long as the implementation of the missing methods does not use
static fields. The reason for this is that static fields can be, similarly to global
variables, used in the code without being passed as arguments to the method.
Therefore, the set of classes reachable from a method signature, as obtained by
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the procedure above, is not guaranteed to be a safe approximation of the actual
classes reached by execution in the presence of static fields.

5 Perspectives for Future Work

The state of the practice in termination analysis is moving beyond less-widely
used programming languages to realistic object-oriented languages. This paper
draws attention to some difficulties that need to be solved if object fields are to
be supported by termination analyzers. In particular, tracking size information
becomes rather complex, and accurate aliasing information is required in order
to track all possible updates of the corresponding fields. Motivated by examples
found in the Java libraries, we have proposed some ideas towards dealing with
numeric fields in a practical manner. The perspectives on the application of
our technique include to infer termination annotations for as many methods in
the Java libraries as possible. Applying termination tools on realistic programs
which use libraries is a challenging problem, as there are many dependencies
between the library classes and, in our experience, even small applications require
analyzing a high number of library methods. By using precomputed annotations,
the analyzer can safely assume the termination of those annotated methods in
the Java libraries (and those that they depend upon).3

Although our ideas have not been experimentally evaluated yet, we believe
that most of the patterns found in the libraries match those presented in Sec. 2.
We, nevertheless, plan to improve the accuracy of the analysis in order to cover
a broader range of patterns. For instance, as a starting point, we have proposed
to check the local field access condition on those fields which appear explic-
itly in the guards, denoted g-fields. There are, of course, other possibilities and
enhancements:

– Ideally, we should try to prove the locality condition not only on g-fields,
but also on those fields which may interact with g-fields. For instance, in a
loop of the form while (l.size < 10) {l.size+= l’.size; }, unless we track some
information about l′.size (in this case, its sign would suffice), we will fail to
prove termination. Unfortunately, it is not always trivial to determine the
minimal set of fields which may interact with g-fields. In particular, a simple
syntactic inspection is not enough.

– To simplify the above point, another idea would be to try and prove the
locality condition on all fields which appear inside the scope of the loop.
This approach would be in general more accurate (e.g., would solve the
above problem) but more expensive. Importantly, even if not all fields are
local to the loop, the termination analysis proceeds (step 3 in Sect. 3). As
long as the non-local field accesses do not affect the termination behaviour,
the analysis can still succeed to prove termination.

3 Note that precomputed assertions are valid as long as the user does not redefine
methods which have been used (and analysed) to infer the assertions.
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– Another interesting refinement is to consider not only the fields which ap-
pear explicit in the guards but also those which are accessed through getter
methods like while (l.getSize() < 10) {...}. For this, we should go through
the code of the methods invoked in the loop guards and identify those fields.
A simple solution to this problem is inlining the method. Afterwards, the
same basic techniques explained in the paper could be applied.

It can be seen that in some cases there is an accuracy vs efficiency tradeoff and
also that, what it is optimal for one example might not be good for others. We
need to perform experimental evaluation to assess the different options.

From an implementation perspective, we plan to enhance the costa system
[3] with the ideas presented in this paper. costa is a cost and termination an-
alyzer which works directly on the bytecode (and has no knowledge about the
source Java). The termination module is based on the techniques proposed in [1]
and the cost module on the method described in [2]. To carry out the implemen-
tation, the first issue is to incorporate the syntactic conditions to prove whether
fields are accessed locally. Condition 3 can be easily checked on the bytecode by
seeing that there is no putfield to the corresponding field signatures. Checking
that the object does not change (conditions 1 and 2) requires to track dependen-
cies between stack variables and local variables. This happens because, in the
bytecode, the access to a field is done by first pushing the variable (on which
the condition is to be checked) to the stack and then the field is accessed from
the stack variable. This check can be done syntactically in most cases due to the
elimination of stack variables [4]. Once the syntactic conditions are checked, we
will implement the extensions to treat fields as local variables during analysis.
This is straightforward to do in costa, as the tool converts the bytecode into
a rule-based representation where the local variables (and the stack positions)
appear as arguments of these rules. We can just add the required fields as addi-
tional arguments to them. Size analysis will directly treat them as it does with
local variables in order to infer how they increase/decrease over the program.
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Abstract. The proposed Java Module System (JAM) has two major deficien-
cies, as noted in our previous work: (a) its unintuitive class resolution can often
give unexpected results; and (b) only a single instance of each module is permit-
ted, which forces sharing of data and types, and so makes it difficult to reason
about module invariants. Since JAM will be a part of Java 7, solving these prob-
lems before its release would benefit the majority of Java developers and users.

In this paper, we propose modest changes to the module language, and to the
semantics of the class resolution, which together allow the module system to
handle more scenarios in a clean and predictable manner. To develop confidence,
both theoretical and practical, in our proposals, we: (a) formalise the improved
module system, iJAM; (b) prove mechanized type soundness results; and, (c) give
a proof-of-concept implementation that closely follows the formalisation; these
are in Ott, Isabelle/HOL, and Java, respectively.

The formalisation is itself modular: iJAM is based on our previous formaliza-
tion of JAM (LJAM), which extends Lightweight Java (LJ). LJ has shown to be
a good base language, allowing a high reuse of the definitions and proof scripts,
which made it possible to carry out this development relatively quickly, on the
timescale of the language evolution process.

1 Introduction

Currently, Java supports only a very limited form of component-level information hid-
ing and reuse. Two Java Community Processes, JSR-277 [1] and JSR-294 [2], are de-
veloping the Java Module System (JAM), which will be a part of Java 7.

In our previous work [3], we analysed, partly developed, and fully formalized the
core part of the proposed module system, producing the Lightweight Java Module
System (LJAM) [4]. We also discussed the key design decisions related to the devel-
opment of the core of JAM, and their alternatives, pointed out several deficiencies with
module instantiation and class resolution, and gave tentative proposals for solving these
problems. In particular, the two main problems are:

– JAM’s unintuitive class resolution can easily lead to unexpected results.
– JAM has highly inflexible module instantiations that makes it difficult to reason

about module invariants.
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Our provisional ideas included reversing the class resolution algorithm, and allow-
ing each repository to hold module instances of any visible module definition.

In this paper, we develop and precisely define clean solutions that make class resolu-
tion intuitive and flexible (through class renaming and an adapted resolution algorithm),
and allow users to control the sharing of module instances (through user-specified poli-
cies). The solutions are modelled on top of LJAM, producing improved JAM (iJAM).
We give a precise definition of iJAM’s syntax, type system, and operational semantics.
Furthermore, we prove in Isabelle/HOL [5] type soundness theorems for Lightweight
Java (LJ) [6] (the language LJAM is based on), for LJAM and for iJAM. As a proof
of concept, we also implement a module system on top of Java, which can follow the
semantics of either LJAM or iJAM. More specifically, our contributions are:

– precise and clean solutions to problems previously identified with JAM (§3);
– formalization of the solutions, producing iJAM (§4);
– Isabelle/HOL type soundness proofs for LJ, LJAM, and iJAM (§5); and
– an implementation that can model both LJAM and iJAM (except for sharing through

renamed classes, which requires a small change to the JVM) (§7).

The details of our semantics, proofs, and implementation are available online [6, 4, 7].

2 A Short Overview of the Java Module System

The Java Module System (JAM) is a proposal for a module system integrated into Java,
aimed at solving the hierarchical information hiding problem and the DLL/JAR-hell
problem.

JAM introduces a few new concepts to Java, the most important of which is the
module, or superpackage. A JAM module encapsulates Java packages, making even
public members (classes or interfaces) of these packages by default invisible outside
the module. Specific public members can be made visible by explicitly exporting them.
A module can import other modules, which allows its members to see the (recursively)
exported public members of the (recursively) imported modules.

JAM modules are specified by module developers in module files. The user syntax
(the abstract syntax for what the user writes) of a module file is the following:

superpackagemn {memberpn; importm; exportfqn; }

Here pn is a package name (which can include dots), m and mn are module names,
and fqn is a fully-qualified class name. The overbars indicate lists.

A module file is compiled into a module definition, which contains class files for its
members, and the information specified in the module file. A module definition can be
installed into a repository, and then instantiated to create a module instance (intended
to be implemented with a classloader [8]), which is linked up with instances of module
definitions it imports. The directed graph of module instances is contained in a structure
called the module hierarchy (MH ).

A repository is used for storing, finding, (un-)installing, and instantiating module
definitions. These actions are performed by system administrators and passively by
the module system itself. Repositories can be composed into a repository hierarchy to
further control the visibility between modules.
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3 The Key Problems and Their Solutions

In this section, we analyse JAM’s two key problems: unintuitive class resolution, and
inflexible module instantiation. For each, we show what they are, the reasons for corre-
sponding design choices, their implications in practice, and how they can be fixed.

3.1 Unintuitive Class Resolution

The first key problem with JAM concerns its definition of class resolution. The pro-
cedure (recursively) searches the imported module definitions (following the order in
the module file) before the client module. This is done in order to prevent anyone from
overriding the core library classes,1 and to promote the sharing of static data and types.
In JAM, due to an oversimplified relation between modules, the importing module has
no control over which exported classes of the imported modules are visible. The com-
bination of the two properties lead to poor support for module interface evolution.

Suppose, for example, that the developers of a module, XMLParser, release an up-
date, which makes some new functionality available through a new (and exported) class,
ParserX. Because the new XMLParser module is compatible with the old one, the
developers only change its micro version number, which means that the modules that
previously imported the old version will now likely import the new one automatically
(due to commonly-used flexible version constraints). However, if an importing module,
e.g. XSLT, already contained a class named “ParserX”,2 then any reference to a class
ParserX in XSLT will now incorrectly resolve to ParserX in XMLParser.

Any changes to the underlying language are highly undesirable due to various com-
patibility issues. Because of this, we cannot introduce proper namespaces to the source
language, which would allow class references such as XMLParser::ParserX.

In our previous work, we suggested inverting the class resolution algorithm. How-
ever, with that approach the user can override the core library classes. To prevent this,
and to obtain a more intuitive semantics, the solution is to search the core library mod-
ule, then the module itself, and finally the imported modules (recursively). In the ex-
ceptional cases where more classes should not be overriden, one can imagine requiring
highest administrator privileges to put these classes into the core library module.

Continuing with the above scenario, suppose the developers of XSLT (which con-
tains its own ParserX) now want to use the new functionality given by the new XML-
Parser’s ParserX. In JAM, this is not possible without name refactoring in the mem-
bers of XSLT. To prevent such refactoring, which would likely disrupt the development
in a large project, we could use the well-established solution of module-boundary re-
naming. That is, allow specific classes to be renamed locally as they are imported. We
propose boundary renaming for JAM that will allow, for example, the developer of
XSLT to use XMLParser’s ParserX under the name ImportedParser using:

import XMLParser with ParserX as ImportedParser ;
Similarly, one can disambiguate classes coming from different imported modules.

1 The core module (Java’s core library classes) is logically the root of the import graph.
2 One might argue that due to the class naming conventions this scenario is unlikely, but one also

has to realize that the naming conventions arose because of the lack of namespace control.
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3.2 Inflexible Module Instantiation

In JAM, each module definition can only have a single module instance, i.e. JAM’s
module generators are severely restricted. This means that all clients necessarily have
to share the module’s static data and types, which is considered desirable, because it
saves space, and prevents many possible class casting exceptions. However, suppose
we have two module definitions, XSLT and ServletEngine, both of which depend on a
third one, XMLParser. Furthermore, suppose that XSLT and ServletEngine: (i) rely on
conflicting invariants of the internal state of XMLParser; or (ii) must run concurrently
to achieve a high throughput, but XMLParser does not guarantee correct operation in
such a concurrent environment.

In JAM, the only solution available to us in case (i) is to make the two invariants
somehow compatible. In case (ii), we need to rewrite XMLParser’s code (assuming we
have access), in order to add sufficient locking to handle concurrent accesses from mul-
tiple users. Both alternatives are often time-consuming and error-prone tasks, but are
necessary if XSLT and ServletEngine have to share data or types through XMLParser.

However, the sharing of data or types through a common import is infrequent, espe-
cially across different programs. In all such cases, we can replicate the common import
as required. This way the users can maintain conflicting invariants on separate instances
of a module definition, since they use independent static data. We can also avoid un-
needed contention in the imported module definition, allowing all importers to execute
static methods in parallel without worrying about breaking each other’s invariants.

The fundamental point here is that we should give module developers a choice of
whether they want a shared or a new instance of an imported module. Here, we give an
informal overview of the alternatives that allow for any possible sharing scenario:3

IMPORT OPTION SHORT DESCRIPTION

importm Uses JAM’s default sharing policy.
Can be overriden by replicating — see below.

import sharedm Explicitly requests a shared instance of m .
import ownm Requests a separate instance of m .
importm as amn Requests an instance, which is shared under name amn .4

However, there are cases where the developer of a module would want to specify
module’s own replicating policy. If they know that a module is not concurrency-safe,
then they would tag it with replicating and so prevent sharing; if they wanted to track
some system-wide information, they would tag it with singleton and so force sharing:

ANNOTATION SHORT DESCRIPTION

(no annotation) Instantiation depends solely on the importer’s policy.
replicating Default import of this module results in a new instance.
singleton Always shares a single instance (ignores importer’s policy).

3 Keywords are introduced for the sake of clarity. A real system might use different syntax.
4 If another module imports m as amn then they share the same instance. This option is here to

cover the general case.
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Collecting these alternatives, we have three different types of dependency between
the importing and the imported superpackage: shared, own, and as. The following table
summarizes the above-described interaction between different annotations: 5

IMPORTED
default replicating singleton

IM
P

O
R

T
IN

G default shared own

shared
shared shared
own own
as as

The ‘replicating’ flag says “use this module as shared at your own risk,” whereas
the ‘singleton’ flag says “this module only makes sense if there is a single instance of
it,” hence we do not allow the importing module to override the latter. The above table
shows how we put the intended semantics before safety in a concurrent environment.

4 Formalization

In this section, we describe the formalization of the above-mentioned solutions in im-
proved JAM (iJAM), a modified version of our previously developed LJAM. As LJAM,
iJAM, too, was formalized with Ott [9]. Due to the lack of space, we only briefly
overview the interesting parts of the formalization. The full definitions (including all
the semantic rules) can be found online [6, 4, 7].

The user syntax for iJAM’s module files is
repl superpackagemn {member pn; imp; export fqn; }

Comparing this to the user syntax of LJAM’s module files shown in §2, the definition
is now prefixed with repl , and imp; has replaced importm;. The definition of the two
new entities (and the import dependency construct imp dep) is shown in Fig. 1.

The combination of the two statically defined replication policies repl and imp
results in the actual replication policy imp dep used at runtime — see the table in §3.2.

As in LJAM, the module instances are stored in repositories’ caches. However,
LJAM’s caches simply mapped module definitions (md ’s) to their instances: md ⇀ mi .
In iJAM, the import dependencies need to be taken into account, so the cache type be-
comes: md ⇀ (imp dep ⇀ mi).6

The module hierarchy MH stores the connection between module instances. In
LJAM, this was simply mi ⇀ mi, but in iJAM each imported module instance is
also associated with the appropriate boundary renaming of class names, so the module
hierarchy’s structure becomes mi ⇀ mi br . This way the class lookup function can
easily update the name of the class it is looking for when crossing module boundaries.

The well-formedness relations were updated to reflect the new structures. The se-
mantics of the administration actions, e.g. module initialization, were changed to ac-
count for different import dependencies and boundary renaming. Class resolution was
updated as described in §3.1. Unfortunately, lack of space prevents any more detail here.

5 This table might seem more complex than the relation it represents. It is not clear whether
there is a simpler relation, which gives the same expressivity and convenience.

6 Since module instances resulting from Ownmi can only be linked against once, we could
have excluded them from the cache.
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repl ::= replication modifier
| default
| replicating replicating
| singleton singleton

imp ::= import statement
| importm br default
| import sharedm br shared
| import ownm br own
| importm as amn br as

br ::= boundary renaming
| no renaming
| with fqn1 as fqn ′

1, ..., fqnk as fqn ′
k renaming pairs

imp dep ::= import dependency
| Shared default import
| Ownmi instance of imported module
| As amn ref. to imported module

Fig. 1. Some of the entities introduced by iJAM

5 Mechanically Proving Type-Soundness

By providing Isabelle/HOL [5] homomorphisms for language productions to Ott, the
tool is able to generate theorem prover definitions of the meta-types and semantic rules.

5.1 Type-Soundness Theorems

We prove type soundness by proving progress and type preservation properties. The
progress property states that: if a configuration (P,L,H, s) (where P is a program, L a
variable mapping, H a heap, and s statements to execute) is well-formed in some type
environment Γ, and there are still some statements s left to execute, then there exists
some configuration config , which the current configuration reduces to in one step (−→).

Theorem 1 (Progress).

Γ ` (P,L,H, s) ∧ s 6= [] =⇒ ∃config. (P,L,H, s) −→ config

The type preservation property states that: if config is a well-formed configuration
in some type environment Γ, and config reduces in one step to config ′ through either
statement reduction (−→), or administrator action reduction ( a−−→) in case of LJAM and
iJAM, config ′ is well-formed in some greater (⊆m) type environment Γ′.

Theorem 2 (Type Preservation).

Γ ` config ∧ (config −→ config ′ ∨ config a−−→ config ′)
=⇒ ∃Γ′. Γ ⊆m Γ′ ∧ Γ′ ` config ′
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5.2 Our Experience

The semantic rules are defined as inductively-defined relations. Some of these relations,
e.g. the class resolution, are easier to deal with in a theorem prover if expressed as func-
tions. For those, we wrote Isabelle/HOL functions, and proved equivalence between the
Ott-generated relation and the corresponding function.

When defining a function with non-primitive recursion in Isabelle/HOL, one also
has to prove its termination. Especially in the case of find path f, the function that
finds the inheritance path for a particular class, proving termination was a challenge. In
our first attempt, we defined the relation/function so that it failed if ‘the path found so
far’ was greater than the number of classes in the program. This worked fine until we
had to prove well-formedness of a program with an extra module instance — the size
of the program increased, so we could not prove semantic preservation for this function
in general, since the function failed in one case, and not in the other. This forced us to
define the acyclicity property among the class definitions, a property that is indepen-
dent of the size of the program; however, we still had to prove the preservation of this
property. Similarly, we had to define an acyclicity property among module instances
to prove termination and well-formedness of find cld in imports f, a function
finding class definitions among module imports.

All three formalizations also use a non-standard subtyping relation: a type τ is a
subtype of τ ′ iff a class definition corresponding to τ is in the inheritance path of τ ′.
We then derive type reflexivity and transitivity, not vice versa. This definition makes it
relatively easy to prove lemmas such as method type preservation.

One of the key lemmas in the LJAM’s proof, which iJAM’s new class resolution
breaks, is find cld same ctx. It says that if we look for a class with name fqn in
context ctx and we find a class definition cld ′ in context ctx ′, then we will get the same
result if we start the search at ctx ′ instead:

Lemma 1 (find cld same ctx).

find cld f P ctx fqn = Some (ctx′, cld′) =⇒
find cld f P ctx′ fqn = Some (ctx′, cld′)

In iJAM, this lemma did not hold any more, because fqn was not necessarily the
same as the fully-qualified name of cld ′. We modified the lemma by replacing fqn in
the goal with (full name f cld′). However, the lemma was still false, because the two
function calls first search within the core libraries, each with a possibly different class
name, which can therefore lead to a different result. If we could not use the modified
lemma in iJAM’s proof, we would not be able to reuse large parts of LJAM’s proof.

We solved this problem by placing a well-formedness condition on boundary re-
naming, which prevents module definitions from renaming a class from and to a name
already exported by the core library module. Actually, already the from part makes the
modified lemma hold again,7 but we added the to part, too, in order to avoid unexpected
class resolution results. These restrictions ensure that a class reference resolves to a
core library class iff the reference is a name of a class exported by the core library.

7 It is still not clear to us whether iJAM is type-sound without this restriction.
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6 Reuse in Definitions and Proof Scripts

Since LJAM is an extension of LJ, and iJAM is based on LJAM, they share much of
the semantic definitions. In particular, the language statements, e.g. the method call
statement, have syntactically identical definitions in all three languages; also syntac-
tically identical are the statement well-formedness and reduction relations — that is,
the semantics of these relations differ through different definitions of the syntactically
identical judgements (e.g. the class resolution judgement) used in their rules.

The proof scripts for the progress and well-formedness of the statement reduction
relation are practically identical for all the three languages (5 lines out of 350 lines
differ). This is achieved by carefully abstracting the key lemmas, e.g. the lemma for the
‘method type preservation’ property (the lemma is too large to show here). Due to such
abstractions, we were able to achieve high reuse in both the definitions and the proof
scripts as shown by the following two diagrams (relative area corresponds to relative
no. of lines of definition/proof script):

LJ (1381)

LJAM
 (2502)

iJAM (2671)

LJ (2741, 254)

LJAM
 (4386, 382)

iJAM (4508, 393)

Definitions (lines) Proof Scripts (lines, lemmas)

7 The Implementation

Our proof-of-concept implementation runs on top of Java; the module’s code can con-
tain any valid Java code. We implemented module files (with JavaCC [10]), repositories,
module definitions, module instances, the module initialization mechanism according
to iJAM’s semantics, and a classloader, which respects iJAM’s class resolution. The
user can also enter compatibility mode, where the system behaves according to LJAM’s
semantics instead. We do not implement realistic compilation of module files, an admin-
istration console, or eager typechecking as specified by LJAM’s and iJAM’s semantics
— typechecking is done lazily, as is normal in Java.

Each module instance needs to create distinct types, as well as replicate the static
state of its classes. This can be achieved by having a classloader per one module in-
stance. Each module object holds references to modules it imports, to which it delegates
the class resolution as necessary. Because it is not possible to map two distinct names
to the same Class object, sharing through renamed classes is not supported; however,
we believe that only a small change to the JVM is required to allow this.
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Using iJAM’s user syntax presented in §4, we here give a simple example:
superpackage XMLParser {member; export Parser;}
superpackage XSLT {member; import XMLParser; export Config;}
superpackage ServletEngine {member; import XMLParser; export Config;}
superpackage WebCalendar {member; import XSLT;

import ServletEngine with Config as SEConfig;}
Both Config classes use the XMLParser::Parser, which tracks the number of its
instances. WebCalendar::Main (not exported) uses XSLT::Config and SEConfig
(ServletEngine::Config). Running Main outputs:

XSLT::Config: using 1. instance of Parser.

ServletEngine::Config: using 2. instance of Parser.

This indicates that there is only one XMLParser instance. One way to achieve multiple
instances of the module is to tag it with replicating; in that case, the output shows
1. instance in both cases. The full source is available online [7].

8 Related Work

In this section, we compare iJAM to the other module systems and related language fea-
tures. In particular, we focus on class resolution, boundary renaming of classes, sharing
of static data and types, and separate compilation.

In module systems based on the ML module system, the underlying language usu-
ally supports module-aware class references. Examples of such systems are MOBY [11]
and CGEN [12]. The classes are looked up in the user module first, only then in the
importing ones, unless the user refers to a specific imported module. These systems
normally allow type renaming through external names of exported (visible) types.

Jiazzi [13] and ComponentJ [14] are two examples of module systems based on
Units [15]. Although renaming is not supported, these systems provide powerful ways
of combining components. Jiazzi gives module capabilities to packages, so package
names in class references refer to imported modules — this simplifies the class resolu-
tion, but changes the semantics of the underlying Java language.

Bauer et al. describe a module system [16], which supports the renaming of both
classes and modules, allows module-aware class references, and uses those to guide
the class resolution — both of these changes, although useful, change the underlying
language, which we are trying to avoid.

MJ [17], a module system similar to JAM, checks the module constraints and sets
the appropriate CLASSPATH for the standard Java compiler. Its access control mech-
anism is quite expressive, allowing sophisticated relationships between different mod-
ules, such as selective importing and exporting, hiding, and sealing. Surprisingly, no
renaming is supported. The problem of ambiguous class references seems to be ignored.

Of the above systems, only MOBY, Jiazzi and CGEN support separate compila-
tion. MOBY achieves this with various restrictions to the language, whereas Jiazzi and
CGEN require user-specified module interfaces. SMARTJAVAMOD [18] supports sepa-
rate compilation through generation and verification of compositional constraints [19].

.NET assemblies [20] represent well-defined boundaries of security, namespaces,
and versions. They are similar to JAM module definitions in many respects. Fusion, the
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assembly binder for .NET, finds, loads, and binds assemblies before execution. Com-
pilation of an assembly requires all of its imports to be present, so that the created
bytecode can contain only explicit references — if there are many possible ways of
resolving a class reference, an error is thrown at compile-time.

Currently the most widespread module framework for Java, OSGi [21] is a highly-
customizable framework built on top of Java that promotes service-oriented program-
ming. OSGi has a similar class resolution scheme to JAM, which we have argued here is
counter-intuitive. Additionally to JAM, it, like MJ, supports dynamic imports, where an
import dependency is resolved lazily at runtime — this increases the expressive power,
but also lowers type safety guarantees, allowing type errors to happen also at runtime.
As far as we are aware, it also has no module sharing control, boundary renaming, or
namespace hiding, which means that it, too, suffers from the problems described in §3.

All of the systems mentioned so far (except OSGi) use a single copy of static data
per application, i.e. modules are used as static libraries. In OSGi and JAM, modules are
used as dynamic libraries, where multiple programs share types and static data.

Family polymorphism [22–24] is a flexible and transparent mechanism for code
reuse. It gives classes some properties of modules, addresses hierarchical information
hiding, and allows improved forms of inheritance. However, it does not address pack-
aging, distribution, deployment, import renaming, or separate compilation.

9 Conclusions and Future Work

In this paper, we have presented and solved some of the most important problems with
the JAM. We formalized the solutions in a language called iJAM, an extension of our
previously developed LJAM. We defined the syntax, the type system, and the opera-
tional semantics of iJAM. In Isabelle/HOL, we proved type soundness for LJ, LJAM,
and iJAM. Furthermore, we built a proof-of-concept implementation on top of Java,
which can follow the semantics of either LJAM or iJAM. All the definitions, proofs,
source code, documentation, and other documents can be found online [3, 4, 6, 7].

A good module system enables the user to restrict herself from making unintended
dependencies. To prevent many unintended class name dependencies, JAM allows se-
lective exporting. Our work substantially improves on this by providing support for
boundary renaming (more expressive than selective importing). We also allow multiple
module instances, which help with preventing unintended data/type dependencies.

The formalization tools were key to this work. Ott found many consistency errors
with the definitions automatically. This gave more courage to experiment with alterna-
tive definitions, and allowed compiler-error based regression testing. By mechanizing
the meta-theory in Isabelle, it was easy to identify incorrectly formulated judgements
and incomplete relations. Through abstractions in the definitions and the proof scripts,
we achieved a high-level of reuse in both, which substantially sped up the process.

We plan on trying to use the recently developed Isabelle code generation tools [25]
to generate reference implementations of the systems, which could then be compared to
existing ones. Formalising OSGi is an interesting option for future work, which would
allow detailed comparison of the two systems. This would likely help the industrial
attempts to provide clean interoperability between the two systems.
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Århus, Denmark (1999)

23. Odersky, M., Zenger, M.: Scalable Component Abstractions. In: Proc. of OOPSLA ’05,
New York, NY, USA, ACM (October 16-20, 2005) 41–57

24. Clarke, D., Drossopoulou, S., Noble, J., Wrigstad, T.: Tribe: A Simple Virtual Class Calcu-
lus. In: Proc. of AOSD’07. (March 12-16, 2007)

25. Haftmann, F.: Code generation from Isabelle/HOL theories. (November 2007)

FTfJP 2008  - 99



Constancy Analysis

Samir Genaim and Fausto Spoto

1 CLIP, Technical University of Madrid (UPM), Spain
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Abstract. A reference variable x is constant in a piece of code C if the
execution of C does not modify the heap structure reachable from x.
This information lets us infer purity of method arguments, an important
ingredient during the analysis of programs dealing with dynamically al-
located data structures. We define here an abstract domain expressing
constancy as an abstract interpretation of concrete denotations. Then
we define the induced abstract denotational semantics for Java-like pro-
grams and show how constancy information improves the precision of
existing static analyses such as sharing, cyclicity and path-length.

1 Introduction

A major difference between pure functional/logic programming and imperative
programming is that the latter uses destructive updates. That is, data structures
are mutable: they are built and later modified. This can be both recognized as
a superiority of imperative programming, since it allows one to write faster and
simpler code, and as a drawback, since if two variables share a data structure
then a destructive update to the data reachable from one variable may affect the
data reachable from the other. This often leads to subtle programming bugs.

It is hence important to control what a method invocation modifies. Some
methods do not modify the data structures reachable from their parameters.
Others only modify those reachable from some but not all parameters. Namely,
some parameters are constant or read-only, others may be modified. If all pa-
rameters of a method are constant, the method is pure [10]. Knowledge about
purity is important since pure methods can be invoked in any order, which lets
compilers apply aggressive optimizations; pure methods can be used in program
assertions [7]; they can be skipped during many static analyses or more precisely
approximated than other methods. This results in more efficient and more pre-
cise analyses. For instance, sharing analysis [11] can safely assume that sharing
is not introduced during the execution of a pure method. In general, all static
analyses tracking properties of the heap benefit from information about purity.

For these reasons, software specification has found ways of expressing purity
of methods and constant parameters. The notable example is the Java Modeling
Language [7], which uses the assignable clause to specify those heap positions
that might be mutated during the execution of a method. Those clauses are
manually provided and used by many static analyzers, such as ESC/Java [6]
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and ChAsE [4]. However, those tools do not verify the correctness of the user-
provided assignable clauses, or use potentially incorrect verification techniques.
A formally correct verification technique is defined in [14], but has never been
implemented. In [10] a formally correct analysis for purity is presented, it is
based on a preliminary points-to and escape analysis, and an implementation
exists and has been applied to some small size examples. In [8] a correct and
precise algorithm for statically inferring the reference immutability qualifiers of
the Javari language has been presented. The algorithm has been implemented
in the Javarifier tool.

In this paper, we investigate an alternative technique aiming at determining
which parameters of a method are constant. We use abstract interpretation [5]
and perform a static analysis over the reduced product of the sharing domain
in [11] (the sharing component) and a new abstract domain expressing the set
of variables bound to data structures mutated during the execution of a piece
of code (the purity component). The use of reduced product is justified since
the sharing component helps the purity component during a destructive update,
by identifying which variables share the updated data structure and hence lose
their purity; conversely, the sharing component uses the purity component during
method calls, since only variables sharing with non-pure parameters of a method
m can be made to share during the execution of m.

Our technique is sometimes less precise than [10], since it does not use the
field names (i.e., we do not keep information on which field has been updated,
but rather that a field has been updated). However, it is implemented in a com-
pletely flow-sensitive and context-sensitive fashion, which improves its precision.
Moreover, it is expressed in terms of Boolean formulas implemented through bi-
nary decision diagrams, resulting in fast analyses scaling to quite big programs.
Our contributions are hence: (1) a definition of the reduced product of sharing
and purity; (2) its application to large programs; (3) a comparison of the preci-
sion of sharing analysis alone with that of sharing analysis in reduced product
with purity; and (4) an evaluation of the extra precision induced by the pu-
rity information during static analyses tracking properties of the heap, namely,
possible cyclicity of data structures [9] and path-length of data structures [13].

The paper is organized as follows: Section 2 defines the syntax and semantics
of a simple Object-Oriented language; Section 3 develops our constancy analysis
for that language; Section 4 provides an experimental evaluation.

2 Our Simple Object-Oriented Language

This section presents syntax and denotational semantics of a simple Object-
Oriented language that we use through the paper. Its commands are normalized
versions of corresponding Java commands: the language supports reference and
integer types; in method calls, only syntactically distinct variables can be actual
parameters, which is a form of normalization and does not prevent them from
being bound to shared data-structures at run-time; in assignments, the left hand
side is either a variable or the field of a variable; Boolean conditions are kept
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generic, they are conditions that are evaluated to either true or false; iterative
constructs, such as the while loop, are not supported since they can be imple-
mented through recursion. These assumptions are only for the sake of clear and
simple presentation and can be relaxed without affecting subsequent results. A
program has a set of variables V (including out and this) and a finite poset of
classes K. The commands of the language are

com ::= v := c | v := w | v := new κ | v := w + z | v := w.f | v.f := w |
v := v0.m(v1, . . . , vn) | if e then com1 else com2 | com1 ;com2

v, w, z, v0, v1, . . . , vn ∈ V are distinct variables, c ∈ Z ∪ {null}, κ ∈ K and e
is a Boolean expression. The signature of a method κ.m(t1, . . . , tp):t refers to a
method called m expecting p parameters of type t1, . . . , tp ∈ K ∪ {int}, respec-
tively, returning a value of type t and defined in class κ with a statement

t m(w1:t1, . . . , wn:tn) with {wn+1:tn+1, . . . , wn+m:tn+m} is com,

where w1, . . . , wn, wn+1, . . . , wn+m ∈ V are distinct, not in {out , this} and have
type t1, . . . , tn, tn+1, . . . , tn+m ∈ K∪{int}, respectively. Variables w1, . . . , wn are
the formal parameters of the method and wn+1, . . . , wn+m are its local variables.
The method also uses a variable out of type t to store its return value. For
a given method signature m = κ.m(t1, . . . , tp) : t, we define mb = com, mi =
{this, w1, . . . , wn}, mo = {out}, ml = {wn+1, . . . , wn+m} and ms = mi∪mo∪ml.
Classes might declare fields of type t ∈ K ∪ {int}.

We use a denotational semantics, hence compositional, in the style of [15].
However, we use a more complex notion of state, which assumes an infinite set of
locations. Basically, a state is a pair which consists of a frame and a heap, where
a frame maps variables to values and a heap maps locations to objects. Note
that since we assume a denotational semantics, a state has a single frame, rather
than an activation stack of frames as it is required in operational semantics.
We let L denote an infinite set of locations, and let V denotes the set of values
Z∪L∪ {null}. A frame over a finite set of variables V is a mapping that maps
each variable in V into a value from V; a heap is a partial map from L into
objects. An object is a pair that consists of its class tag κ and a frame that maps
its fields (identifiers) into values from V; we say that it belongs to class κ or has
class κ. Given a class κ, we assume that newobj(κ) return a new object where
its fields are initialized to 0 or depending on their types. If φ is a frame and
v ∈ V , then φ(v) is the value of variable v. If µ is a heap and ` ∈ L, then µ(`)
is the object bound in µ to `. If o is an object, then o.tag denotes its class and
o.φ denotes its frame; if f is a field of o, then sometimes we use o.f to refer to
(or set) its value instead of going through its frame.

Definition 1 (computional state). Let V denotes the set of variables in scope
at a given program point p. The set of possible states at p is

ΣV =

〈φ, µ〉
∣∣∣∣∣∣
1. φ is a frame over V and µ is a heap
2. rng(φ) ∩ L ⊆ dom(µ)
3. ∀` ∈ dom(µ). rng(µ(`).φ) ∩ L ⊆ dom(µ)
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Conditions 2 and 3 guarantee the absence of dangling pointers. Given σ =
〈φ, µ〉 ∈ ΣV , we use φσ and µσ to refer to its frame and heap respectively. ut

Now we define the notion of Denotations which are the input/output semantics
of a piece of code. Basically they are mappings from states to states which
describe how the input state is changed when the corresponding code is executed.
Interpretations are a special case of denotations which provide a denotation for
each method in terms of its input and output variables.

Definition 2. A denotation δ from V to V ′ is a partial function from ΣV to
ΣV ′ . We often refer to δ(σ) = σ′ as (σ, σ′) ∈ δ. The set of denotations from V
to V ′ is ∆(V ,V ′). An interpretation ι maps methods to denotations and is such
that ι(m) ∈ ∆(mi,mi ∪mo) for each method m = κ.m(t1, . . . , tp) : t in the given
program. The set of all possible interpretations is written as I. ut

The denotational semantics associates a denotation to each command of the
language. Let V denotes a set of variables. Let ι ∈ I. We define the denotation
for commands CιV J K : com 7→ ∆(V ,V ), as their input/output behaviour:

CιV Jv:=cK= {(σ, σ[φσ(v) 7→ c]) | σ ∈ ΣV }
CιV Jv:=wK= {(σ, σ[φσ(v) 7→ φσ(w)]) | σ ∈ ΣV }

CιV Jv:=new κK= {(σ, σ[µσ(`) 7→ newobj(κ)]) | σ ∈ ΣV , ` 6∈ dom(µσ)}
CιV Jv:=w + zK= {(σ, σ[φσ(v) 7→ φσ(w) + φσ(z)]) | σ ∈ ΣV }
CιV Jv:=w.fK= {(σ, σ[φσ(v) 7→ µσφσ(w).f ]) | σ ∈ ΣV , φσ(w) 6= null}
CιV Jv.f :=wK= {(σ, σ[µσφσ(v).f 7→ φσ(w)]) | σ ∈ ΣV , φσ(v) 6= null}

CιV
s
if e then com1

else com2

{
=
{(σ, σ′) ∈ CιV Jcom1K | σ |= e ≈ true}∪
{(σ, σ′) ∈ CιV Jcom2K | σ |= e ≈ false}

CιV Jcom1; com2K= {(σ, σ′′) | (σ, σ′) ∈ CιV Jcom1K ∧ (σ′, σ′′) ∈ CιV Jcom2K}

The denotation for a method call CιV Jv:=v0.m(v1, . . . , vp)K should consider the
denotation ι(m) (where m is the called method) and extend it to fit in the calling
scope and update the variable v. Assume the method signature is m(t1, . . . , tp):t,
and that we have a lookup procedure L that, for any given σ ∈ ΣV , fetches the
actual method that is called depending on the run-time class of v0. Then the
method call denotation is defined as follows:(σ, 〈φσ[v 7→ φ′′σ(out)], µ′′σ〉)

∥∥∥∥∥∥∥∥
1. σ ∈ ΣV , φσ(v0) ∈ dom(µσ);
2. m = L(v0, σ, m(t1, . . . , tp):t);
3. (σ′, σ′′) ∈ ι(m);
4. µσ ≡ µ′σ,∀0≤i≤p. φσ(vi) = φ′σ(wi)


The concrete denotational semantics of a program is the least fixpoint of the
following transformer of interpretations [3].

Definition 3 (Denotational semantics). The denotational semantics of a
program P is defined as

⋃
i≥0

T iP (ι0) , i.e. the least fixed point of TP where TP is:
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TP (ι) =

(m,X)

∥∥∥∥∥∥
1. m ∈ P
2. σ ∈ Σms ,∀v ∈ ml. φσ(v) = 0 or φσ(v) = null
3. X = {(σ|mi , σ′|mi∪mo) | (σ, σ′) ∈ Cιms

q
mb

y
}


and ι0 = {(m, ∅) | m ∈ P} and ∀ι1, ι2 ∈ I the union ι1 ∪ ι2 is defined as
{(m,X1 ∪X2) | m ∈ P, (m,X1) ∈ ι1, (m,X2) ∈ ι2} ut

3 Constancy Analysis

We want to design an analysis to infer definite information about constant data
structures. This can be done by tracking data structures that are not modified
(definite information), or by tracking data structures that might be modified
(may information). We follow the latter approach as we believe it easier. In
addition, we want to analyze methods in a context independent way, and later
adapt the result to any calling context.

Example 1. Consider the following method:

A m(x:A, y:A) with {} is y:=y.next; x.next:=y; out:=y;

The only command that might modify the heap structure is “x.next:=y”. Note
that “y:=y.next” does not affect the heap structure but rather changes the
heap location stored in y. This method might be called in different contexts
where the actual parameters: (1) do not have any common data structure; or
(2) have a common data structure. In the first case, “x.next:=y” might modify
only the data structure pointed by the first argument. In the second case, it
might modify a common data structure for x and y, and therefore we say that
both arguments might be modified. We describe this behaviour by the Boolean
formula x̌ ∧ (y̌ ↔ x̌·y), which is interpreted as: (1) in any calling context, the
data structure the first argument points to when the method is called might be
modified by the method (expressed by x̌); and (2) the data structure that the
second argument points to when the method is called, might be modified by
the method (expressed by y̌) iff x and y might share a data structure when the
method is called (expressed by x̌·y).

ut

We define now the set of reachable heap locations from a given reference
variable, which we need to define the notion of constant heap structure.

Definition 4 (reachable heap locations). Let µ be a heap. The set of lo-
cations reachable from ` ∈ dom(µ) is L(µ, `) = ∪{Li(µ, `) | i ≥ 0} where
L0(µ, `) = rng(µ(`).φ) ∩ L and Li+1(µ, `) = ∪{rng(µ(`′)) ∩ L | `′ ∈ Li(µ, `)}.
The set of reachable heap locations from v in σ ∈ ΣV , denoted LV (σ, v), is
{φσ(v)} ∪ L(µσ, φσ(v)) if φσ(v) ∈ dom(µσ); and the empty set otherwise. ut
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Definition 5 (constant reference variable). A reference variables v ∈ V is
constant with respect to a denotation δ, denoted c(v, δ), iff for any (σ1, σ2) ∈ δ all
locations in LV (σ1, v) are constant with across δ, namely ∀` ∈ LV (σ1, v), µσ1(`)
and µσ2(`) have the same class tag and agree on their reference field values. ut

The definition above considers modifications of fields of reference type only. The
reason for concentrating on reference fields is that we have developed this analysis
for a specific need which requires tracking updates only in the shape of the data
structure (see Section 4). Tracking updates of integer fields can simply done
by modifying the above definition to consider those updates. In what follows,
a modification of a variable stands for a modification of the shape of the heap
structure reachable from that variable.

Definition 6 (common heap location). x, y ∈ V have a common heap loca-
tion (share) in a state σ ∈ ΣV if and only if LV (σ, x) ∩ LV (σ, y) 6= ∅ ut

We define now an abstract domain which captures a set of variables that might
be modified by a concrete denotation.

Definition 7 (update abstract domain). The update abstract domain UV
is a partial order 〈℘(V ),⊆〉. Its concretization function γV :UV → ∆(V ,V ′) is
defined as γV (X) = {δ | ∀v ∈ V. ¬c(v, δ)→ (v ∈ X)}. ut

As we have seen in Example 1, information about possible sharing between
variables is important for a precise constancy analysis. There are many ways for
inferring such information. Here, we use the pair-sharing domain [11]. Moreover,
constancy information improves the precision of method calls in pair sharing
analysis. This is because the execution of a method m can introduce sharing
between non-constant parameters only. Hence we design an analysis over the
(reduced) product of the update domain UV and of the pair-sharing domain SHV ,
denoted by SH×UV . Informally, the pair sharing domain abstracts an element
s ∈ ℘(ΣV ) to a set sh of symmetric pairs of the form (x, y) where x, y ∈ V . If
(x, y) ∈ sh then x and y might share in s, and if (x, y) 6∈ sh then they cannot
share, so that if (x, x) 6∈ sh then x must be null in s. In what follows, instead
of saying might share we simply say share.

Figure 1 defines abstract denotations for our simple language over SH×UV .
They are Boolean functions corresponding to the elements of SH×UV . For a
piece of code C, the Boolean variables:

– x̌·y and x̂·y indicate if x and y share before and after executing C, respec-
tively. Since pair sharing is symmetric, x̌·y and ˇy·x are equivalent Boolean
variables; and

– x̌ and x̂ indicate if x is modified with respect to its value before and after C
(by the program execution), respectively.

Each abstract denotation is defined in terms of a Boolean function ϕ∧ψ, where ϕ
propagates (forward) sharing information and ψ propagates (backwards) update
information. In what follows we explain the meaning of each abstract denotation:
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AιV Jv:=nullK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ ϕ1

−ϕ1 = (∧{¬x̂·v | x ∈ V })
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=wK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ ϕ1 ∧ ϕ2

−ϕ1 = ∧{x̂·v ↔ ˇx·w | x ∈ V \{v}}
−ϕ2 = ˇw·w ↔ v̂·v
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=new κK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ v̂·v ∧ ϕ1

−ϕ1 = (∧{¬x̂·v | x ∈ V \ {v}})
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=w.fK = AιV Jv:=wK
AιV Jv.f :=wK = ϕ ∧ ψ

−ϕ = ∧{x̂·y ↔ x̌·y ∨ ( ˇx·w ∧ y̌·v) | x, y ∈ V }
−ψ = {x̌↔ ˇv·x ∨ x̂ | x ∈ V }

AιV Jif e . . .K = AιV Jc1K ∨ AιV Jc2K
AιV Jc1; c2K = AιV Jc1K ◦ AιV Jc2K

AιV Jv:=v0.m(v1, . . . , vp)K = φ ∧ ϕ ∧ ψ
φm = ∨{ι(m) | m might be called }
φ = φm[si 7→ vi, out 7→ v, this 7→ v0]
ϕ = ∧{x̂·y ↔ x̌·y ∨ ϕ1 | x, y ∈ V \{v0, . . . , vp}}
ϕ1 = ∨{( ˇx·vi ∧ ˇy·vj ∧ ˆvi·vj ∧ (v̌i ∨ v̌j)) | i, j ∈ {0, . . . , p}}
ψ = ψ1 ∧ (v̌ ↔ ψ3 ∨ ψ2(v))
ψ1 = ∧{x̌↔ x̂ ∨ ψ2(x) | x ∈ V \{v, v0, . . . , vp}}
ψ2(x) = ∨{( ˇx·vi ∧ v̌i) | i ∈ {0, . . . , p}}
ψ3 = {x̌·y ∧ ŷ | y ∈ V \{v}}

Fig. 1. Abstract Denotations over SH×UV

– AιV Jv:=nullK: (SH) sharing between x, y ∈ V \{v} is preserved (Idsh(V \{v}));
and nothing can share with v after C (ϕ1). (U) x ∈ V \{v} is modified before
C iff it is modified after C, and v is modified before C iff it shares with some
y before C and y is modified after C.

– AιV Jv:=wK: (SH) sharing between x, y ∈ V \{v} is preserved (Idsh(V \{v}));
since v becomes an alias for w then v can share with x ∈ V \{v} after C iff
x shares with w before C (ϕ1); and v can share with itself after C (i.e., not
null) iff w shares with itself before C (ϕ2). (U) the same as for “v:=null”.

– AιV Jv:=new κK: the same as AιV Jv:=nullK except that v shares with itself
after executing the statement.

– AιV Jv:=w.fK: the same as AιV Jv:=wK since the analysis is field insensitive.
– AιV Jv.f :=wK: (SH) x, y ∈ V share after C iff before C, they shared or x

shared with w and y with v; (U) x ∈ V is modified before C, iff it shares
with v before C or x is modified after C.

– AιV Jif e . . .K: combines the branches through logical or.
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– AιV Jc1; c2K: combines AιV Jc1K and AιV Jc2K. This is simply done by matching
the output variables of the first denotation with the input variables of the
second denotation.

– AιV Jv:=v0.m(v1, . . . , vp)K: (1) First we fetch the abstract denotations of all
methods that might be called, and we combine them through logical or into
φm; (2) Assuming that the method denotations use si 6= vi for the i-th formal
parameter, we rename all sharing information by changing each si into vi
and out into v. We get φ. (3) We add sharing information for variables which
are not in V \{v, v0, . . . , vp}. The sharing component ϕ states that x and y
might share after the call iff they shared before (i.e. x̌·y) or they shared with
arguments vi and vj where vi and vj share after the call, and either vi or vj
has been modified (expressed by ϕ1); (4) We add the constancy information
which states that x ∈ V \{v} is modified before iff it is modified after, or
if it shares with a variable that is modified by the method. For v it is a
bit different since we exclude the case that if v is modified after then it is
modified before, since we possibly assign to it a new reference.

The abstract denotation for a method:

t m(w1:t1, . . . , wn:tn) with wn+1:tn+1, . . . , wn+m:tn+m is com,

is then defined as φm = ∃V ′. AιV JcomK ∧ ϕ1 ∧ ϕ2 where:

– S = {s1, . . . , sn} such that S ∩ms = ∅, and V = ms ∪ S
– ϕ1 = {¬x̌·y | x ∈ ml ∪ {out}, y ∈ ms}
– ϕ2 = { ˇsi·x↔ ˇwi·x | 1 ≤ i ≤ n, x ∈ mi}
– V ′ = {x̌·y, x̂·y, x̌, x̂ | x 6∈ S ∪ {this, out}, y ∈ V } ∪ { ˇout}

The idea is that we: (1) extend ml to V in order to include shallow variable
si for each method argument wi; (2) compute AιV JcomK; (3) add ϕ1 which in-
dicates that local variables are initialized to null; (4) add ϕ2 which creates
the connection between the shallow variables and the actual parameters; (5)
eliminate all local information by removing the Boolean variables V ′. The ab-
stract denotational semantics can be then defined similar to the concrete one in
Definition 3, where the initial method summaries are false ans summaries are
combined (during the fixpoint iterations) using the logical or ∨.

Example 2. Applying the above abstract semantics to the method defined in
Example 1 results in a Boolean formula whose constancy component is ( ˇthis↔

ˆthis) ∧ x̌ ∧ (y̌ ↔ (x̌·y ∨ ŷ)). For simplicity we ignore the part of φm that talks
about sharing.

4 Experiments

We show here some experiments with our domain for sharing and constancy
analysis. They have been performed with the Julia analyzer [12] on a Linux
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Program M
Sharing Non-Cyclicity

T P T P

JLex 446 1595 (2324) 34.30% (34.84%) 506 (415) 34.03% (35.21%)

JavaCup 933 5707 (6486) 22.24% (23.76%) 853 (953) 59.23% (76.13%)

Kitten 2131 20976 (27824) 17.90% (19.11%) 2538 (3177) 36.34% (41.13%)

jEdit 3206 47408 (49356) 21.12% (21.28%) 4969 (5963) 43.49% (47.50%)

Julia 4028 79199 (129562) 9.71% (10.25%) 8014 (12018) 33.40% (38.17%)

Fig. 2. The effect of the purity component on Sharing and Non-Cyclicity. (M) number
of methods; (T) run-time in milliseconds excluding preprocessing; (P) precision.

machine based on a 64 bits dual core AMD Opteron processor 280 running
at 2.4Ghz, with 2 gigabytes of RAM and 1 megabyte of cache, by using Sun
Java Development Kit version 1.5. All programs have been analyzed including
all library methods that they use inside the java.lang.* and java.util.*
hierarchies.

Figure 2 compares sharing analysis alone with sharing analysis in reduced
product with constancy (Section 3), and its effect on non-cyclicity analysis [9].
In each column, numbers in parentheses correspond to the analysis using the
reduced product. For each program, it reports the number of methods analyzed,
including the libraries, and time and precision of the corresponding analysis
with and without constancy. For sharing, the precision is the amount of pairs of
variables of reference type that are proved not to share at the program points
preceding the update of an instance field, the update of an array element or
a method call. This is sensible since there is where sharing analysis is used
by subsequent analyses. That figure suggests that the constancy component
slightly improves the precision of sharing analysis. However, the importance
of constancy is shown when we consider its effects on a static analysis that
uses constancy information. This is the case of non-cyclicity analysis, which
finds variables bound to non-cyclical data structures [9]. Figure 2 shows that
the computation of cyclicity analysis after a simple sharing analysis leads to
less precise results than the same computation after a sharing and constancy
analysis. Here, precision is the number of field accesses that read the field of a
non-cyclical object. This is sensible since there is where non-cyclicity is typically
used.

The importance of constancy analysis becomes more apparent when it sup-
ports a static analysis that uses constancy, sharing and cyclicity information.
This is the case of path-length [13]. It approximates the length of the maximal
path of pointers one can follow from each variable. This information is the basis
of a termination [1] and resource bound analyses [2] for programs dealing with
dynamic data structures. Figure 3 shows the effects of constancy on path-length
and termination analysis (available in [12]) of a set of small programs that do
not use libraries except for java.lang.Object. Times are in milliseconds and
precision is the number of methods proved to terminate. Constancy information
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Program M T P

Init 10 102 (140) 8 (8)

List 11 624 (512) 6 (11)

Diff 5 6668 (9040) 5 (5)

Hanoi 7 548 (868) 7 (7)

BTree 7 306 (415) 6 (7)

BSTree 10 234 (273) 9 (10)

Virtual 11 357 (418) 10 (11)

ListInt 11 767 (507) 6 (11)

Program M T P

Nested 4 324 (447) 4 (4)

Double 5 270 (268) 5 (5)

FactSum 6 169 (178) 6 (6)

Sharing 7 309 (501) 6 (7)

Factorial 5 102 (196) 5 (5)

Ackermann 5 1308 (1732) 5 (5)

BubbleSort 5 871 (951) 5 (5)

FactSumList 8 278 (703) 7 (8)

Fig. 3. The effect of the purity information on Termination analysis. (M) number of
methods; (T) run-time in milliseconds excluding preprocessing; (P) precision.

results in proving that all terminating methods terminate (only 2 methods of
Init are not proved to terminate: they actually diverge). Without constancy
information, many terminating methods are not proved to terminate.

These experiments suggest that constancy information contributes to the
precision of sharing, cyclicity, path-length and hence termination analysis. Com-
puting constancy information with sharing requires more time than computing
sharing alone (Figure 2). Performing other analyses by using the constancy in-
formation increases the times further (Figures 2 and 3). Nevertheless, this is
justified by the extra precision of the results.
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A Universe-Type-Based Verification Technique

for Mutable Static Fields and Methods

– Work in progress –

A. J. Summers(1), S. Drossopoulou(1), and P. Müller(2)
(1) Imperial College London, (2) Microsoft Research, Redmond

Abstract. We present a novel technique for the verification of invariants
in the setting of a Java-like language including static fields and methods.
The technique is a generalisation of the existing Visibility Technique of
Müller et al., which employs universe types.
In order to cater for mutable static fields, we extend this topology to
multiple trees (a forest), where each tree is rooted in a class. This allows
classes to naturally own object instances as their static fields. We describe
how to extend the Visibility Technique to this topology, incorporating
extra flexibility for the treatment of static methods.
We encounter a potential source of callbacks not present in the original
technique, and show how to overcome this using an effects system. To
allow flexible and modular verification, we refine our topology with a
hierarchy of ‘levels’.

1 Introduction

In this paper, we extend the Visibility Technique (VT for short) [10], a known
visible states verification technique based on universe types, to cater for static
fields and methods. When adding statics to verification, one needs to address
the following questions:

1. Where in the topology do static fields appear?
2. May instance methods update static fields?
3. May static invariants mention the fields of objects of their class?
4. May instance invariants mention static fields of their class, or of other classes?
5. Can static methods break invariants of objects, and if so, of which objects?
6. Can instance methods break static invariants, and if so, of which classes?
7. What proof obligations are necessary before a call to a static method?
8. What proof obligations are necessary before a call to an instance method?

In this paper, we explore these questions in the context of VT, and extend the
technique and heap topology to handle static fields. In the process, we encounter
a potential source of callbacks not present in VT, and devote much of this paper
to solving this problem. We develop an approach involving a combination of
effect annotations and refinements to the heap topology using levels. We then
extend the technique to allow more expressive invariants.
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void meth(T1 x, T2 y) {

this . f = ....

x.g = ...

y.meth 2();

}

assume X�

check this in U�

check T1 in U�

check T2 in C, prove B�

prove E�

X \ V holds

?

6

Fig. 1. Illustration of the use of the seven components.

In Sec. 2 we give the background to visible states verification techniques,
universe types, and VT. In Sec. 3 we discuss the first two questions from above.
In Sec. 4 we address the others, give a first attempt to an extension of VT,
and argue that it is sound. We refine our approach with improved calculations
of effects in Sec. 5, and with more powerful static class invariants in Sec. 6. In
Sec. 7 we conclude. Proof sketches can be found in the longer version of our
work, at http://www.doc.ic.ac.uk/∼ajs300m/papers/staticsFull.pdf.

2 Background

Visible state verification techniques are defined around the notion of visible
states, which correspond to the beginning and the end of any method call. At
these visible states, the invariants of certain objects (exactly which objects de-
pends on the contents of the call stack, and on the particular technique) are
guaranteed to hold.

Several visible states techniques have been suggested, e.g., [12, 3, 10, 8], and
they share many commonalities. As suggested in [2], these commonalities, as
well as the differences, can be neatly distilled in terms of the following seven
components:
X invariants expected to hold in visible states.
V invariants vulnerable to a method, i.e., which may be broken while it executes.
D invariants that may depend on a given heap location1.
B invariants that must be proven to hold before a method call.
E invariants that must be proven to hold at the end of a method body.
U permitted receivers for field updates.
C permitted receivers for method calls.

The use of these components should be clear from their description above, but
is also shown in Fig. 1 through annotating a method meth1: X may be assumed to
hold in the pre- and post-states of the method. Between these visible states, some
object invariants may be broken, but X \V is guaranteed to hold. Field updates
and method calls are allowed if the receiver object is in U and C, respectively.
Before a method call, B must be proven. At the end of the method body, E must
be proven. Finally, assignments to this . f and x.g affect at most D.

1 This also characterises indirectly the locations an invariant may depend on.
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In [2], five soundness conditions are presented, and it is proven that if these
conditions are satisfied, then the technique is sound (the expected invariants hold
at visible states). In this paper, we use the framework of [2] informally, since the
technique presented here does not quite fit the present formalism. However, the
soundness conditions still guided us in the design of our technique. Informally,
the five sufficient soundness conditions can be described as follows:

Definition 1 (Soundness Conditions).

1. Xm
′ \ (Xm \ Vm) ⊆ B

When a legal (according to the technique, i.e., C) call is made to a method
m′ from a method m, all of the invariants which are both expected to hold
by the new method (Xm

′), and are not currently known to hold in the calling
method ( i.e., not within Xm\Vm), must be within the proof obligations made
before the method call (B).

2. V ∩ X ⊆ E

The invariants both expected (X) by and vulnerable to (V) a method, must
be within the proof obligations at the end of the method (E).

3. Vm
′ \ Em

′ ⊆ Vm

If a (legal) method call is made to a method m′ from a method m, any
invariants which are vulnerable to m′ and not reestablished by m′, must be
vulnerable to m.

4. D ⊆ V

Invariants depending on fields which may be legally modified (according to
the technique, i.e., U) by a method, are vulnerable to the method.

5. Xc
′ ⊆ Xc and (Vc

′ \ Ec
′) ⊆ (Vc \ Ec)

If a method is overridden, then in the subclass version, no more invariants
may be expected or left broken than in the superclass version.

One such visible states technique, the Visibility Technique (VT), was devel-
oped on top of universe types [10] with the aim to guide the verification process,
and to guarantee modularity. Universe types [9] organise the heap into a tree
topology, in which each object is owned by another object, and where an object
o considers another object o′, as its peer if they have the same direct owner;
it considers it its rep if it is its direct owner2. The owner-as-modifier discipline
(hereafter OAM) restricts field updates and method calls, implying in particular
that the receivers of methods are only allowed to be reps or peers. Thus, at any
time in execution any receiver on the call stack3 is directly followed either by a
rep or a peer. In Fig. 2, note that calls may only go “down” or “sideways”.

The seven components from before have the following meaning for VT (we
simplify slightly with respect to visibility, and to the exact class whose invariant
we are considering):

2 We do not discuss any or readonly references, nor pure methods.
3 consisting of a sequence of activation records, each of which contains the then-current

receiver
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Fig. 2. Ownership Tree and Control Flow; the
arrows show consecutive method calls and their
receivers; note that calls go only “down”, i.e.,
to reps, or “sideways”, i.e., to peers. The shaded
area indicates the area where objects satisfy their
invariants.

X invariants of objects (reflexively, transitively) owned by peers.
V invariants of all transitive owners of the current receiver, plus invariants of

peers of the current receiver.
D Invariants of peers and transitive owners may depend on the fields of an

object.
B If the callee is a peer of the current receiver, then the invariants of all peers

must be established. Otherwise, no proof obligations.
E the invariants of all visible peers.
U A field of an object may only be assigned to by the object’s owner, or by any

of its peers.
C A call is allowed if the callee is a peer or rep of the current receiver.

It can be shown that these parameters satisfy the soundness conditions of
Def. 1 [2]. In particular, X and V and the owner-as-modifier discipline, guarantee
that at any given time in execution, all objects are valid, except for those directly
owned by one of the receivers on the call stack, cf. Fig. 2.

3 Heap Topology for Static Fields

The fundamental premise of this work is that classes should be able to own
objects in the same way that other objects can. For example, if the behaviour of
a class depends on a static field (to manage object creation, etc.) then this static
field naturally ‘belongs’ to the inner workings of the class: its representation.
This gives a natural interpretation of static rep fields: they should be treated
analogously to instance rep fields, but with a class as their owner [7].

Thus, we extend our heap topology to include classes. Classes are the ‘roots’
of trees in our topology. As there are generally several classes in a program, our
topology should allow for several such trees; we work with a forest. Furthermore,
with classes acting as roots, there is no longer a need for an abstract root entity;
these class-rooted trees make up the entire picture. Note that there are no objects
at the ‘same level’ as the class entities, and classes do not have owners. In this
paper, we do not consider a notion of static peer fields.

We interpret static fields and methods as instance fields and methods of the
corresponding class object. That is, the class object (or class for short) is the
receiver for an execution of a static method. We expect that modifications to
static fields will be achieved by calling a static method of the class that declares
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the field. In other words, static methods may update the fields of their receiver
class, just like instance methods in VT may update fields of their receiver object.

To summarise the ideas so far:

1. Each point in our heap topology corresponds to either an object or a class.
2. Objects (but not classes) each have exactly one owner (a class or an object).
3. The current receiver (on the stack) can be either an object or a class.

4 Basic Technique

Having defined a suitable heap topology, in this section we generalise VT to our
setting.

A key aspect of our technique is that we preserve the OAM property of VT.
In the following technique, control is only allowed to enter a tree in the heap
topology via the ‘root’; i.e., by calling a static method on the class at the root
of the tree. Instance method calls are restricted in the same way as in VT. This
implies the following property, which will be useful for our reasoning:

Proposition 1. A call stack (including the current method-call) always starts
with a class receiver. If an object o is a receiver on the call stack, then the most
recently-preceding class receiver on the call stack is the owner of the tree in which
o resides.

For the moment, we treat static invariants analogously to VT instance invari-
ants. Therefore, they can only mention expressions which start with the static
fields of the same class (since they have no peers).

How then, to handle static method calls? According to VT, a method call
is only allowed if the current receiver is either the owner or a peer of the callee
receiver. Since classes do not have either owners or peers, this would make static
methods impossible to call. We initially considered allowing arbitrary static
method calls. This immediately creates problems with callbacks; in particular,
how do we know the invariants of the new receiver hold when we make the call?
If our current call stack has already visited this class, we may have left invariants
broken.

We solve this problem by the following rule: a static method may only be
called on a class c, if c has not been a previous receiver on the call stack. However,
this rule is slightly too restrictive, since it unnecessarily prohibits a static method
of class c from calling another static method of class c. Our rule of thumb is:

A static method of c can be called if either c is the current receiver, or c
is not already a receiver on the call stack.

We are now in a position to define our technique in terms of the seven compo-
nents. Compared with the description of VT, we need to extend X to reflect which
invariants in other trees are expected, depending on the current call stack, and
C to reflect the special rules for static method calls. The other five parameters
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are straightforward generalisations of those for VT. We highlight the differences
between our work and VT in italics, and point out the interpretation of these
components with regard to a static method call in footnotes.

X invariants of objects (reflexively, transitively) owned by peers, plus all invari-
ants in trees not currently visited on the call stack4.

V invariants of all transitive owners of the current receiver, plus invariants of
peers of the current receiver5.

D Invariants of peers and transitive owners may depend on the field of an object
or class6.

B If the callee is a peer of the current receiver, then the invariants of all peers
must be established. Otherwise, no proof obligations7.

E the invariants of all visible peers8.
U A field of an object or class may only be assigned to by its owner, or by any

of its peers9.
C A call to an instance method is allowed if the callee is a peer or rep of the

current receiver. A call to a static method m on class c is allowed if either
the current receiver is c itself, or else c is not on the current call stack.

Fig. 3. Calls stacks across several trees, invariants hold in shaded areas.

When considering only the tree of the current receiver, the rules are essen-
tially those of VT. However, the other trees either have none of their invariants
expected, or all of them, depending on whether or not they have been visited on
the current call stack. Furthermore, static methods are treated differently from

4 For a static method, this amounts to all the invariants of the current tree, plus each
unvisited tree.

5 The only invariants vulnerable to a call of a static method in class c are the static
invariants of c itself.

6 The only invariants which are allowed to depend on a static field declared in class c

are the static invariants of c.
7 If a static method is called on a class c which is both caller and callee (a ‘self’ call),

then the static invariants of c must be reestablished first.
8 For a static method, the invariants of the class.
9 A static field can only be assigned to by the class itself.
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instance method calls, in that any call is permitted so long as the callee has not
been a receiver prior to the current one on the call stack.

Since C depends on the current call stack, it is not possible to statically
verify whether a method call will be legal. We therefore identify next a way of
conservatively approximating when method calls are legal.

Effect Annotations. For each class c and method m, we require a set of effects,
Effs(c,m), predicting which classes may have static methods called on them as
a result of calling m of c. Effs(c,m) is a (possibly empty) set of class names.
This is described by requirements 1-3 in Def. 2 below.

If, from within the body of a static method m of class c, we make a call to a
(static or instance) method m′ defined in class c′ (with a different receiver), and
if this method call may eventually result in a callback to c, then as a consequence
of Def. 2, we must have c ∈ Effs(c′,m′). Therefore, we can rule out dangerous
callbacks on c by insisting that any method which is called from a static method
of c does not contain c in its effects. This is described through the method
restriction in item 4 of Def. 2.

Definition 2 (Valid Effects and Method Restrictions).

1. Within the body of a method m of class c, if there is a call e.m′(. . .) and e
has static type c′, then Effs(c′,m′) ⊆ Effs(c,m).

2. Within the body of a method m of class c, if there is a call c′.m′(. . .) to a
static method m′ of class c′, then

(a) Effs(c′,m′) ⊆ Effs(c,m) and

(b) if m is an instance method or c 6= c′ 10, then c′ ∈ Effs(c,m).

3. If c′ is a subclass of c which overrides a method m, then Effs(c′,m) ⊆
Effs(c,m).

4. A static method m of c is legal, only if c /∈ Effs(c,m).

Soundness. We focus on the first item from Def. 1: the guarantee that when
a method call is made, the invariants expected in the new method will hold
(because they have been preserved, or proven before the call is made). We claim
that the other points can be easily established.

In the technique presented, all invariants may only depend on the fields of
peers (if any) and any objects transitively owned. Furthermore, fields may only
be modified by peers. Therefore, we have the following property:

Proposition 2 (Broken Invariants). If, at runtime, the invariants of an ob-
ject (or class) do not hold, then one of the receivers on the call stack (possibly
the current one) must be the object (or class) itself or one of its peers.

10 i.e., a static method always may call another static method from the same class.
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To demonstrate that our restrictions using effects (Def. 2) are sufficient to
guarantee that our desired notion of valid method call (C) is always adhered
to, we need a deeper discussion of possible sequences of calls. We require some
notation to capture these sequences; we wish to track the receiver-method pairs
from (consecutive) fragments of the call stack. We write (c,m) for a call of static
method m on class c, and (o,m) for a call of instance method m on object o.
For any receivers r,r′ (which may each be either classes or objects), we write
(r,m) call (r′,m′) to denote a sequence of legal calls11 beginning with m and
ending with m′, i.e., method m on receiver r calls some method m1 on some
receiver r1, etc., which eventually leads to calling method m′ on receiver r′.
These sequences of calls correspond to consecutive regions of a call stack, in
which only the receiver and method information is retained. Note that such
sequences need not begin from the initial (class) receiver of a call stack. We
consider only call-sequences which are legal according to our technique.

We can now show how calls are restricted by the effect annotations:

Proposition 3 (Effects are Conservative).

1. For any call-sequence (o,m) call (c′,m′), if c is the dynamic class of o, then
c′ ∈ Effs(c,m).

2. For any call-sequence (c,m) call (c′,m′), if either c 6= c′ or any of the inter-
mediate receivers in call are not c, then c′ ∈ Effs(c,m).

3. Any call-sequence (c,m) call (c,m′) consists only of calls where c is the
receiver.

4. If o and o′ are peers, then any call-chain (o,m) call (o′,m′) features only
peers of o (and o′) as receivers.

Finally, we can prove that the invariants of a new receiver are always guaranteed
by the proof obligations in the technique:

Theorem 1.

1. If a static method m is to be called on c, then the proof obligations imposed
by the technique guarantee that c’s invariants hold.

2. If an instance method m is to be called on o, then the proof obligations
imposed by the technique guarantee that o’s invariants hold.

5 Refined Effects

The effects as described so far require annotations for all classes used in a pro-
gram. This requirement leads to a high annotation burden, compomises infor-
mation hiding, and limits the usability of the technique presented so far, as the
following example illustrates.

11 i.e., calls which are permissible according to Def. 2.
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Example 1 (Method Overriding and Effects). Consider the String class of the
Java API. An implementation of this class can exploit that fact that strings are
immutable in Java, and so share instances of objects, by using static fields from
class String to maintain a ‘pool’ of used String instances. This would imply that
the constructor String calls String static methods, and would have String in its
effects. Consider now that we want to write a class which overrides the equals ()
method inherited from Object:

class MyClass extends Object{
boolean equals(Object o)
{

System.out. println (new String(”equals() called ”)) ;
return this == o;

}
}

Obviously, we need to have String∈ Effs(MyClass,equals), and because of
Def. 2 (item 3), we also need that String∈ Effs(Object,equals). But, it is unlikely
that this effect was predicted when the class Object was given effect annotations.
Therefore, this method definition would be illegal. This illustrates an annotation
problem (annotations may need recomputing), an information-hiding problem
(our code should not need to know how String is implemented), and a usability
problem (our technique forbids this method declaration).

To alleviate this burden, we introduce a refinement, whereby we group classes
in a linear hierarchy of ‘levels’, such that the code of lower-level classes does not
mention the higher-level classes12. The intuition is that library classes should
have been previously verified and belong on a ‘lower level’ than the classes which
the programmer is now writing. We express the levels through a function Lvl( )
which maps classes to integers.

Definition 3 (Valid Levels). c mentions c′ ⇒ Lvl(c) ≥ Lvl(c′).

Because classes in the lower levels do not ‘know about’ classes in the upper
levels, it is impossible for them to make static calls on the classes in the upper
levels (cf. Fig. 4). Therefore, if we consider verification of the topmost level, then
when a call is made down to a lower level, the effect annotations are no longer
necessary. 13 Thus, we refine our effect annotation sets to only mention classes
on the same level as the method being verified. The new conditions on effects
(in which differences in comparison with Def. 2 are shown in roman font) are:

Definition 4 (Refined Effects).

12 For example, we could consider the Java API classes (e.g., Object and String) to be
on a lower level than our classes, and it would be naturally guaranteed that the API
classes do not mention ours.

13 To handle dynamic binding, we require the effects of methods that override methods
in lower levels to be empty and, thus, independent of the effects of the overridden
method.
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1. If c′ is in Effs(c,m) then Lvl(c′) = Lvl(c).
2. Within the body of a method m of class c, if there is a call e.m′(. . .) and e

has static type c′, and Lvl(c) = Lvl(c′), then Effs(c′,m′) ⊆ Effs(c,m).
3. Within the body of a method m of class c, if there is a call c′.m′(. . .) to a

static method m′ of class c′ and Lvl(c) = Lvl(c′), then:
(a) Effs(c′,m′) ⊆ Effs(c,m)
(b) if m is either an instance method or c 6= c′, then c′ ∈ Effs(c,m).

4. If c′ is a subclass of c which overrides a method m, then
(a) If Lvl(c) = Lvl(c′), then Effs(c′,m) ⊆ Effs(c,m)
(b) If Lvl(c) < Lvl(c′), then Effs(c′,m) = ∅

5. A static method m of c is legal, only if c /∈ Effs(c,m).

The refined conditions given permit smaller effects sets for methods than
those of Def. 2. Considering the example at the start of the section, it is no
longer necessary (or indeed, allowed) for String to be in Effs(MyClass,equals).

x x

Fig. 4. Trees in one level. The current level may call into the lower level, but no
calls from the lower level may come into the current level. The level of an object is
determined by the class that transitively owns the object, not by the object’s type.

Soundness. As in the previous section, we focus on ensuring that the proof
obligations made before method calls are always sufficient to guarantee the ex-
pected invariants. Furthermore, we make the assumption here that we are only
interested in verifying the ‘top-level’; we assume that the classes on lower levels
have already been verified. This can be used to construct an inductive verifica-
tion of the entire class-structure, if needed, but also allows us a more-modular
approach; once the classes on a lower level have been verified, we need not repeat
the process if we are only adding classes to higher levels.

We write Lvl(o) for the level of an object, defined to be the level of the
class which transitively owns the object (i.e., the class which is the ‘root’ of the
appropriate tree). We can then show the following property:

Proposition 4 (Levels do not Increase through Calls).
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1. If object o is transitively owned by class c, and if c′ is the dynamic class of
o, then Lvl(c) ≥ Lvl(c′).

2. For any call-sequence (c,m) call (o,m′), where call consists exclusively of
instance method calls, if c′ is the dynamic class of o, then Lvl(c) ≥ Lvl(c′).

3. For any sequence of calls (r1,m1) call (r2,m2), in which r1, r2 can be any
receivers, i.e., classes or objects, we have Lvl(r1) ≥ Lvl(r2).

4. For any call-sequence (c,m) call (c,m′), for all the intermediate receivers r,
we have Lvl(r) = Lvl(c).

This allows us to construct similar arguments to those in the previous section,
regarding soundness of method calls. Proposition 2 still holds for this refinement.
Proposition 3 holds in the restricted case that all receivers involved are from the
top-level. Theorem 1 then holds for all such receivers.

Remarks. We have allowed the organisation of levels to be very flexible, and
thus the effects and levels can be used to complement each other in various
different ways. Considering the extreme case of only one level, we return to our
original effects proposal from the previous section, in which all the work must
be done by the effects. On the other hand, if every class has a level to itself, we
essentially impose a total ordering on classes (which may not be possible within
our restrictions, for all programs), and no effect annotations are required at all.
In practice, we envisage that the levels will be used to separate away previously
written library classes from those being currently developed and verified.

6 Extended Technique

So far, static invariants cannot mention the fields of instance objects, and in-
stance invariants cannot mention static fields. It seems reasonable to question
whether this is enough. For example, if we wished to write a class MyThread in
which each instance object was assigned a unique identifier id, we might like an
invariant to express that distinct MyThread objects have different ids14. These
kinds of invariants involve both static fields and instance fields. It is desirable to
extend our technique to handle these more-expressive invariants. We could allow
instance invariants to mention static fields (of the same class, and perhaps su-
perclasses) in their invariants. The alternative approach is, instead of enriching
instance invariants, to enrich static invariants with the ability to quantify over
all instances of a class. In fact, any instance invariant mentioning static fields
can always be expressed as a static invariant by adding a quantified object to
replace all the mentions of this. However, enriching static invariants in this way
can be more general if we allow multiple quantifiers. If we wanted to express the
described invariant of MyThread, we could do so by the static invariant forall
MyThread o1 ,o2 : o1 6= o2 ⇒ o1 . id 6= o2 . id. However, it is not clear how to

express this at the level of an instance invariant (without quantifiers).

14 This is an actual invariant of the Thread class in the Java API.
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We choose to add the ability to quantify over fields of instances in static
invariants. In static invariants of class c, if o is a quantified object variable, the
only fields of o which may be mentioned in the invariants are those declared in
class c. This restriction corresponds to the notion of subclass separation described
for VT (see [10] for details).

Remark. Although it is true that any instance invariant mentioning static fields
can be encoded as a static invariant quantifying over instances, this does not
quite mean the two are interchangeable with respect to our technique. The reason
is that although these invariants express the same properties, because one is an
invariant per object, and one is an invariant of the class, they will be expected
to hold at different times.

To work out exactly what changes were needed to our technique in order to
retain soundness, we were guided by the soundness conditions of [2] (cf. Def. 1).
Essentially, having made a change to our D parameter (by changing which in-
variants can depend on instance fields), the conditions presented there implied
the minimal necessary changes to the other parameters of our technique in or-
der to restore soundness. We highlight the differences between the new and the
previous technique through the use of italics.

X invariants of objects (reflexively, transitively) owned by peers, plus all invari-
ants in trees not currently visited on the call stack.

V invariants of all transitive owners of the current receiver, plus invariants of
peers of the current receiver, and their classes.

D Invariants of peers and transitive owners may depend on the field of an ob-
ject or class. Additionally, static invariants of the class in which the field is
declared.

B Before making a method call, the invariants of the classes of all of the peers of
the current receiver must be established. Furthermore, if the callee is a peer
of the current receiver, then the invariants of all peers must be established.

E the invariants of all visible peers, and their classes.
U A field of an object (or class) may only be assigned to by its owner, or by any

of its peers.
C A call to an instance method is allowed if the callee is a peer or rep of the

current receiver. A call to a static method m on class c is allowed if either
the current receiver is c itself, or else c is not on the current call stack.

Soundness. Informally, the soundness of this extended technique follows from
the soundness of the previously-presented versions, as follows:

Proposition 2 no longer holds. Namely, because of the extended language
of invariants in this new version of our technique, it is possible for many more
methods to cause such invariants to break. However, our technique does not allow
these invariants to remain broken in any more visible states than was previously
allowed. Essentially, any invariants which are broken due to the quantification
over instances now possible, will always be reestablished at the next visible state
(either the end of the method call, or before the next method call; whichever is
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the sooner). This is reflected in our B and E defined above. Therefore, although
Proposition 2 does not hold, Theorem 1 can still be proved, essentially because
enough extra proof obligations are imposed before a method call takes place.

7 Conclusions, Related Work, and Future Work

We have outlined a verification technique based on VT, catering for static fields,
methods, and invariants. In the process, we extended the usual heap topology
of ownership types, and tackled potential callbacks through a combination of
effects, levels, and the OAM discipline.

Universe types as implemented in JML [5] require static fields to be readonly.
JML’s static invariants may only refer to static fields, while instance invariants
may refer to both static and instance fields [6, Sec. 8.2]. In JML and in our work,
both instance and static invariants are supposed to hold in visible states [10]. In
JML’s universe types, static methods are executed relative to the context of the
object who called the static method. This allows one to implement static factory
methods, which create new objects in the context of their caller. We can extend
our approach to support factory methods by incorporating ownership transfer
[11], allowing a method to create a new object, but to postpone the decision of
assigning it an owner.

In [7], Leino and Müller extend the Boogie methodology [1] to static invari-
ants: static fields may be reps; class invariants may mention static rep fields and
also quantify over objects of their class. The callback problem is solved by mak-
ing explicit the state in which static invariants may be assumed to hold, and
by enclosing expressions that potentially break the static invariant of a class in
expose blocks. In order to support abstraction in method specifications, a valid-
ity ordering is used to allow a class to implicitly expect the static invariants of
‘smaller’ classes. This issue is similar to one of the motivations for introducing
our levels. The validity ordering, however, has the side-effect for static initiali-
sation that subclasses be initialised before superclasses.

In Jacobs et al.’s work [4], Spec# annotations are suggested to cater for local
reasoning in the presence of multithreading. Again, static fields may be reps,
and static invariants may depend on the (transitively) owned objects. Both our
system and theirs need to address potential circularities: ours in order to avoid
visiting classes in an inconsistent state, and [4] in order to prevent deadlocks.
They require a partial ordering of locks, which, in a way, corresponds to our
levels. Two locks on the ‘same level’ are not allowed to be consecutively acquired.
In contrast, we permit method calls between classes on the same level, if the
effects allow it. Our work may be seen as the visible-states-based counterpart of
[4, 7].

We have not discussed static initialisation in this paper. In brief, we expect to
be able to incorporate the Java semantics for static initialisation. In terms of our
topology, initialisation is best modelled by considering that the tree owned by a
class comes into existence at the moment static initialisation of the class begins
(and is initially empty, apart from the owning class). Static initialisers may
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assume all of the invariants of lower levels, and no others (since the restrictions on
method calls are not respected by the execution of static initialisers). Exploring
these issues in more detail will be the subject of future work. We also plan
to complete the formal presentation of our work, and to study class visibility,
modularity, readonly fields, pure methods, and factory methods.
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Abstract Constrained existential types are a powerful language feature
that subsumes Java-like interface and wildcard types. But existentials
do not mingle well with subtyping: subtyping is already undecidable
for very restrictive settings. This paper defines two subtyping relations
by extracting the features specific to existentials from current language
proposals (JavaGI, WildFJ, Scala). Both subtyping relations are undecid-
able. The paper also discusses the consequences of removing existentials
from JavaGI and possible amendments to regain their features.

1 Introduction
Constrained existential types (also called “bounded existential types” [5, 12])
arise from the need for structured and partial data abstraction and information
hiding. They have found uses for modeling object oriented languages in gen-
eral [2], as well as for modeling specific features such as Java wildcards [3,4,18,19]
and Java-like interface types in the JavaGI language [21]. In fact, JavaGI supports
general existential types and provides interface types as a special case supported
by syntactic sugar. Building directly on existential types has several advantages
compared to interface types: they allow the general composition of interface
types, they encompass Java wildcards, and they enable meaningful types in the
presence of multi-headed interfaces.1

Work on the type checker for an implementation of JavaGI uncovered the
consequences of supporting general existential types. They do not only introduce
a wealth of complexity into the type system (something we can live with) but
they may also cause nontermination in the type checker (something we cannot
live with): JavaGI’s subtyping relation with existential types is undecidable.

After establishing some background on JavaGI (§ 2), we define two calculi with
constrained existential types and subtyping. The first calculus (§ 3) is a subset of
JavaGI’s formalization [21]. The second calculus (§ 4) supports existential types
with lower and upper bounds, very much like Scala [13] and formal systems for
modeling Java wildcards [3,4,18]. We prove that the subtyping relations of both
calculi are undecidable.

Furthermore, we discuss alternative design options for JavaGI that avoid the
use of general existential types but keep the remaining features (§ 5). Finally, we
review related work (§ 6) and conclude (§ 7). Detailed proofs can be found in an
accompanying technical report [22].

1 JavaGI provides multi-headed interfaces that abstract over a family of types.
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2 Background

JavaGI [21] is a conservative extension of Java 1.5 that generalizes Java’s inter-
face concept to incorporate the essential features of Haskell type classes [8,9,20].
This generalization allows for retroactive and constrained interface implemen-
tations, binary methods, static methods in interfaces, default implementations
for interface methods, and multi-headed interfaces (interfaces over families of
types). Furthermore, JavaGI generalizes Java-like interface types to existential
types. This section only discusses the features relevant to this paper, namely
retroactive interface implementations and existential types, and ignores the rest.

2.1 Retroactive Interface Implementations
A class definition in Java must specify all interfaces that the class implements.
In contrast, JavaGI enables programmers to add implementations for interfaces
to existing classes at any time. For example, Java rejects the use of a for-
loop to iterate over the characters of a string because the class String does not
implement the interface Iterable:2

for (Character c : someString) { ... } // illegal in Java

As the definition of class String is fixed, there is no hope of getting this code
working. In contrast, JavaGI allows the retroactive implementation of Iterable:3

implementation Iterable<Character> [String] {

public Iterator<Character> iterator() {

return new Iterator<Character>() {

private int index = 0;

public boolean hasNext() { return index < length(); }

public Character next() { return charAt(index++); }

};

}

}

This implementation definition specifies that the implementing type String, en-
closed in square brackets [ ], implements the interface Iterable<Character>. The
definition of the iterator method can use the methods length and charAt be-
cause they are part of String’s public interface.

2.2 Constrained Existential Types
Java uses the name of an interface as an interface type that denotes the set
of all types implementing the interface. Instead of interface types, JavaGI fea-
tures constrained existential types (existentials for short) and provides syntactic
sugar for recovering interface types. For example, the interface type List<String>

abbreviates the existential type ∃ X where X implements List<String> . X. The
implementation constraint “X implements List<String>” restricts instantiations

2 Java’s enhanced for-loop allows to iterate over arrays and all types implementing the
Iterable<X> interface, which contains a single method Iterator<X> iterator().

3 We ignore the remove method of the Iterator interface.
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of the type variable X to types that implement the interface List<String>. Thus,
the existential type denotes the set of all types implementing List<String>, ex-
actly like the synonymous interface type.

Existentials are more general than interface types. For instance, the existen-
tial ∃ X where X implements List<String>, X implements Set<String> . X de-
notes the set of all types that implement both List<String> and Set<String>.
Java supports such intersections of interface types only for specifying bounds of
type variables. Existentials also encompass Java wildcards [3, 4, 18, 19]. For in-
stance, the existential type ∃ X where X extends Number . List<X> corresponds
to the wildcard type List<? extends Number>.4

JavaGI allows implementation definitions for existentials. For example, a pro-
grammer may write an implementation definition to specify that all types im-
plementing List<X> also implement Iterable<X>. Such a definition is feasible be-
cause iterators can be implemented using only operations of the List interface.
The example also demonstrates that JavaGI supports generic implementation
definitions, which are parameterized by type variables.

implementation<X> Iterable<X> [∃ L where L implements List<X> . L] {

Iterator<X> iterator() { return new Iterator<X>() {

/∗ as for String , replacing length with size and charAt with get . ∗/ };

}

}

A Java programmer would have to implement Iterable from scratch for every
class that implements List. Abstract classes do not help with this problem be-
cause Java does not support multiple inheritance.

3 Subtyping Existential Types with Implementation
Constraints

This section introduces EXimpl, a subtyping calculus with existentials and im-
plementation constraints. EXimpl is a subset of Core–JavaGI from the original
formulation of JavaGI’s type system [21]. It does not model all aspects of Jav-
aGI, but contains only those features that make subtyping undecidable.

3.1 Definition of EXimpl

Fig. 1 defines the syntax, as well as the entailment and subtyping relations of
EXimpl. A type T is either a type variable X or an existential ∃X whereP .X.
For simplicity, there are no class types, existentials have a single quantified type
variable, and the body of an existential must be the quantified type variable.5

Overbar notation ξ denotes a sequence ξ1, . . . , ξn of syntactic entities with •
standing for the empty sequence. Sometime, the sequence ξ stands for the set
{ξ}. Existentials are considered equal up to renaming of bound type variables,
reordering of constraints, and elimination of duplicate constraints.

4 Because List is an interface, ∃ X where X extends Number . List<X> stands for
∃ X,L where X extends Number, L implements List<X> . L

5 The body of an existential is the part after the “.”.
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T, U, V, W ::= X | ∃X whereP . X

P, Q, R ::= X implements I<T>

def ::= interface I<X> | implementation<X> I<T> [T]

e1-impl
implementation<X> I<T> [U] ∈ Θ

Θ; ∆  [V/X]
`
U implements I<T>

´
e1-local

P ∈ ∆

Θ; ∆  P

s1-refl
Θ; ∆ ` T ≤ T

s1-trans
Θ; ∆ ` T ≤ U Θ; ∆ ` U ≤ V

Θ; ∆ ` T ≤ V

s1-open
Θ; ∆, P ` X ≤ T X /∈ ftv(Θ, ∆, T )

Θ; ∆ ` ∃X whereP . X ≤ T

s1-abstract
(∀i) Θ; ∆  [T/X]Pi

Θ; ∆ ` T ≤ ∃X whereP . X

Fig. 1. Type syntax, entailment, and subtyping for EXimpl.

An implementation constraint P has the form X implements I <T> and con-
strains the type variable X to types that implement the interface I <T>. In com-
parison with upper bounds for type variables, implementation constraints allow
more precise typings, especially for binary methods [1]. An interface without
type parameters is written I instead of I < • >.

A definition def in EXimpl is either an interface or an implementation defi-
nition. Interface and implementation definitions do not have method signatures
or bodies, because they do not matter for the entailment and subtyping relation
of EXimpl. Moreover, EXimpl does not support interface inheritance. A program
environment Θ is a finite set of definitions def , and a type environment ∆ a
finite set of constraints P , where ∆, P abbreviates ∆ ∪ {P}.

The entailment relation Θ;∆  T implements I <T> expresses that type T
implements interface I <T>. A type implements an interface either because it
corresponds to an instance of a suitable implementation definition (rule e1-impl)
or because the type environment contains the constraint (rule e1-local). The
notation [T/X] stands for the capture-avoiding substitution replacing each Xi

with Ti. Full JavaGI uses the entailment relation (among other things) to verify
that the instantiation of a generic class or method fulfills the implementation
constraints associated with that class or method.

The subtyping relation Θ;∆ ` T ≤ U states that T is a subtype of U . It
is reflexive and transitive as usual. Rule s1-open opens an existential on the
left-hand side of a subtyping judgment by moving its constraints into the type
environment. The premise X /∈ ftv(Θ,∆, T ) ensures that the existentially quan-
tified type variable is sufficiently fresh and does not escape from its scope. Rule
s1-abstract deals with existentials on the right-hand side of a subtyping judg-
ment. It states that T is a subtype of some existential if all constraints of the
existential hold after substituting T for the existentially quantified type variable.

While developing a type soundness proof for Core–JavaGI, we verified that
the subtyping relation of EXimpl supports the usual principle of subsumption:
we can always promote the type of an expression to some supertype without
causing runtime errors.
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3.2 Undecidability of Subtyping in EXimpl

We prove undecidability of subtyping in EXimpl by reduction from Post’s Corre-
spondence Problem (PCP). It is well known that PCP is undecidable [7, 17].

Definition 1 (PCP). Let {(u1, v1) . . . , (un, vn)} be a set of pairs of non-empty
words over some finite alphabet Σ with at least two elements. A solution of PCP
is a sequence of indices i1 . . . ir such that ui1 . . . uir

= vi1 . . . vir
. The decision

problem asks whether such a solution exists.

Theorem 1. Subtyping in EXimpl is undecidable.

Proof. Let P = {(u1, v1), . . . , (un, vn)} be a particular instance of PCP over the
alphabet Σ. We can encode P as an equivalent subtyping problem in EXimpl as
follows. First, words over Σ must be represented as types in EXimpl.

interface E // empty word ε
interface L<X> // letter, for every L ∈ Σ

Words u ∈ Σ∗ are formed with these interfaces through nested existentials. For
example, the word AB is represented by

∃X whereX implements A<∃Y whereY implements B<
∃Z whereZ implements E . Z> . Y > . X

The abbreviation ∃I <T> stands for the type ∃X whereX implements I <T> . X.
Using this notation, the word AB is represented by ∃A<∃B<∃E>>.

Formally, we define the representation of a word u as JuK = u # ∃E, where
u # T is the concatenation of a word u with a type T :

ε # T , T Lu # T , ∃L<u # T>

Two interfaces are required to model the search for a solution of PCP:

interface S<X,Y> // search state
interface G // search goal

The type ∃S<JuK, JvK> represents a particular search state where we have al-
ready accumulated indices i1, . . . , ik such that u = ui1 . . . uik

and v = vi1 . . . vik
.

To model valid transitions between search states, we define implementations of
S for all i ∈ {1, . . . , n} as follows:

implementation<X,Y> S<ui#X, vi#Y> [∃ S<X,Y>] (1)

The type ∃G represents the goal of a search, as expressed by the following
implementation:

implementation<X> G [∃ S<X,X>] (2)

To get the search running we ask whether there exists some i ∈ {1, . . . , n}
such that ΘP ; ∅ ` ∃S<JuiK, JviK> ≤ ∃G is derivable. The program ΘP consists of
the interfaces and implementations just defined. In our technical report [22], we
prove that the given PCP instance P has a solution if and only if there exists
some i ∈ {1, . . . , n} such that ΘP ; ∅ ` ∃S<JuiK, JviK> ≤ ∃G is derivable. ut

FTfJP 2008  - 129



N, M ::= C<X> | Object
T, U, V, W ::= X | N | ∃X whereP . N

P, Q, R ::= X extendsT | X superT

e2-extends
∆ ` T ≤ U

∆  T extendsU

e2-super
∆ ` U ≤ T

∆  T superU

s2-refl
∆ ` T ≤ T

s2-trans
∆ ` T ≤ U ∆ ` U ≤ V

∆ ` T ≤ V

s2-object
∆ ` T ≤ Object

s2-extends
X extendsT ∈ ∆

∆ ` X ≤ T

s2-super
X superT ∈ ∆

∆ ` T ≤ X

s2-open
∆, P ` N ≤ T X ∩ ftv(∆, T ) = ∅

∆ ` ∃X whereP . N ≤ T

s2-abstract

T = [U/X]N (∀i) ∆  [U/X]Pi

∆ ` T ≤ ∃X whereP . N

Fig. 2. Syntax, Entailment, and Subtyping for EXuplo

4 Subtyping Existential Types with Upper and Lower
Bounds

This section considers the calculus EXuplo, which is similar in spirit to EXimpl,
but supports upper and lower bounds for type variables and no implementation
constraints. Other researchers [3,4,18] use formal systems very similar to EXuplo

for modeling Java wildcards [19]. It is not the intention of EXuplo to provide
another formalization of wildcards, but rather to expose the essential ingredients
that make subtyping undecidable in a calculus as simple as possible.

4.1 Definition of EXuplo

Fig. 2 defines the syntax and the entailment and subtyping relations of EXuplo. A
class type N is either Object or an instantiated generic class C<X>, where the
type arguments must be type variables. A type T is a type variable, a class type,
or an existential. Unlike in EXimpl, existentials in EXuplo may quantify over several
type variables and the body of an existential must be a class type. A constraint
P places either an upper bound (X extendsT ) or a lower bound (X superT )
on a type variable X. Type environments ∆ are defined as for EXimpl.

Class definitions and inheritance are omitted from EXuplo. The only assump-
tion is that every class name C comes with a fixed arity that is respected when
applying C to type arguments. There are some further restrictions:

(1) If T = ∃X whereP .N , then X 6= • and X ⊆ ftv(N).
(2) If T = ∃X whereP .N and P ∈ P , then P = Y extendsT or P = Y superT

with Y ∈ X. That is, only bound variables may be constrained.
(3) A type variable must not have both upper and lower bounds.6

Constraint entailment (∆  T extendsU and ∆  U superT ) uses subtyp-
ing (∆ ` T ≤ U) to check that the constraint given holds. The subtyping rules
for EXuplo are similar to those for EXimpl, except that Object is now a supertype
of every type and that rules s2-extends and s2-super use assumptions from ∆.
6 Modeling Java wildcards requires upper and lower bounds for the same type variable in

certain situations.
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τ+ ::= Top | ∀α0≤τ−0 . . . αn≤τ−n .¬ τ− (n ∈ N)
τ− ::= α | ∀α0 . . . αn .¬ τ+ (n ∈ N)
Γ− ::= ∅ | Γ−, α≤τ−

d-top
Γ ` τ ≤ Top

d-var
τ 6= Top

Γ ` Γ (α) ≤ τ

Γ ` α ≤ τ

d-all-neg
Γ, α0≤φ0 . . . αn≤φn ` τ ≤ σ

Γ ` ∀α0 . . . αn .¬σ ≤ ∀α0≤φ0 . . . αn≤φn .¬ τ

Fig. 3. Syntax and Subtyping for F D
≤

4.2 Undecidability of Subtyping in EXuplo

The undecidability proof of subtyping in EXuplo is by reduction from FD
≤ [14], a

restricted version of F≤ [5]. Pierce defines FD
≤ for his undecidability proof of F≤

subtyping [14].
Fig. 3 defines the syntax and the subtyping relation of FD

≤ . A Type τ is either
a n-positive type, τ+, or a n-negative type, τ−, where n is a fixed natural number
standing for the number of type variables (minus one) bound at the top-level of
the type. A n-negative type environment Γ− associates type variables α with
upper bounds τ−. The polarity (+ or −) characterizes at which positions of a
subtyping judgment a type or type environment may appear. For readability, we
often omit the polarity and leave n implicit.

A n-ary subtyping judgment in FD
≤ has the form Γ− ` σ− ≤ τ+, where

Γ− is a n-negative type environment, σ− is a n-negative type, and τ+ is a n-
positive type. Only n-negative types appear to the left and only n-positive types
appear to the right of the ≤ symbol. The subtyping rule d-all-neg compares
two quantified types σ = ∀α0 . . . αn .¬σ′ and τ = ∀α0≤τ0 . . . αn≤αn .¬ τ ′ by
swapping the left- and right-hand sides of the subtyping judgment and checking
τ ′ ≤ σ′ under the extended environment Γ, α0≤τ0 . . . αn≤τn. The rule is correct
with respect to F≤ because we may interpret every FD

≤ type as an F≤ type:

∀α0 . . . αn .¬σ′ = ∀α0≤Top . . .∀αn≤Top.∀β≤σ′ . β (β fresh)
∀α0≤τ0 . . . αn≤αn .¬ τ ′ = ∀α0≤τ0 . . .∀αn≤τn.∀β≤τ ′ . β (β fresh)

Using these abbreviations, every FD
≤ subtyping judgment can be read as an F≤

subtyping judgment. The subtype relations in FD
≤ and F≤ coincide for judgments

in their common domain [14].
It is sufficient to consider only closed judgments. A type τ is closed under Γ

if ftv(τ) ⊆ dom(Γ ) (where dom(α1≤τ1, . . . , αn≤τn) = {α1, . . . , αn}) and, if τ =
∀α0≤τ0 . . . αn≤τn .¬σ, then no αi appears free in any τj . A type environment
Γ is closed if Γ = ∅ or Γ = Γ ′, α≤τ with Γ ′ closed and τ closed under Γ ′. A
judgment Γ ` τ ≤ σ is closed if Γ is closed and τ, σ are closed under Γ .

We now come to the central theorem of this section.

Theorem 2. Subtyping in EXuplo is undecidable.

Proof. The proof is by reduction from FD
≤ . Fig. 4 defines a translation from

FD
≤ types, type environments, and subtyping judgments to their correspond-

ing EXuplo forms. The translation of an n-ary subtyping judgment assumes the
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JTopK+ = Object

J∀α0≤τ−0 . . . αn≤τ−n .¬ τ−K+ = ¬∃Y, Xαi whereXα0 extends Jτ0K− . . .

Xαn extends JτnK−, Y extends JτK− .C n+2
<Y, Xαi>

JαK− = Xα

J∀α0 . . . αn .¬ τ+K− = ¬∃Y, Xαi whereY extends JτK+ .C n+2
<Y, Xαi>

J∅K− = ∅

JΓ, α≤τ−K− = JΓ K−, Xα
extends JτK−

JΓ− ` τ− ≤ σ+K = JΓ K− ` JτK− ≤ JσK+

¬T ≡ ∃X whereX superT .D1
<X>

Fig. 4. Reduction from F D
≤ to EXuplo

existence of two EXuplo classes: Cn+2 accepts n + 2 type arguments, and D1

takes one type argument. The superscripts in J·K+ and J·K− indicate whether the
translation acts on positive or negative entities.

An n-positive type ∀α0≤τ−0 . . . αn≤τ−n .¬ τ− is translated into an negated
existential. The existentially quantified type variables Xα0 , . . . , Xαn correspond
to the universally quantified type variables α0, . . . , αn. The bound JτK− of the
fresh type variable Y represents the body ¬ τ− of the original type. We cannot
use JτK− directly as the body because existentials in EXuplo have only class
types as their bodies. The translation for n-negative types is similar to the one
for n-positive types. It is easy to see that the EXuplo types in the image of the
translation meet the restrictions defined in Section 4.1. Type environments and
subtyping judgments are translated in the obvious way.

A negated type, written ¬T , is an abbreviation for an existential with a single
super constraint: ¬T ≡ ∃X whereX superT .D1<X>, where X is fresh. The
super constraint simulates the behavior of the FD

≤ subtyping rule d-all-neg,
which swaps the left- and right-hand sides of subtyping judgments.

We now need to verify that Γ ` τ ≤ σ is derivable in FD
≤ if and only if

JΓ ` τ ≤ σK is derivable in EXuplo. The “⇒” direction is an easy induction on
the derivation of Γ ` τ ≤ σ. The “⇐” direction requires more work because
the transitivity rule s2-trans (Fig. 2) involves an intermediate type which is not
necessarily in the image of the translation. Hence, a direct proof by induction
on the derivation of JΓ ` τ ≤ σK fails. To solve this problem, we give an equiva-
lent definition of the EXuplo subtyping relation that does not include an explicit
transitivity rule. See the technical report [22] for details and the full proofs. ut

5 Lessons Learned

What are the consequences of this investigation for the design of JavaGI? While
existentials are powerful and unify several diverse concepts, they complicate the
metatheory of JavaGI considerably. Also, subtyping with existentials is undecid-
able even under severe restrictions.
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The initial development of JavaGI’s metatheory uses existentials and imposes
several restrictions to ensure decidability of subtyping. However, these restric-
tions are difficult to explain to users of JavaGI because they seem ad-hoc. Our
present view is that existentials may not be worth all the trouble. After all,
JavaGI’s main feature is its very general and powerful interface concept (which
this paper does not explore). Hence, the upcoming revision of JavaGI’s design
has all features of the original design but it does not require existentials in their
full generality. It gives up some of the power in favor of simplicity. Several other
features make up for the lack of existentials and experience will show whether
this design is satisfactory.

In fact, the upcoming revision of JavaGI copes with all the uses of existentials
in JavaGI [21] as mentioned in the introduction.
General composition of interface types. The revised design supports Java-

like interface types and intersections thereof.
Wildcards. The revised design does not encode wildcards through existentials

but supports them directly.
Meaningful types for multi-headed interfaces. The revised design supports

special multi-headed interface types.

Examination of the undecidability proof in § 3 reveals that all types involved
are (encodings of) interface types, thus subtyping remains undecidable even if
regular interface types replace existentials. The real culprit for undecidability
is the ability to provide implementation definitions for existentials or interface
types. Moreover, such implementation definitions also prevent the assignment of
minimal types to expressions, see the technical report [22] for an example.7

Hence, the revised design disallows implementation definitions for interface
types. This restriction is rather severe because it prevents useful implementation
definitions such as the one given in § 2.2, which implements Iterable<T> for all
types implementing List<T>. Abstract implementation definitions are a possible
cure. They look similar to regular implementation definitions but do not con-
tribute to constraint entailment. Instead, they serve as blueprints for regular
implementation definitions. Here is a revision of the example from § 2.2:
abstract implementation<X> Iterable<X> [List<X>] { /∗ body as before ∗/ }

Regular implementation definitions may now inherit code from the abstract im-
plementation. For example:
implementation<X> Iterable<X> [LinkedList<X>] extends [List<X>]

implementation<X> Iterable<X> [ArrayList<X>] extends [List<X>]

A disadvantage of abstract implementation definitions is that they do not
induce a subtyping relation between the implementing type (List<X>) and the
interface being implemented (Iterable<X>). While there is no problem for the
concrete example (List<X> is a subinterface of Iterable<X> anyway), there are
situations in which such a subtyping relation is desirable.
7 Undecidability of subtyping in § 4 relies crucially on existentials with upper and lower

bounds. If we removed lower bounds, then subtyping would become decidable. We do not
consider this a viable option for JavaGI because it would require to add extra support for
wildcards, leading to an overly complicated language design with existentials and wildcards.
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6 Related Work

Kennedy and Pierce [10] investigate undecidability of subtyping under multiple
instantiation inheritance and declaration-site variance. They prove that the gen-
eral case is undecidable and present three decidable fragments. Our proof in § 3
is similar to theirs, although undecidability has different causes: Kennedy and
Pierce’s system is undecidable because of contravariant generic types, expan-
sive class tables, and multiple instantiation inheritance, whereas undecidability
of our system is due to the interaction of constraint entailment and subtyping
caused by implementation definitions for existentials.

Pierce [14] proves undecidability of subtyping in F≤ by a chain of reductions
from the halting problem for two-counter Turing machines. An intermediate link
in this chain is the subtyping relation of FD

≤ , which is also undecidable. Our proof
in § 4 works by reduction from FD

≤ and is inspired by a reduction given by Ghelli
and Pierce [6], who study bounded existential types in the context of F≤ and
show undecidability of subtyping. Crucial to the undecidability proof of FD

≤ is
rule d-all-neg: it extends the typing context and essentially swaps the sides of a
subtyping judgment. In EXuplo, rule s2-open and rule s2-abstract together with
lower bounds on type variables play a similar role.

Torgersen et al. [18] present WildFJ as a model for Java wildcards using
existential types. The authors do not prove WildFJ sound. Cameron et al. [4]
define a similar calculus ∃J and prove soundness. However, ∃J is not a full
model for Java wildcards because it does not support lower bounds for type
variables. The same authors present with TameFJ [3] a sound calculus supporting
all essential features of Java wildcards. WildFJ’s and TameFJ’s subtyping rules
are similar to the ones of EXuplo defined in § 4, so the conjecture is that subtyping
in WildFJ and TameFJ is also undecidable. The rule XS-Env of TameFJ is
roughly equivalent to the rules s2-open and s2-abstract of EXuplo.

Decidability of subtyping for Java wildcards is still an open question [11].
One step in the right direction might be the work of Plümicke, who solves the
problem of finding a substitution ϕ such that ϕT ≤ ϕU for Java types T,U with
wildcards [15, 16]. Note that undecidability of EXuplo does not imply undecid-
ability for Java subtyping with wildcards. The proof of this claim would require
a translation from subtyping derivations in EXuplo to subtyping derivations in
Java with wildcards, something we did not address in this article.

The programming language Scala [13] supports existential types in its latest
release. The subtyping rules for existentials (§ 3.2.10 and § 3.5.2 of the specifica-
tion [13]) are very similar to the ones for EXuplo. This raises the question whether
Scala’s subtyping relation with existentials is decidable.

7 Conclusion

The paper investigates decidability of subtyping with existential types in the con-
text of JavaGI, Java wildcards, and Scala. In all cases, subtyping is undecidable.
For JavaGI, there are some design options that avoid fully general existentials
without giving up much expressivity.
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21. S. Wehr, R. Lämmel, and P. Thiemann. JavaGI: Generalized interfaces for Java. In
E. Ernst, editor, 21st European Conference on Object-Oriented Programming, vol-
ume 4609 of Lecture Notes in Computer Science, pages 347–372, Berlin, Germany,
July 2007. Springer-Verlag.

22. S. Wehr and P. Thiemann. Subtyping existential types. Technical Report
240, Universität Freiburg, June 2008. ftp://ftp.informatik.uni-freiburg.de/

documents/reports/report240/report00240.ps.gz.

FTfJP 2008  - 136




