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Abstract. Memory consumption policies provide a means to control resource usage on constrained
devices, and play an important role in ensuring the overall quality of software systems, and in par-
ticular resistance against resource exhaustion attacks. Such memory consumption policies have been
previously enforced through static analyses, which yield automatic bounds at the cost of precision, or
run-time analyses, which incur an overhead that is not acceptable for constrained devices.
In this paper, we study the use of logical methods to specify and verify statically precise memory
consumption policies for Java bytecode programs. First, we demonstrate how the Bytecode Modeling
Language BML (a variant of the Java Modeling Language JML tailored to bytecode) can be used to
specify precise memory consumption policies for (sequential) Java applets, and how verification tools
can be used to enforce such memory consumption policies. Second, we consider the issue of inferring
some of the annotations required to express the memory consumption policy. We report on an inference
algorithm and illustrate its applicability on non-trivial examples.
Our broad conclusion is that logical methods provide a suitable means to specify and verify expressive
memory consumption policies, with a minimal overhead.

1 Introduction

Trusted personal devices (TPDs for short) such as smart cards, mobile phones, and PDAs commonly
rely on execution platforms such as the Java Virtual Machine and the Common Language Runtime.
Such platforms are considered appropriate for such TPDs since they allow applications to be devel-
oped in a high-level language without committing to any specific hardware and since they feature
security mechanisms that guarantee the innocuousness of downloaded applications. For example, the
Java security architecture ensures that applications will not perform illegal memory accesses through
stack inspection, which performs access control during execution, and bytecode verification, which
performs static type-checking prior to execution. On the other hand, current security architectures for
TPDs do not provide any mechanism to control resource usage by downloaded applications, despite
TPDs being subject to stringent resource constraints. Therefore, TPDs are particularly vulnerable to
denial-of-service attacks, since executing a downloaded application may potentially lead to resource
exhaustion.
Several approaches have been suggested to date to enforce memory consumption policies for programs;
all approaches are automatic, but none of them is ideally suited for TPDs, either for their lack of
precision, or for the runtime penalty they impose on programs:

– Static analyses and abstract interpretations: in such an approach, one performs an abstract exe-
cution of an approximation of the program. The approximation is chosen to be coarse enough to
be computable, as a result of which it yields automatically bounds on memory consumption, but
at the cost of precision. Such methods are not very accurate for recursive methods and loops, and
often fail to provide bounds for programs that contain dynamic object creation within a loop or a
recursive method;



– Proof-carrying code: here the program comes equipped with a specification of its memory con-
sumption, in the form of statements expressed in an appropriate program logic, and a certificate
that establishes that the program verifies the memory consumption specification attached to it. The
approach potentially allows for precise specifications. However, existing works on proof carrying
code for resource usage sacrifice the possibility of enforcing accurate policies in favor of the pos-
sibility of generating automatically the specification and the certificate, in line with earlier work
on certifying compilation;

– Run-time monitoring: here the program also comes equipped with a specification of its memory
consumption, but the verification is performed at run-time, and interrupted if the memory con-
sumption policy is violated. Such an approach is both precise and automatic, but incurs a runtime
overhead which makes it unsuitable for TPDs.

The objective of this work is to explore an alternative approach that favors precision of the analysis
at the cost of automation. The approach is based on program logics, which originate from the seminal
work on program verification by C.A.R. Hoare and E.W. Dijkstra and have been used traditionally to
verify functional properties of programs. In earlier work, we have shown how general purpose logics
can be used to enforce security properties of Java programs, including confidentiality [6] and high-
level security rules [23]. In this paper, we demonstrate that program logics are also appropriate for
performing a precise analysis of resource consumption for Java programs. Although our method is
applicable both at source code level and bytecode level, our work has focused on bytecode level, since
in many application domains verification has to be performed without access to the source code of the
applet. (However, for the clarity of the explanations all examples in the introduction deal with source
code level.)
In order to illustrate the principles of our approach, let us consider the following program:

public void m(A a){
if (a == null) {

a = new A();
}
a.b = new B();

}

In order to model the memory consumption of this program, we introduce a ghost (or, model) variable
Mem that accounts for memory consumption; more precisely, the value of Mem at any given program
point is meant to provide an upper bound to the amount of memory consumed so far. To keep track
of the memory consumption, we perform immediately after every bytecode that allocates memory an
increment of Mem by the amount of memory consumed by the allocation. Thus, if the programmer
specifies that ka and kb is the memory consumed by the allocation of an instance of class A and B
respectively, the program must be annotated as:

public void m(A a) {
if (a == null) {

a = new A();
// set Mem = ka;

}
a.b = new B();
// set Mem = kb;

}



Such annotations allow to compute at run-time the memory consumption of the program. However, we
are interested in static prediction of memory consumption, and resort to preconditions and postcondi-
tions to this end. Even for a simple example as above, one can express the specification at different
levels of granularity. For example, fixing the amount of memory that the the program may use Max
one can specify that the method will use at most ka + kb memory units and will not overpass the
authorized limit to use Max with the following specification:

//@ requires Mem + ka + kb <= Max
//@ ensures Mem <= \old(Mem) + ka + kb
public void m(A a) {
if (a == null) {

a = new A();
// set Mem = ka;

}
a.b = new B();
// set Mem = kb;

}

Or try to be more precise and relate memory consumption to inputs with the following specification:

//@ requires a == null ==> Mem + ka + kb <= Max &&
!(a == null) ==> Mem + kb <= Max

//@ ensures \old(a) == null ==> Mem <= \old(Mem) + ka + kb &&
!(\old(a) == null) ==> Mem <= \old(Mem) + kb

public void m(A a) {
if (a == null) {

a = new A();
}
a.b = new B();

}

More complex specifications are also possible. For example, one can take into account whether the
program will throw an exception or not. using (possibly several) exceptional postconditions stating
that kE memory units are allocated in case the method exits on exception E.
The main characteristics of our approach are:

– Precision: our analysis allows to specify and enforce very precise memory consumption policies,
including policies that take into account the results of branching statements or the values of pa-
rameters in method calls. Being based on program logics, which are very versatile, the precision
of our analysis can be further improved by using it in combination with other analyses, such as
control flow analysis and exception analysis;

– Correctness: our analysis exploits existing program logics which are (usually) already known to
be sound. In fact, it is immediate to derive the soundness of our analysis from the soundness
of the program logic, provided ghost annotations that update memory consumption variables are
consistent with an instrumented semantics that extends the language operational semantics with a
suitable cost model that reflects resource usage;

– Language coverage: our analysis relies on the existence of a verification condition generator for
the programming language at hand, and is therefore scalable to complex programming features.
In the course of the paper, we shall illustrate applications of our approach to programs featuring
recursive methods, method overriding and exceptions;



– Usability: our approach can be put to practice immediately using existing verification tools for
program logics. We have applied our approach to annotated Java bytecode programs using a veri-
fication environment developed in [7], but it is also possible to use our approach on JML annotated
Java source code [8], and more generally on programs that are written in a language for which ap-
propriate support for contract-based reasoning exists;

– Annotation generation: in contrast to other techniques discussed above, our approach requires user
interaction, both for specifying the program and for proving that it meets its specification. In order
to reduce the burden of the user, we have developed heuristics that infer automatically part of the
annotations;

– Feasibility: thanks to annotation generation mechanisms and powerful provers that help discharge
many proof obligations automatically, our approach can be applied to realistic Java bytecode pro-
grams with a reasonable overhead.

In the course of the article, we illustrate the principles and characteristics of our approach in the context
of Java bytecode programs. More specifically, the paper is organized as follows: Section 2 provides a
brief introduction to Java bytecode programs and to the modeling language and weakest precondition
calculus used to specify and verify such programs. Section 3 describes in some detail how the infras-
tructure described in Section 2 can be used to specify and verify precise memory consumption policies.
Section 4 is devoted to a presentation of our algorithms for inferring automatically annotations. We
conclude in Section 5 with related work and in Section 6 with directions for future work.

2 Preliminaries

2.1 Java class files

The standard format for Java bytecode programs is the so-called class file format which is specified
in the Java Virtual Machine Specification [21]. For the purpose of this paper, it is sufficient to know
that class files contain the definition of a single class or interface, and are structured into a hierar-
chy of different attributes that contain information such as the class name, the name of its superclass
or the interfaces it implements, a table of the methods declared in the class. Moreover an attribute
may contain other attributes. For example the attribute that describes a single method contains an
Local_Variable_Table attribute that describes the method parameters and its local variables;
further in this section we will denote the table of local variables by l and the ith variable by l[i]. In
addition to these attributes which provide all the information required by a standard implementation of
the Java Virtual Machine, class files can accommodate user-defined attributes, which are not used by
standard implementations of the Java Virtual Machine but can be used for other purposes. We take ad-
vantage of this possibility and introduce additional attributes that contain annotations such as method
preconditions and postconditions, variants and invariants. Annotations are given in the Bytecode Mod-
eling Language, which we describe below.

2.2 The Bytecode Modeling Language

The bytecode modeling language BML is a variant of the Java Modeling Language (JML) [20] tailored
to Java bytecode; the BML specification language is described in [7]. For our purposes, we only need to
consider a restricted fragment of BML, which is given in Fig. 1; we let E and P denote respectively the
set of BML expressions and BML predicates. As for JML, BML specifications contain different forms
of statements, in the form of BML predicates tagged with appropriate keywords. BML predicates
are built from BML expressions using standard predicate logic; furthermore BML expressions are
bytecode programs that correspond to effect-free Java expressions, or BML specific expressions. The
latter include expressions of the form \old(exp) which refers to the value of the expression exp at



the beginning of the method, or exppc which refers to the value of the expression expr at program
point pc. Note that the latter is not a standard expression in JML but can be emulated introducing
a ghost variable exppc and performing the ghost assignment set exppc= exp at program point
pc.

Statements can be used for the following purposes:

– Specifying method preconditions, which following the design by contract principles, must be sat-
isfied upon method invocation. Such preconditions are formulated using statements of the form
requires P;

– Specifying method postconditions, which following the design by contract principles, must be
guaranteed upon returning normally from the method. Such postconditions are formulated using
statements of the form ensures P;

– Specifying method exceptional postconditions, which must be guaranteed upon returning excep-
tionally from the method. Such postconditions are formulated using statements of the form
exsures(Exception)P , that record the reason for exceptional termination;

– Stating loop invariants, which are predicates that must hold every time the program enters the
loop;

– Guaranteeing termination of loops and recursive methods, using statements of the form variant E
which provide a measure (in the case of BML a positive number) that strictly decreases at each
iteration of the loop/recursive call;

– Local assertions, using assert P , which asserts that P holds at the program point immediately
after the assertion;

– Declaring and updating ghost variables, using statements of the form declareModelTypename
and set E = E ;

– Keeping track of variables that are modified by a method or in a loop, using declarations of the
form modifies var. During the generation of verification conditions, one checks that variables
that are not declared as modifiable by the clause above will not be modified during the execution
of the method/loop, and one also uses the information about modified variables to generate the
verification conditions.

BML− stmt = requires P
| ensures P
| exsures(Exception)P
| assert P
| invariant P
| variant E
| declare Model Type name
| modifies var
| set E = E

Fig. 1. SPECIFICATION LANGUAGE

Note that, as alluded in the previous paragraph, annotations are not inserted directly into bytecode;
instead they are gathered into appropriate user defined attributes of an extended class file. Such ex-
tended class files can be obtained either through direct manipulation of standard class files, or using an
extended compiler that outputs extended class files from JML annotated programs, see [7].



2.3 Verification of annotated bytecode

In order to validate annotated Java bytecode programs, we resort to a verification environment for Java
bytecode (described in [7]), which is an adaptation of JACK [8]. It consists of two main components:

– A verification condition generator, which takes as input an annotated applet and generates a set of
verification conditions which are sufficient to guarantee that the applet meets its specification;

– A proof engine that attempts to discharge the verification conditions automatically using auto-
matic tools such as B and Simplify, and then sends the remaining verification conditions to proof
assistants where they can be discharged interactively by the user. We are currently generating
verification conditions for the proof assistants Coq [11] and PVS [27].

Generating the Verification Conditions The verification condition generator, or VCGen for
short, takes as input an extended class file and returns as outputs a set of proof obligations, whose
validity guarantees that the program satisfies its annotations. The VCGen proceeds in a modular fashion
in the sense that it addresses each method separately, and is based on computing weakest preconditions.
More precisely, for every method m, postcondition ψ that must hold after normal termination of m,
and exceptional postcondition ψ′ that must hold after exceptional termination of m (for simplicity we
consider only one exception in our informal discussion), the VCGen computes a predicate φ whose
validity at the onset of method execution guarantees that ψ will hold upon normal termination, and
ψ′ will hold upon exceptional termination. The VCGen will then return several proof obligations that
correspond, among other things, to the fact that the precondition of m given by the specification entails
the predicate φ that has been computed, and to the fact that variants and invariants are correct.
The procedure for computing weakest preconditions is described in detail in [7]. In a nutshell, one first
defines for each bytecode a predicate transformer that takes as input the postconditions of the bytecode,
i.e. the predicates to be satisfied upon execution of the bytecode (different predicates can be provided
in case the bytecode is a branching instruction), and returns a predicate whose validity prior to the
execution of bytecode guarantees the postconditions of the bytecode. The definition of such functions
is completely generic and independent of any program, so the next step is to use these functions to
compute weakest preconditions for programs. This is done by building the control flow graph of the
program, and then by computing the weakest preconditions of the program using its control flow graph.
Note that the verification condition generator operates on BML statements which are built from ex-
tended BML expressions. Indeed, predicate transformers for instructions need to refer to the operand
stack and must therefore consider expressions of the form st(top -+ i) which represent the
st(top -+ i)-th element from the stack top:

wp(store l(i), ψ, ψ′) = ψ[top← top-1][l[i]← st(top)].

Discharging verification conditions Verification conditions are expressed in an intermediate lan-
guage for which translations to automatic theorem provers and proof assistants exist.

2.4 Correctness of the method

The verification method is correct in the sense that one can prove that for all methods m of the pro-
gram the postcondition (resp. exceptional postcondition) of the method holds upon termination (resp.
exceptional termination) of the method provided the method is called in a state satisfying the method
precondition and provided all verification conditions can be shown to be valid.
The correctness of the verification method is established relative to an operational semantics that de-
scribes the transitions to be taken by the virtual machine depending upon the state in which the machine
is executed. There are many formalizations of the operational semantics of the Java Virtual Machine,



see e.g. [29, 14, 19, 28]. Such semantics manipulate states of the form 〈〈h, 〈m, pc, l, s〉, sf 〉〉, where h
is the heap of objects, 〈m, pc, l, s〉 is the current frame and sf is the current call stack (a list of frames).
A frame 〈m, pc, l, s〉 contains a method name m and a program point pc within m, a set of local
variables l, and a local operand stack s. The operational semantics for each instruction is formalized
as rules specifying transition between states, or between a state and some tag that indicates abnormal
termination. For example, the semantics of the instruction store is given by the transition rule below,
where InstAt(m, pc) is the function that extracts the pc-th instruction from the body of method m:

InstAt(m, pc) = store i

〈〈h, 〈m, pc, l, v :: s〉, sf 〉〉 →store i 〈〈h, 〈m, pc + 1, l[i 7→ v], s〉, sf 〉〉.

In order to establish the correctness of our method, one first needs to establish the correctness of the
predicate transformer for each bytecode. For example for the instruction store we show that:

wp(store i, ψ)(〈〈h, 〈m, pc, l, v :: s〉, sf 〉〉)
⇒

ψ(〈〈h, 〈m, pc + 1, l[i 7→ v], s〉, sf 〉〉)

In the above ψ(〈〈h, 〈m, pc, l, v :: s〉, sf 〉〉) is to be understood as the instance of the formula ψ in which
all local variables l and field references are substituted with their corresponding values in state
〈〈h, 〈m, pc, l, v :: s〉, sf 〉〉.
The proof proceeds by a case analysis on the instruction to be executed, and makes an intensive use of
auxiliary substitution lemmas that relate e.g. the stack of the pre-state with the stack of the post-state
of executing an instruction. Then one proves the correctness of the method by induction on the length
of the execution sequence. We have proved the correctness of our method for a fragment of the JVM
that includes the following constructs:

– Stack manipulation: push, pop, dup, dup2, swap, numop, etc;
– Arithmetic instructions: type add, type sub, etc;
– Local variables manipulation: type load, type store, etc;
– Jump instructions: if, goto, etc;
– Object creation and object manipulation: new, putfield, getfield, newarray, etc;
– Array instructions: arraystore, arrayload, etc;
– Method calls and return: invokevirtual, return, etc;
– subroutines: jsr and ret.

Note however that our method imposes some mild restrictions on the structure of programs: for ex-
ample, we require that jsr and throw instructions are not entry for loops in the control flow graph in
order to prevent pathological recursion. Lifting such restrictions is left for future work.

3 Modeling memory consumption

The objective of this section is to demonstrate how the user can annotate and verify programs in order to
obtain an upper bound on memory consumption. We begin by describing the principles of our approach,
then turn to establish its soundness, and finally show how it can be applied to non-trivial examples
involving recursive methods and exceptions.

3.1 Principles

Let us begin with a very simple memory consumption policy which aims at enforcing that programs do
not consume more than some fixed amount of memory Max. To enforce this policy, we first introduce
a ghost variable MemUsed that represents at any given point of the program the memory used so far.
Then, we annotate the program both with the policy and with additional statements that will be used to
check that the application respects the policy.



The precondition of the method m should ensure that there must be enough free memory for the
method execution. Suppose that we know an upper bound of the allocations done by method m in any
execution. We will denote this upper bound by methodConsumption(m). Thus there must be at
least methodConsumption(m) free memory units from the allowed Max when method m starts
execution. Thus the precondition for the method m is:

requires MemUsed+ methodConsumption(m) ≤ Max.

The precondition of the program entry point (i.e., the method from which an application may start
its execution) should state that the program has not allocated any memory, i.e. require that variable
MemUsed is 0:

requires MemUsed == 0.

The normal postcondition of the method m must guarantee that the memory allocated during a
normal execution of m is not more than some fixed number methodConsumption(m) of memory
units. Thus for the method m the postcondition is:

ensures MemUsed ≤ old(MemUsed) + methodConsumption(m).

The exceptional postcondition of the method m must say that the memory allocated during an exe-
cution of m that terminates by throwing an exception Exception is not more than methodConsumption(m)
units. Thus for the method m the exceptional postcondition is:

exsures(Exception) MemUsed ≤ old(MemUsed) + methodConsumption(m).

Loops must also be annotated with appropriate invariants. Let us assume that loop l iterates no more
than iterl and let loopConsumption(l) be an upper bound of the memory allocated per iteration
in l. Below we give a general form of loop specification w.r.t. the property for constraint memory
consumption. The loop invariant of a loop l states that at every iteration the loop body is not going
to allocate more than loopConsumption(l) memory units and that the iterations are no more than
iterl. We also declare an expression which guarantees loop termination, i.e. a variant (here an integer
expression whose values decrease at every iteration and is always bigger or equal to 0):

modifies i,MemUsed
invariant : MemUsed ≤ MemUsedBeforel + i ∗ loopConsumption(l)

∧
i ≤ iterl

variant : iterl − i

A special variable appears in the invariant, MemUsedBeforel . It denotes the value of the consumed
memory just before entering for the first time the loop l. At every iteration the consumed memory must
not go beyond the upper bound given for the body of loop.

For every instruction that allocates memory the ghost variable MemUsed must also be updated
accordingly. For the purpose of this paper, we only consider dynamic object creation with the bytecode
new; arrays are left for future work and briefly discussed in the conclusion.
The function allocInstance : Class → int gives an estimation of the memory used by an
instance of a class. At every program point where a bytecode new A is found, the ghost variable
MemUsed must be incremented by allocInstance(A). This is achieved by inserting a ghost as-
signment immediately after any new instruction, as shown below:

new A
//set MemUsed = MemUsed+allocInstance(A).



3.2 Correctness

We want to guarantee that the memory allocated by a given program is bounded by a constant Max. We
can prove that our annotation is correct w.r.t. to the policy for constraint memory use, by instrumenting
the operational semantics of the bytecode language given in Section 2.4. The instrumented operational
semantics manipulates states as before, but it is extended with the special variable MemUsed. Thus,
states in the new semantics have the form:

〈〈h, 〈m, pc, l, s〉, sf ,MemUsed〉〉.

The variable MemUsed changes its value only for instructions that allocate space in the heap, i.e. new
instructions:

InstAt(m, pc) = new A,

〈〈h, 〈m, pc, l, v :: s〉, sf ,MemUsed〉〉 →new A

〈〈h+ allocInstance(A), 〈m, pc + 1, l, s〉, sf ,MemUsed+ allocInstance(A)〉〉

The other instructions do not affect MemUsed, so the corresponding rules of the operational semantics
are as before. As shown in the previous section, to every instruction of the form new A we attach the
annotation set MemUsed = MemUsed + allocInstance(A). The proof obligation generator
converts this annotation into new value for the variable MemUsed:

wp(set MemUsed = MemUsed+ allocInstance(A), ψ) =
ψ[MemUsed← MemUsed+ allocInstance(A)]

We can prove that whenever the allocated space in the heap increments, the ghost variable MemUsed
also increments, which is a sufficient condition to guarantee the correctness of the annotations. So far
we do not deal with garbage collection (see discussion in Section 6).

3.3 Examples

We illustrate hereafter our approach by several examples, copying with recursive and overridden meth-
ods and with exceptions.

Inheritance and overridden methods Overriding methods are treated as follows: whenever a
call is performed to a method m, we require that there is enough free memory space for the maximal
consumption by all the methods that override or are overridden by m. In Fig. 2 we show a class A and
its extending class B, where B overrides the method m from class A. Method m is invoked by n. Given
that the dynamic type of the parameter passed to n is not known, we cannot know which of the two
methods will be invoked. This is the reason for requiring enough memory space for the execution of
any of these methods.

Recursive Methods In Fig. 3 the bytecode of the recursive methodm and its specification is shown.
For simplicity we show only a simplified version of the bytecode; we assume that the constructors
for the class A and C do not allocate memory. Besides the precondition and the postcondition, the
specification also includes information about the termination of the method: variantlocalVar(1),
meaning that the local variable localVar(1) decreases on every recursive call down to and no more
than 0, guaranteeing that the execution of the method will terminate.
We explain now the precondition. If the condition of line 1 is not true, the execution continues at line 2.
In the sequential execution up to line 7, the program allocates at most allocInstance(A)memory



Specification of method m in class A:

requires MemUsed+ k ≤ Max
modifies MemUsed
ensures MemUsed ≤ old(MemUsed) + k

Specification for method m in class B:

requires MemUsed+ l ≤ Max
modifies MemUsed
ensures MemUsed ≤ old(MemUsed) + l

method n(A a)
...
//{ prove Mem <= Mem +max(l,k) }
invokevirtual m <A>
//{ assume Mem <= \old(Mem) + max(l,k)}
...

Fig. 2. EXAMPLE OF OVERRIDDEN METHODS

units and decrements by 1 the value of
localVar(1). The instruction at line 8 is a recursive call tom, which either will take the same branch
if localVar(1) > 0 or will jump to line 12 otherwise, where it allocates at most allocInstance(A)+
allocInstance(C) memory units. On returning from the recursive call one more allocation will
be performed at line 9. Thus m will execute, localVar(1) times, the instructions from lines 2 to 7,
and it finally will execute all the instructions from lines 12 to 16.

The postcondition states that the method will perform no more than old(localVar(1)) recursive
calls (i.e., the value of the register variable in the pre-state of the method) and that on every recursive
call it allocates no more than two instances of class A (one corresponding to line 2 and the other to line
9) and that it will finally allocate one instance of class A (line 12) and another of class C (line 14).

To give an idea about the order of complexity for proving the correctness of this method, 18 proof
obligations were generated with Jack. The proof obligations were automatically proved in Coq using
its standard tactics.

More precise specification We can be more precise in specifying the precondition of a method by
considering what are the field values of an instance, for example. Suppose that we have the method m
as shown in Fig. 4. We assume that in the constructor of the class A no allocations are done. The first
line of the method m initializes one of the fields of field b. Since nothing guarantees that field b is not
null, the execution may terminate with NullPointerException. Depending on the values of
the parameters passed to m, the memory allocated will be different. The precondition establishes what
is the expected space of free resources depending on if the field b is null or not. In particular we do
not require anything for the free memory space in the case when b is null. In the normal postcondition
we state that the method has allocated an object of class A. The exceptional postcondition states that
no allocation is performed if NullpointerException causes the execution termination.



public class D {
public void m( int i) {

if (i > 0) {
new A();
m(i - 1);
new A();

} else {
new C();
new A();

}
}

}

requires (MemUsed+ localVar(1) ∗ 2 ∗ allocInstance(A)+
allocInstance(A)+ allocInstance(C)) ≤ Max

variant localVar(1)
ensures localVar(1) ≥ 0

∧
MemUsed <= old(MemUsed) + old(localVar(1)) ∗ 2 ∗ allocInstance(A)+ allocInstance(A)
+allocInstance(C))

public void m()
//local variable loaded on
//the operand stack of method m
0 load 1
// if localVar(1) <= 0 jump
1 ifle 12
2 new <A> // here localVar(1) > 0
//set MemUsed = MemUsed + allocInstance(A)
3 invokespecial <A.<init>>
4 aload 0
5 iload 1
6 iconst 1
//localVar(1) decremented with 1
7 isub
// recursive call with the new value of localVar(1)
8 invokevirtual <D.m>//
9 new <A>
//set MemUsed = MemUsed + allocInstance(A)
10 invokespecial <A.<init>>
11 goto 16
//target of the jump at 1
12 new <A>
//set MemUsed = MemUsed + allocInstance(A)
13 invokespecial <A.<init>>
14 new <C>
//set MemUsed = MemUsed + allocInstance(C)
15 invokespecial <C.<init>>
16 return

Fig. 3. EXAMPLE OF A RECURSIVE METHOD



4 Inferring memory allocation for methods

In the previous section, we have described how the memory consumption of a program can be modeled
in BML and verified using an appropriate verification environment. While our examples illustrate the
benefits of our approach, especially regarding the precision of the analysis, the applicability of our
method is hampered by the cost of providing the annotations manually. In order to reduce the burden
of manually annotating the program, one can rely on annotation assistants that infer automatically some
of the program annotations (indeed such assistants already exist for loop invariants, loop variants, or
class invariants). In this section, we describe an implementation of an annotation assistant dedicated to
the analysis of memory consumption, and illustrate its functioning on an example.

4.1 Annotation assistant

The user must provide annotations about the memory required to create objects of the given classes.
The variants for each loop may be given by the user or be synthesized through appropriate mechanisms.
Based on this information, the annotation assistant inserts the ghost assignments on appropriate places,
and then computes recursively the memory allocated on each loop and method. A pseudo-code of the
algorithm for inferring an upper bound for method allocations is given in Fig. 5. Essentially, it finds
the maximal memory that can be allocated in a method by exploring all its possible execution path.
The algorithm computes the set of blocks contained in a loop, the loop entry block and the set of end
blocks of a loop; see Section 10 of [5] for a description of the algorithms used.
The auxiliary function allocPath(·), which infers the maximal allocations done by the set of execution
paths ending with the same return instruction, is given in Fig. 6. Inferring the memory allocated
inside loops is done by the function alloc loop path(·, ·), which is invoked by allocPath whenever
the current instruction belong to a loop. The specification of the function is shown in Fig. 7.
The annotation assistant currently synthesize only simple memory policies (i.e., whenever the memory
consumption policy does not depend on the values of inputs). Furthermore, it does not deal with arrays,
subroutines, nor exceptions. Our approach may be extended to treat such cases (see the discussion in
Section 6 about how to include arrays in our analysis). For sake of simplicity, we have also restricted

requires localVar(1)! = null⇒
MemUsed+ allocInstance(A) ≤ Max

modifies MemUsed
ensures MemUsed ≤ old(MemUsed) + allocInstance(A)
exsures(NullPointerException) MemUsed == old(MemUsed)

0 aload 0
1 getfield<C.b>
2 iload 2
3 putfield <B.i>
4 new <A>
//set MemUsed = MemUsed +

allocInstance(A)
5 dup
6 invokespecial <A.<init>>
7 astore 1
8 return

public class C {
B b;
public void m(A a, int i) {

b.i = i ;
a = new A();

}
}

Fig. 4. EXAMPLE OF A METHOD WITH POSSIBLE EXCEPTIONAL TERMINATION



function methodConsumption(.)
Input: Bytecode of a method m.
Output: Upper bound of the memory allocated by m.
Body:

1. Detect all the loops in m;
2. For every loop l determine loopSet(l), entry(l) and loopEndSet();
3. Apply the function alloc to each instruction ik, such that ik = return;
4. Take the maximum of the results given in the previous step:
maxik=returnallocPath(ik).

Fig. 5. INFERENCE ALGORITHM

allocPath(is) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

alloc instr(is) if is has no predecessors

loopConsumption(entry(l))
+
maxik∈preds(is)−loopEndSet(l)(allocPath(ik))

if is ∈ loopSet(l)

alloc instr(is)
+
maxik∈preds(is)(allocPath(ik))

else

Fig. 6. DEFINITION OF THE FUNCTION allocPath(is)

alloc loop path(entry(l), is) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

alloc instr(entry(l)) if is = entry(l)

loopConsumption(entry(l′))
+
maxik∈preds(entry(l′))−loopEndSet(l’)(alloc loop path(entry(l), ik))

if is ∈ loopSet(l’)
l’ is nested in l

alloc instr(is)
+
maxik∈preds(is)(alloc loop path(entry(l), ik))

else

Fig. 7. DEFINITION OF THE FUNCTION alloc loop path(entry(l), is)

the loop analysis only to those with a unique entry point, which is the case for code produced by
non-optimizing compilers. A pre-analysis could give us all the entry points of more general loops, for
instance by the algorithms given in [9]; our approach may be thus applied straightforwardly.

4.2 Example

Let us consider the bytecode given in Fig. 8, which is a simplified version of the bytecode corre-
sponding to the source code given in the right of the figure. For simplicity of presentation, we do not



show all the instructions (the result of the inference procedure is not affected). Method m has two
branching instructions, where two objects are created: one instance of class A and another of class
B. Our inference algorithm gives that methodConsumption(m) = allocInstance(A) +
methodConsumption(A.init)+allocInstance(B)+methodConsumption(B.init).
Due to limitation on space, we do not explain the details of such inference, which is given in Fig. 9 (ik
refers to the bytecode instruction at position k).

0 aload 1
1 ifnonnull 6
2 new <A>
...
4 invokespecial <A.<init>>
6 aload 2
7 ifnonnull 12
8 new <B>
...
10 invokespecial <B.<init>>
...
12 return

public void m(A a , B b ) {
if ( a == null ) {

a = new A();
}
if (b == null) {

b = new B();
}

}

Fig. 8. EXAMPLE

5 Related work

The use of type systems has been a useful tool for guaranteeing that well typed programs run within
stated space-bounds. Previous work along these lines defined typed assembly languages, inspired on
[22] while others emphasised the use of type systems for functional languages [4, 16, 18].
For instance in [2] the authors present a first-order linearly typed assembly language which allows the
safe reuse of heap space for elements of different types. The idea is to design a family of assembly
languages which have high-level typing features (e.g. the use of a special diamond resource type)
which are used to express resource bound constraints. Closely related to the previous-mentioned paper,
[30] describes a type theory for certified code, in which type safety guarantees cooperation with a
mechanism to limit the CPU usage of untrusted code. Another recent work is [1] where the resource
bounds problem is studied in a simple stack machine. The authors show how to perform type, size and
termination verifications at the level of the byte-code.
An automatic heap space usage static analysis for first-order functional programs is given in [17]. The
analysis both determines the amount of free cells necessary before execution as well as a safe (under)-
estimate of the size of a free-list after successful execution of a function. These numbers are obtained
as solutions to a set of linear programming (LP) constraints derived from the program text. Automatic
inference is obtained by using standard polynomial-time algorithms for solving LP constraints. The
correctness of the analysis is proved with respect to an operational semantics that explicitly keeps
track of the memory structure and the number of free cells.
A logic for reasoning about resource consumption certificates of higher-order functions is defined in
[12]. The certificate of a function provides an over-approximation of the execution time of a call to



methodConsumption(m)
=
allocPath(i12)
= maxik∈preds(112)(allocPath(ik)) + alloc instr(i12)
{alloc instr(i12) = 0, preds(ii12) = {i10, i7}}
= max(allocPath(i10), allocPath(i7))
= max(maxik∈preds(i10)(allocPath(ik)) + alloc instr(i10),

maxik∈preds(i7)(allocPath(ik)) + alloc instr(i7)
)
{preds(i10) = {i8}, preds(i7) = {i6}}
= max(allocPath(i8) + alloc instr(i10), allocPath(i6) + alloc instr(i7))
{alloc instr(i10) = methodConsumption(B.init), alloc instr(i7) = 0}
= max(maxik∈preds(i8)(allocPath(ik)) + alloc instr(i8) + methodConsumption(B.init),

maxik∈preds(i6)(allocPath(ik)) + alloc instr(i6)
)
{preds(i8) = {i7}, preds(i6) = {i4}}
= max(allocPath(i7) + +alloc instr(i8) + methodConsumption(B.init),

allocPath(i4) + alloc instr(i6)
)
{alloc instr(i8) = allocInstance(B), alloc instr(i6) = 0}
= max(maxik∈preds(i7)(allocPath(ik)) + alloc instr(i7) + allocInstance(B)+ methodConsumption(B.init),

maxik∈preds(i4)(allocPath(ik)) + alloc instr(i4)
)
{preds(i7) = {i6}, preds(i4) = {i2}}
= max(allocPath(i6) + alloc instr(i7) + allocInstance(B)+ methodConsumption(B.init),

allocPath(i2) + alloc instr(i4)
)
{alloc instr(i7) = 0, alloc instr(i4) = methodConsumption(A.init)}
= max(maxik∈preds(i6)(allocPath(ik)) + alloc instr(i6) + allocInstance(B)+ methodConsumption(B.init),

maxik∈preds(i2)(allocPath(ik) + alloc instr(i2) + methodConsumption(A.init)
)

= {preds(i6) = {i4, i1}, preds(i2) = {i1}}
= max(max(allocPath(i4), allocPath(i1)) + alloc instr(i6) + allocInstance(B)+ methodConsumption(B.init),

allocPath(i1) + alloc instr(i2) + methodConsumption(A.init)
)
{alloc instr(i6) = 0, alloc instr(i2) = allocInstance(A)}
= max(max(maxik∈preds(i4)(allocPath(ik)) + alloc instr(i4),

maxik∈preds(i1)(allocPath(ik)) + alloc instr(i1)
) + allocInstance(B)+ methodConsumption(B.init),
allocPath(i0) + allocInstance(A)+ methodConsumption(A.init),

)
{preds(i4) = {i2}, preds(i1) = {i0}}
{allocPath(i0) = alloc instr(i0) = 0, alloc instr(i1) = 0, alloc instr(i4) = methodConsumption(A.init)}
= max(max(allocPath(i2) + methodConsumption(A.init),

allocPath(i0)
) + allocInstance(B)+ methodConsumption(B.init),
allocInstance(A)+ methodConsumption(A.init),

)
{allocPath(i0) = alloc instr(i0) = 0}
= max(allocPath(i2) + methodConsumption(A.init)+ allocInstance(B)+ methodConsumption(B.init),

allocInstance(A)+ methodConsumption(A.init),
)

. . .
= max(allocInstance(A)+ methodConsumption(A.init)+ allocInstance(B)+ methodConsumption(B.init)

allocInstance(A)+ methodConsumption(A.init),
)

= allocInstance(A)+ methodConsumption(A.init)+ allocInstance(B)+ methodConsumption(B.init)

Fig. 9. INFERENCE OF THE MEMORY ALLOCATED BY THE METHOD m OF FIG. 8



the function. The logic only defines what is a correct deduction of a certificate and has no inference
algorithm associated with it. Although the logic is about computation time the authors claim it could
be extended to measure memory consumption.
Another mechanical verification of a byte code language is [9], where a constraint-based algorithm is
presented to check the existence of new instructions inside intra- and inter-procedural loops. It is com-
pletely formalised in Coq and a certified analyser is obtained using Coq’s extraction mechanism. The
time complexity of such analysis performs quite good but the auxiliary memory used does not allow
it to be on-card. Their analysis is less precise than ours, since they work on an abstraction of the exe-
cution traces not considering the number of times a cycle is iterated (there are no annotations). Along
these lines, a similar approach has been followed by [26]; no mechanical proof nor implementation is
provided in such work.
Other related research direction concerns runtime memory analysis. The work [15] presents a method
for analysing, monitoring and controlling dynamic memory allocation, using pointer and scope analy-
sis. By instrumenting the source code they control memory allocation at run-time. In order to guarantee
the desired memory allocation property, in [13] is implemented a runtime monitor to control the execu-
tion of a Java Card applet. The applet code is instrumented: a call to a monitor method is added before
a new instruction. Such monitor method has as parameter the size of the allocation request and it halts
the execution of the applet if a predefined allocation bound is exceeded.
There exists research on the definition of bytecode logics. In [24] a Hoare logics for bytecode is
defined. Yet the approach there is based on searching structure in the bytecode programs which is not
very natural for untsructured bytecode programs. In [31] a Hoare bytecode logics is defined in terms of
weakest precondition calculus over the Jinja language (subset of Java). They use the logics for verifying
bytecode against arithmetic overflow.
Upon completion of this work we became aware of a recent, and still unpublished, result along the
same lines of ours. Indeed, a hybrid (i.e., static and dynamic) resource bound checker for an imperative
language designed to admit decidable verification is presented in [10]. The verifier is based on a variant
of Dijkstra’s weakest precondition calculus using ”generalized predicates”, which keeps track of the
resource units available. Besides adding loop invariants, pre- and post-conditions, the programmer
must insert ”acquires” annotations to reserve the resource units to be consumed. Our approach has
the advantage of treating recursive methods and exceptions, not taken into account in [10]. Another
difference with our work is that we operate on the bytecode instead of on the source code.

6 Conclusion

Program logics have traditionally been used to verify functional properties of applications, but we
have shown that such logics are also appropriate to enforce security properties including memory
consumption policies. We have shown that program logics complement nicely existing methods to
verify memory consumption, over which they are superior in terms of the precision of the analysis
(and inferior in terms of automation).
We intend to pursue our work in three directions. Firstly, we would like to extend our approach to
arrays. In principle, it should be reasonably easy to extend the verification method to arrays; however,
it seems more complicated to extend our inference algorithm to arrays. The main difficulty here is to
provide an estimate of the size of an array, as it is given by the top value on the operand stack at the
time of its creation. Our intuition is that this can be done using an abstract interpretation or a symbolic
evaluation of the program. If we look at the example code below (in source code):

void m(int s){
int len = s;



int[] i = new int[len]
}

where len is a local variable to the method, one can infer by symbolic computation that its value is the
value of the method parameter. Thus the method can be given the precondition Mem + s <= Max.
In a similar line of work, we would like to extend our results to concurrency using recent advances
in program logics for multi-threaded Java programs [25]. Providing an appropriate treatment of arrays
and multi-threading is an important step towards applying our results to mobile phone applications.
Secondly, we would like to adapt our approach to account for explicit memory management. More
precisely, we would like to consider an extended language with a special instruction free(o) that
deallocates the object o, and establish the correctness of our method under the assumption that deal-
location is correct, i.e. that the object o is not reachable from the program point where free(o) is
inserted. By combining our approach with existing compile-time analysis that infers for each program
point which objects are not reachable, we should be able to provide more precise estimates of memory
consumption.
Thirdly, we intend to apply our technique to other resources such as communication channels, band-
width, and power consumption, as well as to more refined analyses that distinguish between different
kinds of memory, such as RAM or non-volatile EEPROM. As suggested by the MRG project [3], it
seems also interesting to consider policies that enforce limits on the interaction between the program
and its environment, for example w.r.t. the number of system calls or the bounds on parameters passed
to them.

References

1. R.M. Amadio, S. Coupet-Grimal, S. Dal Zilio, and L. Jakubiec. A Functional Scenario for Byte-
code Verification of Resource Bounds. Research report 17-2004, LIF, Marseille, France, 2004.

2. D. Aspinall and A. Compagnoni. Heap-bounded assembly language. J. Autom. Reason., 31(3-
4):261–302, 2003.

3. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource Guarantees
for Smart Devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors,
Proceedings of CASSIS’04, volume 3362 of LNCS, pages 1–27, 2005.

4. D. Aspinall and M. Hofmann. Another type system for in-place update. In ESOP, volume 2305
of LNCS, pages 36–52, 2002.

5. J. Ullman A.V. Aho, R. Sethi. Compilers Principles, Techniques and Tools. Addison-Wesley
Publiching Company, 1986.

6. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-Composition. In R. Foc-
cardi, editor, Proceedings of CSFW’04, pages 100–114. IEEE Press, 2004.

7. L. Burdy and M. Pavlova. Annotation carrying code. Manuscript, 2004.
8. L. Burdy, A. Requet, and J.-L. Lanet. Java Applet Correctness: a Developer-Oriented Approach.

In K. Araki, S. Gnesi, and D. Mandrioli, editors, Proceedings of FME’03, number 2805 in LNCS,
pages 422–439. Springer, 2003.

9. D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified memory usage analysis. Submit-
ted, 2005.

10. A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula. Enforcing resource bounds via static
verification of dynamic checks. To appear, 2005.

11. Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0, January 2004.
12. K. Crary and S. Weirich. Resource bound certification. In Proceedings of the 27th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 184–198. ACM Press, 2000.



13. L.-A. Fredlund. Guaranteeing correctness properties of a java card applet. In RV’04, ENTCS,
2004.

14. S. N. Freund and J. C. Mitchell. A Type System for the Java Bytecode Language and Verifier.
Journal of Automated Reasoning, 30(3-4):271–321, December 2003.

15. D. Garbervetsky, C. Nakhli, S. Yovine, and H. Zorgati. Program instrumentation and run-time
analysis of scoped memory in java. In RV’04, ENCS, 2004.

16. M. Hofmann. A type system for bounded space and functional in-place update. Nordic Journal of
Computing, 7(4):258–289, 2000.

17. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs.
In Proc. of 30th ACM Symp. on Principles of Programming Languages (POPL’03), pages 185–
197. ACM Press, 2003.

18. J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space: Towards em-
bedded ML programming. In International Conference on Functional Programming, pages 70–81,
1999.

19. G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer Science, 298(3):583–
626, April 2002.

20. G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML Reference
Manual.

21. T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition. 1999.
22. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly language. ACM

Trans. Program. Lang. Syst., 21(3):527–568, 1999.
23. M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing high-level security

properties for applets. In P. Paradinas and J.-J. Quisquater, editors, Proceedings of CARDIS’04.
Kluwer, 2004.

24. C.L. Quigley. A programming logic for java bytecode programs. In Proceedings of the 16th
International Conference on Theorem Proving in Higher Order Logics, volume 2758 of Lecture
Notes in Computer Science. Springer-Verlag, 2003.

25. E. Rodrıiguez, M.B. Dwyer, C. Flanagan, J. Hatcliff, G.T. Leavens, and Robby. Extending sequen-
tial specification techniques for modular specification and verification of multi-threaded programs.
In ECOOP 2005, 2005. To appear.

26. G. Schneider. A constraint-based algorithm for analysing memory usage on java cards. Technical
Report RR-5440, INRIA, December 2004.

27. N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker: A Reference Manual. Com-
puter Science Laboratory, SRI International, February 1993. Supplemented with the PVS2 Quick
Reference Manual, 1997.

28. I. Siveroni and C. Hankin. A proposal for the jcvmle operational semantics, 2001.
29. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine - Definition, Verification,

Validation. Springer, 2001.
30. J. C. Vanderwaart and K. Crary. Foundational typed assembly language for grid computing. Tech-

nical Report CMU-CS-04-104, CMU, February 2004.
31. M. Wildmoser and T. Nipkow. Asserting bytecode safety. In Proceedings of the 15th European

Symposium on Programming (ESOP05), 2005. To appear.


