
Elimination of ghost variables in program logics

Martin Hofmann and Mariela Pavlova

Institut für Informatik
LMU München

Abstract. Ghost variables are assignable variables that appear in pro-
gram annotations but do not correspond to physical entities. They are
used to facilitate specification and verification, e.g., by using a ghost
variable to count the number of iterations of a loop, and also to express
extra-functional behaviours. In this paper we give a formal model of
ghost variables and show how they can be eliminated from specifications
and proofs in a compositional and automatic way. Thus, with the results
of this paper ghost variables can be seen as a specification pattern rather
than a primitive notion.

1 Introduction

With the fast development of programming systems, the requirements for soft-
ware quality also become more complex. In reply to this, the techniques for
program verification also evolve. This is the case also for modern specification
languages which must support a variety of features in order to be expressive
enough to deal with such complex program properties. A typical example is
JML (short for Java Modeling Language), a design by contract specification lan-
guage tailored to Java programs. JML has proved its utility in several industrial
case studies [10, 7]. JML syntax is very close to the syntax of Java and it actually
supports all Java expressions. JML has also other specification constructs which
do not have a counterpart in the Java language. While program logics and spec-
ification languages help in the development of correct code they have also been
proposed as a vehicle for proof-carrying code [9, 1–3] where clients are willing to
run code supplied by untrusted and possibly malicious code producers provided
the code comes equipped with a certificate in the form of a logical proof that cer-
tain security policies are respected. In this case, the underlying logical formalism
must have a very solid semantic basis so as to prevent inadvertent or malicious
exploitation. On the one hand, the logic must be shown sound with respect to
some well-defined semantics; on the other hand, the meaning of specifications
must be as clear as possible so as to minimise the risk of formally correct proofs
which nevertheless establish not quite the intuitively intended property. This
calls for a rigorous assessment of all the features employed in a specification
language; in this paper we do this for JML’s ghost variables.

In brief, a ghost variable is an assignable variable that does not appear in
the executable code but only in assertions and specifications. Accordingly, anno-
tated code is allowed to contain ghost statements that assign into ghost variables.

These ghost statements are not actually executed but specifications and asser-
tions involving ghost variables are understood “as if” the ghost statements were
executed whenever reached.

Ghosts in internal assertions First, they can be used for an internal method
annotation in order to facilitate the program verification process. For instance,
in JML ghost variables can be used in an assertion to refer to the value of a
program variable at some particular program point different from the point where
the assertion is declared and must hold. Concretely, we can use for instance, a
ghost variable to express that a program variable is not changed by a loop
execution by assigning to it prior to the loop or in order to count the number
of loop iterations. Such use of ghost variables usually makes them appear in
intra method assertions like loop invariants or assertions at a particular program
point but does not introduce them in the contract of a method (i.e. the pre- and
postcondition). For illustration, we consider an example which calculates the
double of the variable x which is stored in the variable y:
//@ensures 2∗\ old (x) = y − \ old (y)

y=0;
//@ghost i n t z ;
//@set z = 0 ;
// @loop invar iant 2∗(z − \ old (z))= y−\old (y) && z+x = \ old (z)+\old (x)
whi le (x >= 0) {

x = x − 1 ;
y = y + 2 ;
//@set z = z + 1;}

The desired property of this code fragment is introduced by the keyword
ensures and states that y has accumulated the double of the initial value of x,
i.e. \old(x). In the specification, we have used the ghost variable z. We may
notice that z is declared in Java comments as is the case for any kind of JML
specification. Its value at the beginning of every iteration corresponds to the
number of loop iterations done so far. Thus, before the loop, z is initialised to
be 0 and at the end of the loop body, it is incremented. Note that z is used
to describe the invariant relation between x and y which holds at the borders
of every loop iteration. On the contrary, the postcondition states the desired
relation between the initial value of x and the final value of y without the use
of the ghost z. Actually, the ghost variable z helps only to proving the program
correct but not to express the program externally visible specification, i.e. its
postcondition.

Expressing extra-functional code properties with ghosts. Secondly, ghost variables
may be used to express extra-functional properties about program behavior. In
such cases, ghost variables may become part of the method contract. For ex-
ample, they may serve to model the memory consumption of a program. To
illustrate this, we shall consider a fragment of a Java class with two ghost vari-
ables - MEM which counts the number of allocated heap space and MAX which
models the maximal amount of heap space that can be allocated by the program:
//@ pub l i c s t a t i c ghost i n t MEM;
//@ pub l i c s t a t i c f i n a l ghost i n t MAX;

//@ r e qu i r e s MEM + s i z e (A) <= MAX

//@ ensures MEM − \ old (MEM) <= s i z e (A)
pub l i c void m () {

A a = new A ()
//@ se t MEM = MEM + s i z e (A)}

The precondition (introduced by the keyword requires) of method m states
that the memory used so far (i.e. the value of the ghost variable MEM) with the
allocated memory in the method (size (A) is the memory allocated by an object
of class A) does not exceed the allowed limit (the value of the variable MAX).
The postcondition states that the method allocates no more than the size of an
object of type A. Finally, in the method body, the ghost variable MEM is set
to its new value. We notice that the relationship between the value of the ghost
variable MEM and the actual memory consumption of the method is implicit in
the annotation policy, i.e., lies in the fact that MEM is incremented precisely
when memory is being allocated and nowhere else and not modified in any other
way either.

Therefore, ghost variables are particularly suitable when the code annotation
is completely transparent, for example, for software auditing performed interac-
tively over the source code, i.e. in the process where a code producer verifies
if the written code respects their initial intentions. In such situations the good
intuitions that ghost variables provide as opposed, perhaps, to more functional
or abstract ways of specification are fully brought to bear.

Ghost variables have also been used to indicate when class invariants are
required to hold and may be relied upon [12] and as a means to enforce a par-
ticular order in which API methods should be invoked [11]. While our method
also applies to those usages of ghost variables we limit ourselves to the former
two in this paper for lack of space.

A critique of ghost variables As we said earlier, ghost variables lack a clear for-
mal meaning. Usually, program semantics is expressed as a transition between
states where states represent the values related to program variables. For the
case of JML, verification tools like esc/java and Jack treat ghost variables as
ordinary program variables. While this works in order to generate verification
conditions and justify some proof rules, it is unsatisfactory if we treat program
semantics as primary and program verification as a means to an end. To appre-
ciate this point notice that the formal operational semantics of a language, e.g.
Java Bytecode, can in principle not be proven adequate. One can compare it to
other formalisations of the semantics, e.g. as a virtual machine, but ultimately it
is an unprovable axiom that the formal semantics does indeed adequately reflect
the physical effect of a program. For this reason, we feel that program semantics
should be as simple as possible and certainly not be modelled to suit a particular
verification methodology. Its primary aim should be to make the correspondence
with the real world as evident as possible.

Thus, we find that one should give meaning to ghost variables without alter-
ing the operational semantics of the language not even by adding non-existent
variables to its memory model.

There is a second problem with ghost variables that shows up only when they
are used to track extra-functional program properties like memory consumption

above, which is to do with the fact that the intended as opposed to the formal
meaning of a contract then is contingent on respecting a particular code anno-
tation policy. For the sake of a concrete example, suppose that we have a mobile
code scenario in which a client system with constrained memory resources must
receive a new component which is the class C implementing the interface I pub-
lished by the client. Moreover, we suppose that the policy of the client system
requires that the implementation of the interface I must not allocate memory
in the heap. As in the upper example, the client policy is expressed via the the
ghost variable MEM which keeps track of the size of the allocated memory in
every program state and thus, the component code and its specification can be :
pub l i c c l a s s C implements I {

pr i va t e count ;
// @requires MEM = 0 ;
//@ensures MEM = 0 ;
pub l i c void m() {

count ++ ;}}

In this case, of course nothing bad happens as the only method in class
C does not allocate memory and it definitely respects the client requirements
for not allocating memory. However, for some reason (deliberately or not), the
implementor could have written also a malicious code (creates an object) with
a wrong specification (does not increment the variable MEM):
pub l i c c l a s s C implements I {

pr i va t e count ;
// @requires MEM = 0 ;
//@ensures MEM = 0 ;
pub l i c void m() {

count ++ ;
A a = new A() ;}}

In the presence of a standard verification calculus which treats ghost variables
as ordinary program variables, the verification of this last example will succeed
although the code allocates new memory cells and thus, violates the client policy.

One could argue that this could be fixed by decreeing that a “certificate”
of the resource property in question comprises not only the formal proof of
the contract but also the code itself which should be manually or automatically
inspected so as to ensure that ghost assignments are inserted next to all memory
allocating instructions and only there.

Note, however, that arguing that such a policy does capture the intended
resource property is again part of the semantic gap outside the realm of formal
verification and must be left to human inspection and ultimate belief. Especially
in situations where we assume the existence of malicious code producers who
try to fool the code consumer with faked certificates we would prefer to reduce
resorting to such non-rigorous methods to a bare minimum. Of course, if we are
interested in extra-functional code properties we have to at some point formally
define what the observable extra-functional effects of a program are, such as
memory usage, time consumptions, consumption of other resources, etc. How-
ever, we argue that this formalisation should be done openly by a trusted body
of experts, and carefully argued by means of examples, test cases, etc. In brief, it
is a procedure that should not be done over and over again for each verification
tool or method.

We therefore argue that once we have a program semantics and program logic
that can speak about extra-functional prperties it will no longer be necessary to

make reference to ghost variables in contracts so that we are thus brought back
to essentially the first usage of ghost variables, namely as an auxiliary device
employed to facilitate a verification.

1.1 Contributions of this paper

In this paper we demonstrate that ghost variables can be eliminated from formal
proofs in a program logic in such a way that on the one hand the same outside
contracts will be proved and on the other hand the intuitive ease that ghost
variables afford is retained.

We do this by showing that proofs in a program logic with ghost variables
can be translated automatically and compositionally into proofs of the same
specifications in a logic that does not use ghost variables. In other words, ghost
variables become a definitional extension of ordinary program logics.

In order to focus on salient aspects we study the problem of ghost vari-
ables using first a simple, unstructured while language specified by a big-step
operational semantics and reasoned about in a VDM-style program logic using
I/O-relations as assertions. The proof rules of the program logic are such that
whenever C : P is provable then whenever S, T are initial, respectively final
states of a terminating run of program C then P (S, T) holds.

Elimination of ghost variables We then consider programs Cg annotated with
assignments to ghost variables and introduce ad-hoc proof rules for deducing
statements of the form Cg : Pg where, now, Pg is a relations between pairs of
states: (initial state, initial ghost state) and (final state, final ghost state). The
proof rules are motivated by the intuitive meaning of ghost variables but are not
formally validated against any kind of operational semantics of ghost variables.
Instead, our first result shows that if we have a derivation of Cg : Pg then we can
effectively find a derivation of C : P where C is the program Cg with all ghost
instructions removed and where P (S, T) ⇐⇒ ∀Sg.∃Tg.Pg((S, Sg), (T, Tg)). In
particular, when Pg((S, Sg), (T, Tg)) ⇐⇒ Q(S, T) for some I/O-relation Q
then P ⇐⇒ Q. This models the case where ghost variables do not appear
in the outside contract, but possible in internal assertions, e.g., as invariants
in invocations of the proof rule for while-loops. The qualification “effective”
of the announced proof transformation means that the transformation is by
induction on proofs and does not require inventing of new invariants, assertions,
mathematical proofs of side condition or similar, and is thus fully automatic.
Without this extra qualification a result like the one we announced could be
trivially true by appealing to a completeness result for the program logic.

Extension to extra-functional properties We then extend our approach to encom-
pass extra-functional properties. In order to model these we extend our language
by external procedures that have no effect on the store but do cause an event
to occur that is visible from the outside. Formally, we assume a set Extern of
external functions and decree that for f ∈ Extern and e an integer expression
we can form the command f(e) which has the same effect as Skip but causes

the event (f, n) to occur where n is the current value of expression e. Thus, an
event is an element of Event := Extern×Z.

Now that programs can cause observable effects already during their exe-
cution we can no longer semantically identify all nonterminating programs as
is typically done by big step operational semantics. Instead we define for each
program C as relation C→ where S

C,ev→ S′ means that when we start program
C in initial state S then during its execution there is a point at which we have
reached state S′ and up to that point the events ev ∈ Event∗ have occurred.

We then consider a program logic that derives assertions of the form C :
P, I with the intention that whenever S

C,ev→ S′ then I(S, ev) will hold (the
“system invariant”) and if, moreover, it happens that S′ is a terminal state, then
P (S, ev , S′) (the “contract”) will hold, too. Both invariant and contract may
thus speak about observable events occurred; functional properties are specified
in the contract alone.

In this extension of the program logic we can thus assert extra-functional
properties without using ghost variables. We show that, again, ghost variables
can be eliminated from proofs of specifications that do not themselves mention
ghost variables.

Suppose now that we have a proof that program C satisifies the assertion
“MEM = 0” where MEM is a ghost variable purportedly counting the number of
memory allocations made. As argued above such a proof ought to be accompa-
nied by a formal argument explaining that the ghost variable MEM really does
reflect the number allocations made. In our resource-enhanced logic this could
be formalised as a proof of the assertion MEM = mem(ev) where mem(ev) is
the number of allocation events in execution trace tr. Combining the two proofs
then yields a proof of the assertion mem(ev) = 0 to which elimination of ghost
variables applies.

Coq development All definitions, theorems, proofs have been carried out within
the Coq theorem prover and are available for download at www.tcs.ifi.lmu.de/ mhof-
mann/fsttcscoq.tgz.

Acknowledgement We acknowledge support by the EU integrated project MO-
BIUS IST 15905.

2 Preliminaries

2.1 Simple programming language

We shall consider a simple programming language with the traditional constructs
assignment, conditional, loop, sequence and skip statements:

Inductive stmt : Type :=
| Assign : var → expr → stmt
| If : expr → stmt → stmt → stmt
| While : expr → stmt → stmt

| Sseq : stmt → stmt → stmt
| Skip : stmt.

Here and in the rest of the paper, we shall use a Coq syntax for introducing
definitions. The upper Coq code is an inductive type with several constructors
and every one of them correspond to the different statements of the language.
This definition corresponds to the following more common notation:

stmt :=
| Assign (var expr)
| If (expr stmt stmt)

. . .

Thus, an expression in the language are program variables, integer constants
and arithmetic expressions but here we do not give explicitly their syntax. Values
in our language are integers. Our formal Coq development comprises recursive
methods; we elide them here for the sake of simplicity. We give a standard big
step operational semantics which characterises the terminating executions of
program statements. It is defined as an relation between initial and final state of
the execution of statement where states are mappings from variables to values:

exec t : state → stmt → state → Prop
The inductive definition is of exec t is given in the appendix.

2.2 Logic for partial correctness for a simple language

The partial correctness logic is formulated in a VDM style. Differently from the
Hoare style rules, where assertions are functions of the current state to a boolean
value, in VDM, program assertions are functions of the initial and final state of
a program statement:

Definition assertion := state → state → Prop.
This choice avoids the use of auxiliary variables which is necessary in Hoare

logic used for relating the values of variables in different states, see [8]. The logic
is encoded in Coq as an inductive predicate

Inductive RULET : stmt → assertion → Prop

where we find one constructor for each proof rule, see Appendix.
The soundness theorem shows correctness of the logic w.r.t. the operational

semantics shown above and is formulated as follows:

Lemma correct : ∀ (st : stmt) (s1 s2 : state),
exec t s1 st s2 →∀ (post : assertion), RULE st post → post s1 s2.

3 Logic for partial correctness for a language with ghost
variables

We now consider an extension of the simple language with ghost variables. To
that end, we assume a set of ghost variables gVar disjoint from the set of
program variables var.

The language, formalised as an inductive type Gstmt (see Appendix), then
has the same constructs as the original language (Stmt) plus a new construct,
GAssign, allowing one to assign to ghost variables. Ghost variables are not al-
lowed to appear in guards of loops or case distinctions nor may they be written
into ordinary variables so as not to influence the flow of control in any way.

Properties of programs with ghost variables should certainly talk about the
values of ghost variables. Thus, ghost assertions Gassertion are mappings from
the initial and final program states and also from the initial and final ghost
states to a truth value:

Definition Gassertion := state → gState → state → gState → Prop.

The logic destinated to the ghost language then takes the form of an inductive
definition:

Inductive GRULE : Gstmt → Gassertion → Prop

The rules for the ghost language are quite the same as the rules for the
standard simple language except that those are defined for assertions with ghost
variables. For instance, the rule for program assignment in the type GRULET is
basically the same as its counterpart RULET modulo the presence of the ghost
states:

GAssignRule: ∀ x e (post : Gassertion),
(∀ (s1 s2 : state) (g1 g2 : gState),
g1 = g2 → s2 = update s1 x (eval expr s1 e) → post s1 g1 s2 g2) →
GRULE (GAssign x e) post

The only substantial difference between the logic for standard simple lan-
guage and its ghost extension is the rule for ghost assignment (which does not
have an analogue in the standard logic):

GSetRule : ∀ x (e : gExpr) (post : Gassertion),
(∀ (s1 s2 : state) (g1 g2 : gState),

g2 = gUpdate g1 x (gEval expr s1 g1 e) → s1 = s2 →
post s1 g1 s2 g2) → GRULE (GSet x e) post.

3.1 Example

Let us return back to our first example in the introductory part which calculates
the double of the input variable x.

If we imagine that that program is a code to be sent over the web to another
computer system along with its certificate, the code producer may tend to use
ghosts and a ghost logical system (as shown in the example) as those provide
more intuition in the annotation and in the proof process eventhough ghost
variables do not have a clear meaning in the operational semantics presented in
Section 2.2. However, the client system would be most probably equipped with
a verification algorithm sound w.r.t. to a rigorous operational semantics (e.g.

the operational semantics presented in Section 2.1) as for instance, the standard
logic from Section 2.2. A Proof Carrying Code architecture will hardly work if
the code producer uses one proof technology for the certificate generation and
the client uses another one for checking the certificate. However, there exists
a relation between the two logical systems which allows for this. The relation
shows that if a certificate in the ghost logic exists then a certificate into the
standard logic also exists.

3.2 Relation between ghost and standard logic

In the sequel we use a function transform : Gstmt → Stmt that returns the
underlying standard program by replacing all ghost assignments with skips.

Next, with each ghost assertion ψ (of type Gassertion) we associate a stan-
dard assertion transform(ψ) (of type assertion) by

transform(ψ) := λσ0, σ1.∀σg
0 ,∃σ

g
1 , ψ σ0 σ

g
0 σ1 σ

g
1

The formal statement about the relation of the two logical systems then says that
a proof in the ghost logic (GRULET) that a statement stmt of the ghost language
meets the ghost assertion ψ can be transformed into a proof in the standard logic
(RULET) that the statement transform(stmt) meets the assertion transform(ψ).

Notice that if ψ does not mention ghost variables then transform(ψ) is equiv-
alent to ψ itself.

The proof of this statement is done by induction over the the ghost logical
rules (GRULET). The curious part of this result is that the respective proof in
the standard logic uses the same loop invariants with the respective quantifica-
tions (universal for the values in the initial state and existential for the values
in the final state) over the ghost variables. Moreover, the established relation
between the ghost and standard logic proposes an algorithm for transformation
of “ghost” specifications into standard specification constructs without ghost
variables.

Since the proof is conducted by induction over proof rules it contains an
algorithm that effectively performs the transformation on the level of proofs.

Returning back to our example which is actually provable with the program
logic GRULET, the respective program and annotation provable in the logic
RULET are the following:
//@ensures y = 2∗\ old (x)

y=0;

// @loop invar iant \ e x i s t s z , y = 2 ∗ z && x = \ old (x) − z
whi le (x >= 0) {

x = x − 1 ;
y = y + 2 ;

}

The new specification does not only quantify the loop invariant over the ghost
variable, but the ghost variable has been completely removed from it. Probably,
turning the specification developer mind to use such universal and existential
quantification is difficult. Actually, the above lemma shows that we can use

ghosts and a ghost logic to construct the program proof of correctness even for
critical applications where the soundness of the logic w.r.t. to a rigorous seman-
tics is important. This is because from such a program proof we can construct
another one in a standard sound logic.

Note that the ghost logic may be used to reason about specifications which
do not necessarily refer to ghost variables. In particular, if a ghost program
and ghost specification but which do not speak about ghosts are provable in
the ghost logic defined with GRULET then their respective counterparts in the
standard programming and specification languages are provable in RULET. This
is actually a conservativity property for the ghost logic w.r.t. the standard logic.
This is a direct consequence from the previous lemma and its formal statement
follows:

Lemma conservative: ∀ (s: Gstmt) (post : assertion),
GRULE s (fun (s1 :state)(g1 :gState)(s2 :state)(g2 :gState) ⇒ post s1 s2) →
RULE (transform s) post.

4 Ghost variables and trace properties

So far, we have seen the meaning of ghost variables w.r.t. a standard partial cor-
rectness. Such formulation basically describes the functional relation between
input/output. In the following sections we sohw how to extend our results to
reasoning about extra-functional properties such as “a program should not allo-
cate more than X memory cells”, “a program should not open nested transac-
tions”, “a program should not open more than X number of files” etc. Indeed,
the practical interest of being able to reason over such extra-functional prop-
erties is evident, especially for critical applications tailored to PDAs or smart
cards [4, 11] or in mobile code scenarios.

An important new feature brought about here is that one can no longer se-
mantically identify all non-terminating programs which we address by axioma-
tising reachable states and adding invariants to specifications as explained in the
Introduction. Formally, we specify the semantics of reachable states of the thus
extended language with the following inductive predicate:

Inductive reach: state → stmt → list event → state → Prop

where reach(σ0, stmt, ev , σ1) means that the execution of stmt started in
state σ0 reaches the state σ1 and produces the list of events ev . The definition
of the predicate reach relies on the notion of terminating executions which is
defined with the following predicate:

Inductive t exec:state → stmt → list event → state → Prop

The predicate t exec is defined standardly in a big step style but this time
it keeps track not only of the initial and final state but also of the list of events
produced during the execution. The defining clauses for both predicates are given
in the Appendix.

The properties which are managed by the trace logic will speak about the
initial state of the statement execution and the trace generated so far. Thus,
trace invariants have the form:

Definition invariant := state → list event → Prop.

The logic which allows to reason over trace properties is defined in Coq as the
inductive type RULER(see Appendix). The definition of RULER uses the logic
for partial correct ness for our language. The latter is defined via the inductive
definition RULET which has the following signature:

Inductive RULET : stmt → assertion → Prop

The inductive predicate RULET defines a standard partial program logic
only that the assertions it manipulates now are defined to depend not only
on the initial and final state but also on the trace of events produced during
execution:

Definition assertion := state → list event → state → Prop.

The soundness statement of the logic requires that if a statement has a proof
in RULER w.r.t. an invariant then every reachable state of the execution of the
statement satisfies the invariant:

Lemma soundReach: ∀ stmt (s1 s2 : state) events,
(reach s1 stmt events s2) →∀ inv, RULER stmt inv → inv s1 events .

The proof of the upper lemma is done by induction over RULER. Note that
because RULER uses the logic RULET for partial correctness its soundness
proof exploits the soundness of RULET .

4.1 Program logic for trace properties and ghost variables

The logic for trace properties tailored to a language with ghost variables is
actually quite the same as the logic for trace properties for a standard language
presented in the previous section. The only difference is that the ghost trace logic
manipulates assertions with ghost variables and the assertion for trace properties
talk about the initial and current values of ghost variables. Thus, the signature
of ghost trace invariants is as follows:

Definition Ginvariant := state → gState → list event → gState → Prop.

Similarly for the case of the trace logic without ghost variables, we also need
to define assertions that are manipulated by the partial ghost logic. Those now
have the signature:

Definition Gassertion := state → gState → list event → state → gState → Prop

4.2 Relation between standard and ghost logics for trace properties

In the presence of event traces, there exists again an effective way for transform-
ing ghost programs, ghost specifications and their proofs into standard programs,
specifications and proofs.

Lemma Relation between standard and ghost trace logics: ∀ (gstmt :Gstmt)
(ginv : Ginvariant),
let stmt := transform gstmt in
let inv := (fun s1 event ⇒ ∀ g1, ∃ g2, ginv s1 g1 event g2) in
RULERG gstmt ginv → RULER stmt inv.

5 Conclusion

We have given a rigorous semantics of ghost variables in terms of a VDM-style
program logic without altering in any way the operational semantics of the lan-
guage which, as we have argued is a source of vulnerability for proof-carrying
code architectures since it escapes formal validation. We have also argued that
ghost variables can be avoided in end-to-end specifications of extra-functional
properties provided the program logic is given the ability to speak about traces of
observable events. Dynamic logic also offers some of the features that we propose:
asserting that some extra-functional property holds throughout the execution
[6] and the use of existential quantification in situations where ghost variables
might appear [5]. The fact that proofs involving ghost variables (of terminating
and non-terminating programs) can always and automatically be translated into
proofs without ghost variables appears here for the first time and is the main
technical contribution of this paper. We found our approach very robust and did
not experience obstacles with the inclusion of methods, even recursive, as well
as with the other uses of ghost variables [12, 11] mentioned in the introduction.
A full version will contain a more detailed account. We also find that translation
into a standard program logic is in general a useful method for giving meaning
to the fancier features of specification languages.

References

1. Andrew W. Appel. Foundational proof-carrying code. In Logic in Computer Sci-
ence, 2001.

2. David Aspinall, Stephen Gilmore, Martin Hofmann, Donald Sannella, and Ian
Stark. Mobile resource guarantees for smart devices. In CASSIS, pages 1–26,
2004.

3. Gilles Barthe, Lennart Beringer, Pierre Crégut, Benjamin Grégoire, Martin Hof-
mann, Peter Müller, Erik Poll, Germán Puebla, Ian Stark, and Eric Vétillard.
Mobius: Mobility, ubiquity, security. objectives and progress report. In TGC 2006:
Proceedings of the second symposium on Trustworthy Global Computing, LNCS.
Springer-Verlag, 2006.

4. B. Beckert and W. Mostowski. A program logic for handling java card’s transaction
mechansim, 2002.

5. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

6. Bernhard Beckert and Steffen Schlager. A sequent calculus for first-order dynamic
logic with trace modalities. Lecture Notes in Computer Science, 2083:626+, 2001.

7. Néstor Cataño and Marieke Huisman. Formal specification and static checking of
gemplus’ electronic purse using ESC/java.

8. Bart Jacobs, Claude Marché, and Nicole Rauch. Formal verification of a commer-
cial smart card applet with multiple tools. In Algebraic Methodology and Software
Technology, volume 3116 of Lecture Notes in Computer Science, Stirling, UK, July
2004. Springer-Verlag.

9. Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Com-
puting, 11(5):541–566, 1999.

10. George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges (POPL ’97), pages
106–119, Paris, January 1997.

11. M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing high-
level security properties for applets. In P. Paradinas and J.-J. Quisquater, editors,
Proceedings of CARDIS’04, Toulouse, France, August 2004. Kluwer Academic Pub-
lishers.

12. K. Rustan, M. Leino, and P. uller. Object invariants in dynamic contexts, 2004.

A Functional Behaviours

A.1 Syntax of the Language

Inductive exec t : state → stmt → state → Prop :=
| ExecAssign : ∀ s x e,

exec t s (Assign x e) (update s x (eval expr s e))
| ExecIf true : ∀ s1 s2 e stmtT stmtF,

eval expr s1 e 6= 0 →
exec t s1 stmtT s2 →
exec t s1 (If e stmtT stmtF) s2

| ExecIf false : ∀ s1 s2 e stmtT stmtF,
eval expr s1 e = 0 →
exec t s1 stmtF s2 →
exec t s1 (If e stmtT stmtF) s2

| ExecWhile true : ∀ s1 s2 s3 e stmt,
eval expr s1 e 6= 0 →
exec t s1 stmt s2 → exec t s2 (While e stmt) s3 →
exec t s1 (While e stmt) s3

| ExecWhile false : ∀ s1 e stmt,
eval expr s1 e = 0 →
exec t s1 (While e stmt) s1

| ExecSseq : ∀ s1 s2 s3 i stmt1 stmt2,
exec t s1 stmt1 s2 →
exec t s2 stmt2 s3 →
exec t s1 (Sseq stmt1 stmt2) s3

| ExecSkip : ∀ s, exec t s Skip s.

A.2 Logic for partial correctness

Inductive RULET : stmt → assertion → Prop :=
| AssignRule:∀ x e (post : assertion),

(∀ (s1 s2 : state), s2 = update s1 x (eval expr s1 e) → post s1 s2) →
RULET (Assign x e) post

| IfRule:∀ e (stmtT stmtF : stmt) (post1 post2 post : assertion),
(∀ (s1 s2 : state),

(eval expr s1 e 6= 0 → post1 s1 s2) →
(eval expr s1 e = 0 → post2 s1 s2) →

post s1 s2) →
RULET stmtT post1 →
RULET stmtF post2 →
RULET (If e stmtT stmtF) post

| WhileRule:∀ (st : stmt)(post b post1 : assertion) e,
(∀ s1 s2, eval expr s2 e = 0 → post1 s1 s2 → post s1 s2) →
(∀ s p t, eval expr s e 6= 0 → b s p → post1 p t → post1 s t) →
(∀ s, eval expr s e = 0 → post1 s s) →
RULET st b→
RULET (While e st) post

| SeqRule:∀ (stmt1 stmt2 : stmt) (post1 post2 post : assertion),
(∀ s1 s2,(∃ p, post1 s1 p ∧ post2 p s2) → post s1 s2) →
RULET stmt1 post1 →
RULET stmt2 post2 →
RULET (Sseq stmt1 stmt2) post

| SkipRule:∀ (post : assertion),
(∀ (s1 s2 : state), s1 = s2 → post s1 s2) →
RULET Skip post.

A.3 Syntax of language with ghost variables

Inductive Gstmt : Type :=
| GAssign: var → expr → Gstmt
| GIf : expr → Gstmt → Gstmt → Gstmt
| GWhile : expr → Gstmt → Gstmt
| GSseq : Gstmt → Gstmt → Gstmt
| GSkip : Gstmt
| GSet : gVar → gExpr → Gstmt.

B Extra-functional behaviours with traces

B.1 Semantics of terminating executions in the presence of traces

Inductive t exec : state → stmt → list event → state → Prop :=

| ExecAffect : ∀ s x e,
t exec P B s (Affect x e) nil (update s x (eval expr s e))

| ExecIf true : ∀ s1 s2 e stmtT stmtF eventsT,
eval expr s1 e 6= 0 →
t exec P B s1 stmtT eventsT s2 →
t exec P B s1 (If e stmtT stmtF) eventsT s2

| ExecIf false : ∀ s1 s2 e stmtT stmtF eventsF,
eval expr s1 e = 0 →
t exec P B s1 stmtF eventsF s2 →
t exec P B s1 (If e stmtT stmtF) eventsF s2

| ExecWhile true : ∀ s1 s2 s3 e stmt eventsI eventsC ,
eval expr s1 e 6= 0 →
t exec P B s1 stmt eventsI s2 →
t exec P B s2 (While e stmt) eventsC s3 →
t exec P B s1 (While e stmt) (app eventsI eventsC) s3

| ExecWhile false : ∀ s1 e stmt ,
eval expr s1 e = 0 →
t exec P B s1 (While e stmt) nil s1

| ExecSseq : ∀ s1 s2 s3 stmt1 stmt2 events1 events2,
t exec P B s1 stmt1 events1 s2 →
t exec P B s2 stmt2 events2 s3 →
t exec P B s1 (Sseq stmt1 stmt2) (app events1 events2) s3

| ExecSkip : ∀ s, t exec P B s Skip nil s
| ExecSignal : ∀ s event, t exec P B s (Signal event) (event :: nil) s .

B.2 Semantics of reachable states in the presence of traces

Inductive reach: state → stmt → list event → state → Prop :=
| ReachAssign: ∀ s x e,

reach s (Assign x e) nil (update s x (eval expr s e))
| ReachIf true: ∀ s1 s2 e stmtT stmtF eventsT ,

eval expr s1 e 6= 0 →
reach s1 stmtT eventsT s2 →
reach s1 (If e stmtT stmtF) eventsT s2

| ReachIf false: ∀ s1 s2 e stmtT stmtF eventsF,
eval expr s1 e = 0 →
reach s1 stmtF eventsF s2 →
reach s1 (If e stmtT stmtF) eventsF s2

| ReachWhile false: ∀ s1 e stmt,
eval expr s1 e = 0 →
reach s1 (While e stmt) nil s1

| ReachWhile true1 : ∀ s1 s2 e stmt eventsB,
eval expr s1 e 6= 0 →
reach s1 stmt eventsB s2 →
reach s1 (While e stmt) eventsB s2

| ReachWhile true2 : ∀ s1 s2 s3 e stmt eventsB eventsW,
eval expr s1 e 6= 0 →
t exec s1 stmt eventsB s2 →
reach s2 (While e stmt) eventsW s3 →
reach s1 (While e stmt)(eventsB ::eventsW) s3

| ReachSseq1 : ∀ s1 s2 stmt1 stmt2 events1,
reach s1 stmt1 events1 s2 →
reach s1 (Sseq stmt1 stmt2) events1 s2

| ReachSseq2 : ∀ s1 s2 s3 stmt1 stmt2 events1 events2,
t exec s1 stmt1 events1 s2 →
reach s2 stmt2 events2 s3 →
reach s1 (Sseq stmt1 stmt2) (events1 ::events2) s3

| ReachSkip: ∀ s, reach s Skip nil s
| ReachRefl : ∀ s stmt, reach P B s stmt nil s
| ReachSignal : ∀ s event ,
reach s (Signal event) (event ::nil) s.

B.3 Logic for partial correctness in the presence of traces for the
extended language

Inductive RULET : stmt → assertion → Prop :=
| AffectRule : ∀ x e (post : assertion) ,

(∀ (s1 s2 : state), s2 = update s1 x (eval expr s1 e) → post s1 nil s2) →
RULET (Affect x e) post

| IfRule : ∀ e (stmtT stmtF : stmt)(post1 post2 post : assertion) ,
(∀ (s1 s2 : state) event,

((eval expr s1 e 6= 0)) → post1 s1 event s2) ∧
(eval expr s1 e = 0 → post2 s1 event s2) → post s1 event s2) →

RULET stmtT post1 →
RULET stmtF post2 →
RULET (If e stmtT stmtF) post

| WhileRule : ∀ (st : stmt) (post post1 posti : assertion) e,
(∀ s1 s2 event, post1 s1 event s2 ∧ eval expr s2 e = 0→

post s1 event s2) →
(∀ s p t event1 event2, eval expr s e 6= 0 → posti s event1 p →

post1 p event2 t → post1 s (app event1 event2) t) →
(∀ s, eval expr s e = 0 → post1 s nil s) →
RULET st posti →
RULET (While e st) post

| SeqRule: ∀ (stmt1 stmt2 : stmt) (post1 post2 post : assertion),
(∀ s1 s2 event1 event2, (∃ p , post1 s1 event1 p ∧ post2 p event2 s2) →

post s1 (app event1 event2) s2) →
RULET stmt1 post1 →
RULET stmt2 post2 →
RULET (Sseq stmt1 stmt2) post

| SkipRule: ∀ (post : assertion),
(∀ (s1 s2 : state), s1 = s2 → post s1 nil s2) →
RULET Skip post

| SignalRule : ∀ (post : assertion) event,
(∀ (s1 s2 : state)event , s1 = s2 → post s1 (event :: nil) s2) →
RULET (Signal event) post.

B.4 Logic for trace properties for the extended language

Inductive RULER (: methPost) (: methInv) : stmt → invariant → Prop :=
| AffectRuleR : ∀ x e (post : invariant) ,

(∀ (s1 : state) l, l = nil → post s1 l) →
RULER (Affect x e) post

| IfRuleR : ∀ e (stmtT stmtF : stmt) (post1 post2 post : invariant) ,
(∀ (s1 : state) event,

((not (eval expr s1 e = 0)) → post1 s1 event) ∧
(eval expr s1 e = 0 → post2 s1 event) → post s1 event) →

(∀ (s1 : state) event, event = nil → post s1 event) →
RULER stmtT post1 →
RULER stmtF post2 →
RULER (If e stmtT stmtF) post

| WhileRuleR : ∀ (st : stmt)(post post1 : invariant) e (inv : assertion),
(∀ s1 event, post1 s1 event → post s1 event) →
(∀ (s1 : state) l, l = nil → post1 s1 l) →
(∀ s , eval expr s e = 0 → post1 s nil) →
RULER st post1 →
RULET st inv →
(∀ s1 s2 e1 e2, (inv s1 e1 s2 → eval expr s1 e 6= 0 →

post1 s2 e2 → post1 s1 (app e1 e2)))-¿
RULER (While e st) post

| SeqRuleR : ∀ (stmt1 stmt2 : stmt)(post post1 postRst2 : invariant)
(postT :assertion),
(∀ s1 e , (post1 s1 e → post s1 e)) →
(∀ s1 s2 e1 e2 , postT s1 e1 s2 → postRst2 s2 e2 →

post1 s1 (app e1 e2)) →
RULER stmt1 post1 →
RULET stmt1 postT →
RULER stmt2 postRst2 →
(∀ (s1 : state) l , l=nil → post s1 l) →
RULER (Sseq stmt1 stmt2) post

| SkipRuleR : ∀ (post : invariant),
(∀ (s1 : state) l, l = nil → post s1 l) →
RULER Skip post

| CallRuleR : ∀ (mName : methodNames) (post : invariant) ,
(∀ (s1 : state) event, (mName) s1 event → post s1 event) →
(∀ (s1 : state) event , event= nil → post s1 event) →

RULER (Call mName) post
| SignalRuleR: ∀ (post : invariant) event,

(∀ (s1 : state) l , l = nil → post s1 (event :: l)) →
(∀ (s1 : state) l, l = nil → post s1 l) →
RULER (Signal event) post.

