
UNIVERSITÉ de Nice – Sophia Antipolis École Doctorale

STIC Sciences et Technologies de l’Information et de la Communication

Thèse de Doctorat

Préparée pour obtenir le titre de
Docteur en Sciences de l’Université de Nice – Sophia Antipolis

Discipline : Informatique

Préparée à l’Institut National de Recherche en Informatique

et en Automatique de Sophia Antipolis

par

Mariela PAVLOVA

Vérification de bytecode et ses applications

Directeurs de thèse : Gilles Barthe et Lilian Burdy

Soutenue publiquement le 19 janvier 2007

à l’École Supérieure en Sciences Informatiques

de Sophia Antipolis

devant le jury composé de :

MM. Pierre Paradinas Président CNAM Paris

Claude Marche Rapporteur Inria Futurs - ProVal

John Hatcliff Rapporteur Kansas State University

David Naumann Rapporteur Stevens Institute of Technology

MM. Gerwi Klein Examinateur University of New South Wales

Gilles Barthe Directeur de thèse INRIA Sophia Antipolis

Dans cette thèse, nous proposons une architecture qui permet la vérification de code mobile
respectant des politiques de sécurité potentiellement complexes. En particulièr, cette architecture
est une version du paradigme du code contenant ses preuves proposée par George Necula. Dans
cette dernière, le producteur de code mobile utilise le compilateur certifiant pour générer le code
éxécutable ainsi qu’un certificat qui montre que le code satisfait les politiques de sécurité du client
qui éxécute le code mobile. Le compilateur certifiant étant automatique, seules des politiques de
sécurités décidables peuvent être traitées, telles la correction du typage, ou l’accès sécurisé à la
mémoire. Le développement rapide de technologies dans des domains critiques comme les cartes à
puce requiert des politiques de sécurités plus complexes (par exemple des propriétés fonctionelles)
que les politiques de sécurités décidables.

Pour repondre à ce besoin, dans cette thèse nous introduisons les composants suivants: un
langage de Modélisation de Bytecode dérivant de JML (Java Modeling Language), un compilateur
des annotations du code source au code compilé, un générateur de conditions à vérifier pour le
code compilé Java, et l’équivalence entre les obligations de preuve entre le code source et le code
compilé. Basée sur ces composants, notre architecture permet au producteur de code de générer
le certificat de code mobile interactivement et donc permet de certifier des propriétés qui vont au
delà des propriétés décidables.

Mots Clés : program static verification, verification condition generator, program logic, mobile
code, PCC, certified code, Java, bytecode, proof preserving compilation, specification languages

ii

Contents

1 Introduction 1
1.1 Contributions . 5
1.2 Plan of the thesis . 6

2 Java verification overview 7
2.1 Java like statements and expressions . 7
2.2 Overview of JML . 9

2.2.1 JML expressions . 10
2.2.2 Method contracts and method intra specification 10
2.2.3 Ghost variables . 11
2.2.4 Light and heavy weight specification. Multiple specification cases 12
2.2.5 Frame conditions . 13
2.2.6 Class specification . 16

2.3 Program verification using program logic . 16
2.4 Weakest precondition predicate transformer for Java like source language 19

2.4.1 Substitution . 19
2.4.2 Weakest precondition predicate transformer for expressions 20
2.4.3 Weakest precondition predicate transformer for statements 21

3 Java bytecode language and its operational semantics 25
3.1 Notation . 27
3.2 Program, classes, fields and methods . 28
3.3 Program types and values . 29
3.4 State configuration . 30

3.4.1 Modeling the object heap . 31
3.4.2 Registers . 33
3.4.3 The operand stack . 33
3.4.4 Program counter . 33

3.5 Throwing and handling exceptions . 33
3.6 Method lookup . 35
3.7 Design choices for the operational semantics . 35
3.8 Bytecode language and its operational semantics 35
3.9 Representing bytecode programs as control flow graphs 43
3.10 Related Work . 44

4 Bytecode modeling language 47
4.1 Design features of BML . 47
4.2 The subset of JML supported in BML . 48

4.2.1 Notation convention . 48
4.2.2 BML Grammar . 48
4.2.3 Syntax and semantics of BML . 50

4.2.3.1 BML expressions . 50
4.2.3.2 BML predicates . 52
4.2.3.3 Class Specification . 52

iii

4.2.3.4 Frame conditions . 52
4.2.3.5 Inter — method specification . 53
4.2.3.6 Intra — method specification . 53

4.3 Well formed BML specification . 53
4.4 Compiling JML into BML . 55
4.5 Related work . 59

5 Verification condition generator for Java bytecode 61
5.1 Assertion language for the verification condition generator 61

5.1.1 The assertion language . 62
5.1.2 Interpretation . 62

5.2 Extending method declarations with specification 64
5.3 Weakest precondition calculus . 65

5.3.1 Intermediate predicates . 67
5.3.2 Weakest precondition in the presence of exceptions 68
5.3.3 Rules for single instruction . 69
5.3.4 Verification conditions . 74

5.3.4.1 Method implementation respects method contract 74
5.3.4.2 Behavioral subtyping . 75

5.4 Example . 77
5.5 Related work . 78

6 Correctness of the verification condition generator 81
6.1 Formulation of the correctness statement . 81
6.2 Proof outline . 82
6.3 Relation between syntactic substitution and semantic evaluation 83
6.4 Proof of Correctness . 86
6.5 Related work . 92

7 Equivalence between Java source and bytecode proof obligations 95
7.1 Compiler . 95

7.1.1 Compiling source program constructs in bytecode instructions 97
7.1.2 Properties of the compiler function . 100

7.2 Establishing the equivalence between verification conditions on source and bytecode
level . 104

7.3 Related work . 110

8 Constrained memory consumption policies using verification condition genera-
tor 113
8.1 Motivating example . 114
8.2 Principles . 115
8.3 Examples . 116

8.3.1 Inheritance and overridden methods . 116
8.3.2 Recursive Methods . 117
8.3.3 More precise specification . 117

8.4 Related work . 117

9 A low-footprint Java-to-native compilation scheme using BML 121
9.1 Ahead-of-time & just-in-time compilation . 122
9.2 Java runtime exceptions . 122
9.3 Optimizing ahead-of-time compiled Java code . 123

9.3.1 Methodology for writing specification against runtime exception 124
9.3.2 From program proofs to program optimizations 125

9.4 Experimental results . 126
9.4.1 Methodology . 126
9.4.2 Results . 126

iv

9.5 Limitations . 128
9.5.1 Multi-threaded programs . 128
9.5.2 Dynamic code loading . 128

9.6 Related work . 128

10 Conclusion 129
10.1 Results . 129
10.2 Future work . 130

10.2.1 Verification condition generator . 130
10.2.2 Property coverage for the specification language 130
10.2.3 Preservation of verification conditions . 131
10.2.4 Towards a PCC architecture . 132

A Encoding of BML in the class file format 133
A.1 Class annotation . 133

A.1.1 Ghost variables . 133
A.1.2 Class invariant . 134
A.1.3 History Constraints . 134

A.2 Method annotation . 134
A.2.1 Method specification . 134
A.2.2 Set . 136
A.2.3 Assert . 136
A.2.4 Loop specification . 137

A.3 Codes for BML expressions and formulas . 138

B Proofs of properties from Section 7.1.2 139

v

vi

Chapter 1

Introduction

Since the beginning of programming languages, the problem of program correctness has been an
issue. Especially, this is the case today when complex software applications enter into our daily
life and perform actions which may potentially compromise confidential data (credit cards) or the
performance of the computer system they are executed on (e.g. installing software which may
format the hard disk of our PC). Also, errors in software conception may have disastrous effects,
for instance the crash of the European Ariane 5 launcher due to execution of a data conversion.
More over, software correctness plays a crucial role in the overall software quality in cases the
latter take part in the automatic control of engines which may put in danger lives, like airplanes
or subways.

Thus, a necessary phase in the program development is the validation of the program imple-
mentation, during which the producer checks if the written code conforms to her/his intentions.

A widely used approach is program testing. However, this technique is not capable to cover all
the cases of the input space and thus, although the tests have been successful, the implementation
may still contain errors. This, of course, is not desirable in particular in the case of critical program
applications as is the case for applications which target the domains mentioned above.

Another possibility is to use formal verification methods. Contrary to program testing, formal
program verification guarantees that if the verification procedure has been successful then the
implementation respects the initial requirements for the software. The field of formal verification
is vast and there exist different approaches as for instance model checking, type systems or program
logic. In this thesis, we shall focus on the last approach. In Fig. 1.1, we give a general outline of
the architecture for verifying source code programs.

Verification
conditionsgeneratorcondition

Verification
interactive prover

 Automatic or

Source code

Specification

Verification
conditionsgeneratorcondition

Verification
interactive prover

 Automatic or

Source code

Specification

Figure 1.1: Source verification

As we can see from the figure, the architecture relies on the following components:

• specification of the implementation which expresses the intended behavior of the source pro-
gram. The annotations are written in a formal specification language.

• an algorithm which generates logical (verification) conditions from the annotations and the
program. Such an algorithm is usually called verification condition generator. The generated
verification conditions are such that their truth guarantees that the implementation respects
the program specification and thus, that the implementation respects its intended behavior.

2 Introduction

• a system for showing the validity of the verification conditions. This is normally done either
by an automatic decision procedure or interactive theorem prover. Automatic decision proce-
dures do not need user interaction. However, automation cannot deal with difficult theorems
because of the undecidability of the logic. Interactive prove assistant is an alternative which
is more powerful and can more often “say” if something holds. However, even interactively
it could be difficult to show that a theorem holds. Although interactive prove assistants sys-
tems are more reliable than automatic decision procedures they need a user interaction and
expertise in theorem proving and logic. Thus, depending on the complexity of the verification
conditions, an automatic decision procedure or an interactive system is used.

The field of formal verification is well studied and several tools exist for dealing with source
verification using program logic. We should mention in the list of the verification tools tailored to
source languages the Caveat1 verification framework for C, Caduceus2 for C, the extended static
checker esc/java [72], the Loop tool [60], Krakatoa [76], Jack [28], etc. These tools are tailored to a
source language and thus, are helpful for the development process. For instance, the developer may
use such verification tools for discovering program bugs and errors. More generally, verification on
source code allows the code producer to audit the quality of a software implementation.

Although program logics guarantees source program correctness, it does not say anything about
the executable code resulting from the source compilation. Thus, source verification requires a trust
in the compiler. However, such a compromise is not always admissible.

This is in particular the case for mobile code scenarios where a code client executes an unknown
or untrusted application. Fig. 1.2 shows a schemata of mobile code scenarios. From the figure,
we can see that in such scenarios there are two counter parts: a code producer and a code client.
The producer generates the code and the client receives the generated code. However, the client
normally does not have any evidence that the code respects his requirements.

Executable code
requirements

Client

Compiler

Source code
Producer

Client

Figure 1.2: Mobile code

Examples for a mobile code scenario can be the downloading of software components via internet
and their execution on a user system which can be a personal computer, PDAs, embedded systems,
etc. These software components could be from user specific applications to patches for the operating
system.

Thus, it is more suitable to perform the verification directly on the executable or interpreted
code. First, because the executable is normally not accompanied by the corresponding source code
and second, even if it were this would require trust in the compiler. This would mean that the
client should have a similar verification infrastructure as on source code as shown in Fig. 1.3.

1http://www-list.cea.fr/labos/fr/LSL/caveat/index.html
2http://caduceus.lri.fr

3

Verification
conditionsgeneratorcondition

Verification

requirements
Client

Executable code
Client

Producer

Compiler

Source code

 Automatic or
interactive prover

Figure 1.3: Mobile code verification

Providing mechanisms for verification over the executable or interpreted code gives the client
the possibility to check if the application respects the requirements of the client system. However,
the process of theorem proving is an expensive computational procedure and the client system may
potentially not be willing to slow down its execution for verifying the unknown code. Especially,
this is the case for small devices which rely on limited computational resources.

The Proof Carrying Code paradigm (PCC) and the certifying compiler proposed by G.Necula
[86] gives a solution to this problem. In the traditional PCC architecture, untrusted code is ac-
companied by a proof which certifies that the code is in compliance with the client requirements.
In Fig. 1.4, we show the basic components of such framework and the relation between them. The
code producer uses the so called certifying compiler. The certifying compiler consists of a compiler
and a certifier. The compiler not only compiles source programs into executable (or interpreted
bytecode) but also generates annotations for the executable code. The certifier assembles the verifi-
cation condition generator over the executable and invokes an automatic decision procedure which
will generate a formal proof for the verification conditions. The producer sends the executable code
with annotations and the proof to the client. The client then does not have to prove the program.
Rather, he generates the verification conditions over the received code and his requirements and
then checks if the proof accompanying the code is a proof for the generated verification conditions.
Checking a proof w.r.t. a logical statement is much easier then finding its proof. For this, type
checking algorithms are used as the verification conditions are interpreted as types and the proofs
are interpreted as expressions. The complexity of type checking algorithms is small and thus, do
not compromise the performance of the client system.

However, because traditional PCC is completely automated, it can only deal with safety proper-
ties, like well typedness or safe memory read and write access. These properties are very important
as they guarantee that the execution of the whole system will not be violated by the untrusted
application. However, restricting the verification mechanism only to safety properties is not sat-
isfactory, because there are potentially situations in which the client security policy may be more
complex. For instance, the client may have functional requirements over the unknown code. An
example is when an updated version of an interface implementation is downloaded on the client
computer system and patches an old implementation of the interface. In this cases, the client
system needs guarantees that the unknown software component respects the interface specifica-
tion. In such situations, traditional PCC is not appropriate as it will fail to generate the proof
automatically.

4 Introduction

Executable code

Source code

Certifying compiler

generatorcondition
Verification Verification

conditions

Certificate

requirements
Client

Client

Producer

Proof checker

Figure 1.4: Proof carrying code architecture for mobile code

A solution to this problem is to give up automation in the certificate generation and thus,
make the process of the proof generation on the producer site interactive as shown in Fig. 1.5. As
you can see in the figure, we propose that the producer site generates the certificate interactively
over the source code. The advantage of such an approach is that the interactive proof will allow
to identify bugs in the source code and correct them until the source becomes conform with the
client requirements. Moreover, interactive verification over source code allows to identify points
in the source program which must be enforced with annotations (typically, loop invariants) that
will allow the verification conditions to get provable. However, there are several points which
need to be clarified. The first one is how the client may use a source code certificates for the
verification of its executable counterpart. This is actually possible as verification conditions over
source and low level code are equivalent if the low level code has been produced by a non optimizing
compiler. However, this equivalence is not sufficient to make things work. In particular, sending the
executable code and its certificate is not sufficient for the client to check correctly the program. As
we said above, the generation of the certificate on the producer site, requires additional annotations.
Recall that the validation of the executable program on the client side involves the generation of
the verification conditions again. If the client does not have the annotation enforcement for the
program, he will not succeed to type check the verification conditions that he generated against
the received certificate, even if the program is correct. For this, we propose a compiler from source
annotations to annotations on the level of the executable (interpreted) code.

In the following, we present a framework which follows the schemata from Fig. 1.5 which
allows to verify statically bytecode programs against potentially non trivial functional and security
properties. The framework is tailored to Java bytecode.

The Java platform of Sun Microsystems has gained a lot of popularity in industry for the last
two decades. The reasons for its success is that it allows applications to be developed in a high-level
language without committing to any specific hardware and since it features security mechanisms
which guarantee the innocuousness of downloaded applications. It guarantees type safety via the
bytecode verifier and restricts the access of untrusted applications to systems resources trough the
sandbox mechanism. The JVM provides an automatic memory management through a garbage
collector.

For instance, smart card applications are relying on JavaCard, a dialect of Java tailored to
small devices. Such devices, however, impose security restrictions to the software components
they run for which platforms like Java do not provide sufficient mechanisms for their guarantee,
e.g. preserving of confidentiality or limited use of computational resources. Moreover, the new
generation of smart card platforms where installation of software components after the card has

1.1 Contributions 5

interactive prover
Automatic or

Annotation
compiler

requirements
Client

Certificate

Proof checker
Verification

generatorcondition
on the executable

Verification

the executable
conditions on

Non optimizing
compiler

Producer

Verification
generatorcondition

on the source the source
conditions on
Verification

requirements
Client

annotated
source code

executable
 code

Executable code
with annotations

Client

Figure 1.5: Proof preserving compilation for mobile code

been issued is possible, opens new security problems. Another example is the J2ME (which stands
for Java 2 Micro Edition) which is widely used in mobile phone software industry. Mobile phone
users benefit today from the possibility to install new software components on the phone system
by the wireless net, however no mechanisms are provided by the Java system to check that they
are not malicious, buggy or incompatible with other installed code.

1.1 Contributions

We propose a framework which allows the verification of bytecode programs against complex func-
tional and safety properties, which has the following components.

Bytecode Modeling Language We define a specification language for bytecode called BML
(short for Bytecode Modeling Language). BML is the bytecode encoding of an important
subset of JML (short for Java Modeling Language). The latter is a rich specification language
tailored to Java source programs and allows to specify complex functional properties over
Java source programs. Thus, BML inherits the expressiveness of a subset JML and allows
to encode potentially complex functional and security policies over Java bytecode programs.
We define an encoding of BML in the class file which is in conformance with the Java Virtual
Machine specification [75]. To our knowledge, BML does not have predecessors that are
tailored to Java bytecode.

Verification condition generator for Java bytecode We propose a verification condition gen-
erator (VcGen for short) for Java bytecode which is completely independent from the source
code. The verification condition generator covers a large subset of Java and deals with arith-
metic operations, object creation and manipulation, method invocations, exception throwing
and handling, stack manipulation etc. The verification condition relies on a weakest predicate

6 Introduction

transformer function adapted for Java bytecode and we have proved its soundness relative to
a Java operational semantics. We have an implementation which is integrated in Jack (short
for Java Applet Correctness Kit) [28] which is a user friendly plugin for the eclipse ide 3.

Compiler from source to bytecode annotations We define a compiler from JML to BML
which allows Java bytecode benefit from the JML source specification. The compiler does
not depend on a particular Java compiler but requires it to be non optimizing The JML
compilation results in enriching the class file with the BML encoding of the specification.

Equivalence between source and bytecode proof obligations Such an equivalence is use-
ful when programs and requirements over them are complex. In this case, an interactive
verification procedure over the source code could be helpful. (e.g. proving the verification
conditions in an interactive theorem prover). First, interactive procedure is suitable where
automatic decision procedures will not cope with difficult theorems which is potentially the
case for sophisticated security policies or functional requirements. Second, using verification
on source code is useful as program bugs and errors can be easily identified and corrected.
Because of the relative equivalence between source and bytecode proof obligations, once the
verification conditions over the source and the program requirements expressed as specifica-
tions are proved the bytecode and the certificate (the proof of the verification conditions)
produced over the source can be shipped to the client.

We have shown the usefulness of bytecode verification condition generator in two cases. The
first one is the verification of constrained memory consumption policies. Indeed, it is an important
issue for devices with limited resources as smart cards to have a guarantee that a newly installed
application will not corrupt the whole system because of malevolent resource usage. In such critical
situations, bytecode verification is suitable as it does not compromise the compiler. This work was
published in [20].

We have also shown how this methodology can be applied to bytecode to native compiler opti-
mizations. The speed and small memory footprint size of executable code is important especially
for constrained devices. In order to speed up the execution Java-to-native compilation can be done.
But this comes on the price of a large memory footprint. We apply our verification framework for
decreasing the size of the native code size by identifying check sides in the native code which can
be removed. This gave issue to the publication [33].

1.2 Plan of the thesis

The present thesis is organized as follows. In the next Chapter 2, we give an overview of the basic
ideas in Java source verification. We present there the JML language, a Java like source language
and verification condition generator for the source language. We also discuss different approaches
in program verification using program logic. Chapter 3 presents the bytecode language and its
operational semantics which will be used all along the thesis for the definition of the verification
condition generator and the proof of its soundness. Chapter 4 presents the syntax and semantics
of the Bytecode Modeling Language (BML) and the compiler from JML to BML. In Chapter 5,
we turn to the definition of the verification condition generator and Chapter 6 presents the proof
of its soundness. In Chapter 7, we shall focus on the relation between verification conditions on
source and bytecode level and we shall see under what conditions they are the same modulo names
and basic types. Chapter 8 presents an application of the bytecode verification condition generator
and BML to the verification of constraint memory consumption policies. Chapter 9 shows how we
can build a Java-to-Native compiler using our verification framework.

3http://www.eclipse.org/

Chapter 2

Java verification overview

The purpose of this chapter is to remind the reader the basic principles in the formal verification
of Java programs. Because the concepts on Java source and bytecode verification are similar,
we have decided to give here an overview of them on Java source. We hope that this will be a
gentle introduction to the rest of the thesis especially for those which are not acquainted with Java
bytecode.

As we already stated in the introductory chapter, a formal program verification relies on three
elements: a specification language in which to express the requirements that a program must
satisfy, a verification procedure for generating verification conditions whose validity implies that
the program respects its specification and finally, a system to decide the validity of the verification
conditions. In this chapter and in the rest of thesis, we shall focus on the first two components. In
particular,in Section 2.1, we shall present a Java like programming language supporting the most
important features of Java. We also present JML, the de facto Java specification language tailored
to Java. This will be done in Section 2.2. Section 2.3 presents a discussion about the different
approaches for program verification using program logic. In Section 2.4, we shall define over it a
verification condition calculus.

2.1 Java like statements and expressions

Java programs are a set of classes. As the JVM says “ A class declaration specifies a new reference
type and provides its implementation. . . . The body of a class declares members (fields and methods)
and constructors.”. Fields represent the state of an object of the class where those fields are
declared. Fields have a name and a type. Thus, a field declaration in a class states the name
and type of the field. Methods are the constructs in a class which execute and allow to change
the state of the objects at runtime. Class constructors are special methods which initialize a new
object of this class. Constructors have the same name as the class to which they belong. A method
declaration includes the method name, the list of arguments which specifies their names and types,
the method return type as well as the method body. A method body in Java represents a Java
statement. Statements are program constructs whose role is to determine the control flow of the
program during execution. Statements manipulate program constructs which represent values.
Those constructs are the expressions of the language. Expressions do not determine the control
flow but they evaluate to values. Values in our language are either references or integers. For an
illustration, consider the class declaration:

� �

1 class A {
2 int f ;
3
4 A(int c) {
5 f = c ;
6 }
7
8 int eqField (A a) {

8 Java verification overview

9 i f (a != null) {
10 return 0 ;
11 }
12 i f (a . f == this .f) {
13 return 1 ;
14 } else {
15 return 0 ;
16 }
17 }
18 }

� �

The example shows the declaration of class A. The class first declares a field named f of type
integer (line 2). Then follows the declaration of the class constructor which initializes the field f

to the value of the parameter c (lines 4-6). The last component of the class is the method eqField

which tests if the parameter a of type A is equal to the receiver of the method call by returning
0 or 1 (lines 8-18). Thus, the body of eqField first checks if a is not null and if it is returns 0.
Otherwise, if the field f in the current object and in the object passed as the parameter a are equal
then the method returns 1 and if not returns 0.

In the following, we shall concentrate in more detail on the statements and expressions typical
for object oriented languages e.g. object manipulation and creation, method invocation, throwing
and handling exceptions and subroutines. Fig. 2.1 gives the formal grammar.

E ::= IntConst
| null
| this
| E op E
| E .f
| Var
| (Class) E
| E .m()
| new Class()

op ∈ {+,−, ∗, }

Econd ::= E cond E

cond ∈ {≤, <,≥, >,=, 6=}

S ::= S ;S

| if (Econd) then {S} else {S}
| try {S} catch (Exc) {S}
| try {S} finally {S}
| throw E

| while (Econd)[INV, modif] {S}
| return E
| E = E

Figure 2.1: Source language

The nonterminal S introduces the grammar for statements. The statements that are supported
are standard control flow constructs like compositional statement, conditional statement, assign-
ment statement, return statement etc. They have the usual semantics of programs with exceptional

2.2 Overview of JML 9

and normal termination. For instance, the meaning of the compositional statements S ;S is that
if the first statement terminates execution normally then the second statement is executed. More-
over, if the first or second statement terminates on exception then the whole statement terminates
on exception

The construct try {S} catch (Exc) {S} allows for handling exceptions. Its meaning is that if
the statement following the try keyword throws an exception of type Exc then the exception will
be caught by the statement following the catch keyword. The language also supports try finally
statements, a construct which is particular to the Java language. The meaning of the construct
is that no matter how the statement following the keyword try terminates (on an exception or
normally), the statement introduced by the keyword finally must execute after it. If the try
block terminates normally then the whole try statement will terminate as the finally block. If
the try block terminates on exception Exc and if the finally block terminates normally, the whole
try finally statement terminates on the exception Exc. If the try block terminates on exception
Exc and if the finally block terminates on exception Exc’ then the whole try finally terminates on
exception Exc’. Loop statements are also supported. Note that their syntax includes a formula
INV which must hold whenever the loop entry is reached as well as a list of expressions modif

which lists the locations that may not have the same value at the beginning and at the end of a
loop iteration. Note that a variable should not be in the list modif even if during a loop iteration
its value is changed as far as at the end of the iteration the value it had in the beginning of the
iteration is restored.

Let us now turn to the expression grammar. As we can see from the figure, the language supports
integer constants IntConst , the null constant null denoting the empty reference, a construct this
for referring to the current object, arithmetic expressions E op E where op ∈ {+,−, div, rem, ∗}.
The value stored in a field named f for the object reference E is denoted with the construct E .f,
cast expressions with (Class)E and method local variables and parameters with identifiers taken
from the set Var . The language also has constructs for expressing method invocation. Thus, the
first expression in the syntax of the method invocation E .m() stands for the receiver object of
the method call and m is the name of the invoked method. For the sake of clarity we consider
only non void instance methods which does not receive parameters. Moreover, we assume that
methods always return a value. The language supports also instance creation construct. Note that
constructors like methods do not take arguments. The semantics of instance creation expression
new Class is that it creates a new reference of type Class in the heap which is initialized by the
class constructor Class. For class constructors, we also assume that they do not take parameters
for the same reasons as above. A relation between expressions is denoted with E cond E where
cond ∈ {≤, <,≥, >,=, 6=}. We could have considered a larger set of boolean expressions like for
instance logical connectors ∧,∨ . . . but we limit our language only to relational expressions for the
sake of simplicity without losing any particular feature of the language.

2.2 Overview of JML

JML [67] (short for Java Modeling Language) is a behavioral interface specification language tai-
lored to Java applications which follows the design-by-contract approach (see [23]).

Over the last few years, JML has become the de facto specification language for Java source
code programs. Several case studies have demonstrated that JML can be used to specify realistic
industrial examples, and that the different tools allow to find errors in the implementations (see e.g.
[25]). One of the reasons for its success is that JML uses a Java-like syntax. Other important factors
for the success of JML are its expressiveness and flexibility.

JML is supported by several verification tools. Originally, it has been designed as a language of
the runtime assertion checker [32] created by Yoonsik Cheon and G.T. Leavens. The JML runtime
assertion checker compiles both the Java code and the JML specification into executable bytecode
and thus, in this case, the verification consists in executing the resulting bytecode. Several static
checkers based on formal logic exist which use JML as a specification language. Esc/java [72]
whose first version used a subset of JML 1 is among the first tools supporting JML. Among the
static checkers with JML are the Loop tool developed by the Formal group at the University of

1the current version of the tool esc/java 2 supports almost all JML constructs

10 Java verification overview

Nijmegen, the Jack tool developed at Gemplus, the Krakatoa tool developed by the ProVal group
at Inria, France. The tool Daikon [41] tool uses a subset of JML for detecting loop invariants by
run of programs. A detailed overview of the tools which support JML can be found in [27]. In
the following, we shall proceed with the description of the basic features of JML which correspond
basically to the JML Level0 subset of JML.

2.2.1 JML expressions

Expressions manipulated in JML are side-effect free Java expressions, extended with specification-
specific keywords. JML specifications are written as comments so they are not visible by Java
compilers. The JML syntax is close to the Java syntax: JML extends the Java syntax with few
keywords and operators. Special JML operators are, for instance, \result which stands for the
value that a method returns if it is not void, the \old(expression) operator designates the value
of expression in the prestate of a method and is usually used in the method’s postcondition,
\typeof(expression) which stands for the dynamic type of expression, etc.

2.2.2 Method contracts and method intra specification

Method contracts consists of the conditions upon which relies and the conditions that the method
guarantees. The conditions upon which a method relies are expressed in specifications as the
method precondition, i.e. the method requires them to hold in its pre state. The conditions which
a method guarantees are expressed in specifications as the method postcondition, i.e. they express
what the method guarantees to the methods that may invoke it. Method contracts are visible by
the other methods in the program as they inform the other methods what they must establish
when calling them current method and what the current method guarantees them. Moreover, JML
provides a third component in the method contract, the so called frame condition which introduces
the locations that can be modified by the method. Frame conditions are actually desugared as
part of the postcondition as we shall see later in subsection 2.2.5. For an insight information on
method contracts, the reader may refer to [23].

Specifying methods may involve writing specification which is not visible by “the outside world”
(the other methods in the program) but which are useful for the program verification process. An
example for such a specification are the loop invariants, which express a property which holds at
the borders of a loop iteration. Moreover, here we shall allow that a loop is also accompanied by
a frame condition which as in the case of method frame conditions specifies which locations may
be modified in a loop. Such an extension of JML is used in the tool Jack [28]. We provide a more
insight discussion about them later in subsection 2.2.5.

For introducing method preconditions, postconditions and method frame conditions in JML
the keywords requires, ensures and modifies keywords are used respectively. Also for loop
invariants and loop frame conditions, the keywords loop invariant and loop modifies are used.
Fig. 2.2 gives an example of a Java class that models a list stored in a private array field. The
method replace will search in the array for the first occurrence of the object obj1 passed as first
argument and if found, it will be replaced with the object passed as second argument obj2 and the
method will return true; otherwise it returns false. Thus the method specification between lines
5 and 9 which exposes the method contract states the following. First the precondition (line 5)
requires from any caller to assure that the instance variable list is not null. The frame condition
(line 6) states that the method may only modify any of the elements in the instance field list.
The method postcondition (lines 7—9) states the method will return true only if the replacement
has been done. The method body contains a loop (lines 17—22) which is specified with a loop
fame condition and a loop invariant (lines 13—16). The loop invariant (lines 14—16) says that all
the elements of the list that are inspected up to now are different from the parameter object obj1
as well as the local variable i is a valid index in the array list. The loop frame condition (line
13) states that only the local variable i and any element of the array field list may be modified
in the loop.

2.2 Overview of JML 11

� �

1 public class ListArray {
2
3 private Object [] l i s t ;
4
5 //@ requires l i s t != null ;
6 //@ modifies l i s t [∗] ;
7 //@ ensures \ result ==(\exists int i ;
8 //@ 0 <= i && i < l i s t . l ength &&
9 //@ \old (l i s t [i]) == obj1 && l i s t [i] == obj2) ;

10 public boolean r ep l a c e (Object obj1 , Object obj2){
11 int i = 0 ;
12
13 //@ loop modifies i , l i s t [∗] ;
14 //@ loop invariant i <= l i s t . l ength && i >=0
15 //@ &&(\ f o ra l l int k ; 0 <= k && k < i ==>
16 //@ l i s t [k] != obj1 && l i s t [k] == \old (l i s t [k])) ;
17 for (i = 0 ; i < l i s t . l ength ; i++){
18 i f (l i s t [i] == obj1){
19 l i s t [i] = obj2 ;
20 return true ;
21 }
22 }
23 return fa l se ;
24 }
25 }

� �

Figure 2.2: class ListArray with JML annotations

2.2.3 Ghost variables

JML also allows the declaration of special JML variables, that are used only for specification
purposes. These variables are declared in comments with the ghost modificator and may be used
only in specification clauses. Those variables can also be assigned. Ghost variables are usually
used for expressing properties which can not be expressed with the program variables.

We illustrate the utility of such variables through an example. Let us have a class Transaction
which manages transactions in the program as shown in Fig. 2.3. The class is provided with
a method for opening transactions (beginTransaction) and a method for closing transactions
(commitTransaction). Suppose that we want to guarantee that in an application there are never
nested transactions. A possibility is to declare a method getTransactionDepth which counts the
number of open transactions and use dynamic checks for guaranteeing that there are no nested
transactions. But this would require to modify the code which is not desirable. Another approach
would be to use the method getTransactionDepth as far as its execution does not affect the pro-
gram state (i.e. it is pure) in the specification e.g. the precondition of method beginTransaction

will be //@ requires getTransactionDepth() == 0. However, the treatment of pure methods
is complicated and its semantics is still not well established. Ghost variables can be used for
specifying the no nested transaction property in a simple way. The specification of the methods
beginTransaction and commitTransaction models the property for no nested transactions via
the ghost variable TRANS (declared on line 3) which keeps track if there is a running transaction
or not. In particular, if the value of TRANS is 0 then there is no running transaction and if it
has value 1 then there is a running transaction. Thus, when the method beginTransaction is
invoked the precondition (line 5) requires that there should be no running transaction and when
the method is terminated the postcondition guarantees (line 6) that there is already a transaction
running. We can also remark that the variable TRANS is set to its new value (line 8) in the body
beginTransaction. Note that this is a simple way for specifying this property without modifying
the code.

12 Java verification overview

� �

1 public class Transact ion {
2
3 //@ ghost stat ic private int TRANS = 0 ;
4
5 //@ requires TRANS == 0 ;
6 //@ ensures TRANS == 1 ;
7 public void beg inTransact ion () {
8 //@ se t TRANS = 1 ;
9 . . .

10 }
11
12 //@ requires TRANS == 1 ;
13 //@ ensures TRANS == 0 ;
14 public void commitTransaction () {
15 //@ se t TRANS = 0 ;
16 . . .
17 }
18 }

� �

Figure 2.3: specifying No Nested Transaction property with ghost variable

2.2.4 Light and heavy weight specification. Multiple specification cases

A useful feature of JML is that it allows two kinds of method specification, a light and heavy weight
specification. An example for a light specification is the annotation of method replace (lines 5—9)
in Fig. 2.2. The specification in the example states what is the expected behavior of the method
and under what conditions it might be called. The user, however in JML, has also the possibility to
write detailed method specifications which allow to describe what are the different cases on which
a method might be called and what is the behavior of the method in every case. This specification
style is called a heavy weight specification. Heavy weight specification are introduced by the JML
keywords normal behavior and exceptional behavior. As the keywords suggest every of them
specifies a specific normal or exceptional behavior of a method. (see [66]).

The keyword normal behavior introduces a precondition, frame condition and postcondition
such that if the precondition holds in the prestate of the method then the method will terminate
normally and the postcondition will hold in the poststate.

An example for a heavy weight specification is given in Fig. 2.4. In the figure, method divide

has two behaviors, one in case the method terminates normally (lines 11—14) and the other (lines
17—20) in case the method terminates by throwing an object reference of ArithmeticException.
In the normal behavior case, the exceptional postcondition is omitted specification as by default if
the precondition (line 12) holds this assures that no exceptional termination is possible. Another
observation over the example is that the exceptional behavior is introduced with the JML keyword
also. The keyword also serves for introducing every new behavior of a method except the first
one. Note that the keyword also is used in case a method overrides a method from the super class.
In this case, the method specification (heavy or light weight) is preceded by the keyword also to
indicate that the method should respect also the specification of the super method.

In a light weight specification style the specifier might omit some of the specification. For
instance, in Fig. 2.4, the constructor C is provided only with a precondition. On verification time,
the missing part of an incomplete light weight specification is set to its default values. The default
value for omitted precondition and postcondition in a light weight specification is true and for
frame condition is nothing2.

A heavy weight specification is a syntactic sugar which is suitable for the specification process
and makes easier the understanding of the specified code. The verification of a heavy weight spec-

2the default value for frame conditions may depend on our choice. For instance, in Jack the developer can set
the default value for frame conditions to nothing or everything

2.2 Overview of JML 13

� �

1 public class C {
2 int a ;
3
4 //@ public i n s tance i nva r i an t a > 0 ;
5
6 //@ requires va l > 0 ;
7 public C(int va l){
8 a = val ;
9 }

10
11 //@ public normal behavior
12 //@ requires b != 0 ;
13 //@ modifies a ;
14 //@ ensures a == \old (a) / b ;
15 //@
16 //@ also
17 //@ public ex c ep t i ona l b ehav i o r
18 //@ requires b == 0 ;
19 //@ modifies \nothing ;
20 //@ exsures (ArithmeticExcept ion) a == \old (a) ;
21 public void d iv ide (int b) {
22 a = a / b ;
23 }
24 }

� �

Figure 2.4: An example for a method with a heavy weight specification in JML

ification involves appropriate desugaring of such specification corresponding to its semantics. The
meaning of normal behavior clause guarantees that the method will not terminate on an excep-
tion and thus the exceptional postcondition for any kind of exception, i.e. for the exception class
Exception is false. Similarly, an exceptional behavior clause guarantees that if its precondition
holds then the method terminates on exception and the specified exceptional postcondition will
hold, i.e. its ensures clause is always false. In case a method has several specification cases,
then one of the preconditions of its specification cases must hold when the method starts execu-
tion. Moreover, if the precondition of a particular method specification case holds in the method
prestate then the postcondition of this specification case must hold.

Fig. 2.5 shows the desugared version of the method specification from Fig. 2.4. As we can see,
the specification of the constructor C contains all the specification clauses, where the postcondition
is set to the default postcondition true. The specification of the method divide does not contain
the syntactic sugar normal behavior and exceptional behavior but explicitly specifies the
behavior of the method in the two cases. Particularly, it contains now two specification cases
surrounded by the tags {| |}. The first one corresponds to the normal behavior case, i.e. the
exceptional postcondition is set to false and the second specification case corresponds to the
exceptional behavior, i.e. the normal postcondition is set to false.

2.2.5 Frame conditions

As we can see in Fig. 2.4 JML allows for specifying a modifies clause for methods. The modifies
clause or also the frame condition declares which are the locations that a method may modify. The
example in Fig. 2.2 shows that we also allow frame condition in the loop introduced by the keyword
loop modifies. The semantics of the method and loop frame conditions is almost the same except
for the fact that a loop frame condition may mention method parameters or local variables. Also,
in the case for method frame condition their semantics is part of the method postcondition while
the semantics of loop frame conditions can be encoded as part of the corresponding loop invariant.

14 Java verification overview

� �

1 public class C {
2 int a ;
3
4 //@ public i n s tance i nva r i an t a > 0 ;
5
6 //@ requires va l > 0 ;
7 //@ modifies \nothing ;
8 //@ ensures true ;
9 public C(int va l){

10 a = val ;
11 }
12
13 //@ requires b != 0 | | b ==0;
14 //@ { |
15 //@ requires b != 0 ;
16 //@ modifies a ;
17 //@ ensures a == \old (a) / b ;
18 //@ exsures (Exception) fa l se
19 //@| }
20 //@ also
21 //@ { |
22 //@ requires b == 0 ;
23 //@ modifies \nothing ;
24 //@ ensures fa l se ;
25 //@ exsures (ArithmeticExcept ion) a == \old (a) ;
26 //@ | }
27 public void d iv ide (int b) {
28 a = a / b ;
29 }
30 }

� �

Figure 2.5: Desugared specification of the example from Fig. 2.4

In the following, let us look what is the meaning of the loop frame condition. The semantics of
a loop modifies list can be encoded as part of the invariant as a condition which states that all the
locations not mentioned in the loop modifies list must have the same value at the beginning and
at the end state of a loop iteration. We illustrate this by an example. If a loop is specified with
an invariant INV and the list of modified locations contains the expression a. f:

� �

1 //@ loop modifies a . f ;
2 //@ loop invariant I ;
3 while (e) {
4 . . .
5 }

� �

then the augmented invariant resulting from the desugaring of the modifies clause is :
� �

1 //@ loop invariant I &&
2 //@ \ f o ra l l r e f ; r e f != a ==> r e f . f == r e f . f ’ &&
3 //@ \ f o ra l l g \ f o ra l l r e f ; g != f ==> r e f . g == r e f . g’
4 while (e) {
5 . . .
6 }

� �

The first conjunct of the new invariant is the specified invariant I. The second conjunct expresses
the fact the value in the field f for every object which is different from the reference a must have

2.2 Overview of JML 15

the same value in the beginning (ref . f)and in the end of an iteration (ref . f’). Note that if an
expression has the same value at every beginning and end of a loop iteration then it has the same
value at the beginning and end of the loop. The third conjunct expresses the fact that the value of
any other field g different from f for any object ref changes its value in the beginning and end of a
loop iteration. This third part makes the verification of modifies frame conditions difficult as one
has to enumerate explicitly all the fields of all the classes which are reachable. We do not discuss
further the desugaring of the method modifies clauses in the method’s postcondition as it is the
same as for loop modifies clauses.

A very similar treatment of the method and loop modifies clauses is done in Jack both on
the Java source and Java bytecode verification condition generators. For method modifies, the
difference from the above formula is that the third conjunct is missing as we already said it is
difficult to enumerate the whole heap. For loop modifies they are not verified but only assumed
for the same reason of keeping the number of verification conditions reasonable.

In [77], the authors report for a change in the formalization of the heap in the verification tool
Krakatoa which allows to treat also in a similar way as Jack the modifies clauses for methods. In
this article, the authors also describe how to calculate read write effects of methods which allows
to construct a reasonable part of the third conjunct above.

May be here we may point out that not only the assertion of modifies clauses play a role in a
verification condition but also their assumption. Assuming modifies clauses on method invocation
and over the verification conditions for a loop allow to an appropriate verification condition gener-
ator to initialize properly the variables or locations that are not modified by the loop or method.
Consider the following example for a method m which calculates the sum of the k natural numbers
in a loop where k is a method parameter:

� �

1
2 class A {
3 int f ;
4 //@ requires k >= 0 ;
5 //@ modifies this . f ;
6 //@ ensures \ result == this . f ∗(this . f +1)/2;
7 public int m(int k) {
8 this . f = k ;
9 int sum = 0 ;

10
11 //@ loop modifies sum , i ;
12 //@ loop invariant sum == (i ∗(i +1))/2 && i<=k ;
13 for (int i = 0 ; i < k ; i++) {
14 sum = sum + i ;
15 }
16 return sum ;
17 }
18 }

� �

Before calculating the sum the instance variable a. f is set to the value of the parameter k.
Assuming then the modifies clause of the loop allows to initialize properly the value of a. f and to
establish that the program is correct w.r.t. the specification. Of course, the verification condition
condition generator must propagate the verification conditions up to the entry of the method
body. Such a verification scheme based on a weakest precondition predicate transformers allows
for writing smaller specifications. Of course, here we could have used a stronger invariant (add
in the loop invariant the fact that a. f == k) but in real programs the number of variables is
usually larger than in this small example and the specification burden of the programmer will be
inadmissible. Actually, both verification condition generators on Java source and bytecode in Jack
propagate the verification conditions related to method correctness up to the method body entry
point.

16 Java verification overview

2.2.6 Class specification

JML can be used to specify not only methods but also properties of a class or interface. A Java
class may be specified with an invariant or history constraints. An invariant of a class is a predicate
which holds at all visible states of every object of this class). A visible state of an object is basically
one of these cases:

1. at the poststate of a constructor where this object is a receiver

2. at the prestate of a finalizer of that object

3. at the prestate and poststate of every method where this object is a receiver

4. in a state when no method, constructor or finalizer of this object is in progress

For a detailed discussion on visible states, the reader may refer to the JML reference manual [67].
An invariant may be either static (i.e. talks only about static fields) or instance (talks about
instance fields). The class C in Fig.2.4 has also an instance invariant which states that the instance
variable a is always greater than 0. A Class history constraints is similar to a class invariant but
it does not describe one visible state but rather relates a visible state and any visible state that
occurs later in the execution. It can be seen as a transitive relation between the visible states of
an object.

Let us now see how instance class invariants can be expressed as method pre and postconditions
(the treatment of static class invariants and history constraints has the same features thus, we do
not discuss them further but the reader may refer to [67]). From the first case of visible states
described above, an instance invariant must be established by the constructor of this class which
means that it must be part of the constructor’s postcondition. From the second case it follows
that the invariant of an object must be part of the precondition of the finalizers of this object.
From the third case it follows that every method (not a constructor neither a finalizer) which
has as a receiver an object must have as part of its pre and postcondition the object’s invariant.
The fourth case of a visible state implies that every method which does not have as a receiver
the object must preserve this object’s invariant. This actually means that every constructor must
preserve (has as pre and postcondition) the invariant of all objects except for the receiver object’s
invariant which must be only established in the poststate. Similarly, a finalizer of an object
must preserve the invariants of all the other objects and include in its precondition the object’s
invariant. Also every method must preserve the invariants of the objects of all classes. This actually
makes the verification of class invariants a difficult task as the invariants of all objects in the heap
must be mentioned in every method’s pre and postcondition (except for the particular cases of
constructors and finalizers). When applications are large, the number of verification conditions
may be practically unmanageable and thus the verification process may be very hard. Another
problem is that the verification is non modular, i.e. extending an application with a new class
requires to verify the whole application once again in order to establish that the application does
not violate the invariant of the objects of the newly added class. That is why verification tools may
make some compromises. In JACK, for instance, constructors in a class C preserve the invariants
of all objects of class C and establish the invariant of the receiver object of the constructor. Non
constructor and non finalizer methods declared in class C preserve the invariant of all objects of
class C.

A recent approach which relies on alias control type systems [38, 85] facilitates the verification
of invariants and makes it modular. This technique relies on a hierarchy relation of “owner and
owned” objects in the heap where only owners of an object may modify its contents. The alias
control is guaranteed through ownership type systems which check that only an owner of a reference
can modify its contents. Such technique can be used also for the sound treatment of layer object
structures [83].

2.3 Program verification using program logic

Now that we have defined the source language and its specification language, let us see what are
the possible approaches for verifying that a program respects its specification.

2.3 Program verification using program logic 17

A first possibility is to formalize the semantics of programs and then to perform the verification
directly over this formalization. For instance, this was done in a first version of the Loop tool [60]
where a denotational semantics for programs was formalized in the theorem prover PVS. However,
such a verification needs a lot of user interaction which makes difficult that this approach scale up.

Another approach then consists in using an axiomatic semantics of the programming language
for the verification process. Axiomatic program semantics has been first introduced by C.A.R.
Hoare [53] and is usually known under the name of Hoare logic. A later version of the Loop tool
[60] and the interactive Java verification system Jive [79] are examples for Java program verification
tools which use a Hoare style reasoning. Hoare logic consists in a system of inference rules defined
inductively over the statement structure. The inference rules manipulate Hoare logic triples. A
Hoare triple consists of a predicate Pre, a statement S and a predicate Post, such that if Pre
holds in the initial state of S , then Post holds in the final state of S . For denoting such a Hoare
triple we use the notation {Pre}S{Post}. Correctness of program S w.r.t. a precondition Pre and
postcondition Post is then established if a derivation tree can be built by applying the inference
rule of the Hoare logic over the triple {Pre}S{Post} and the leaves of the tree are either axioms or
valid formulas. Validity of formulas in the leaves of a Hoare logic tree is established by a decision
procedure or a theorem prover. The inference rules in a Hoare logic are such that their premise
states what should hold for the substatements of a statement S in order that the specification for
S holds. Because Hoare logic is syntax directed, reasoning about programs using a Hoare logic is
easier than working directly on the semantics of the programming language. However, Hoare style
verification needs still a considerable amount of user interaction. For instance, we may consider
the Hoare logic rule for the compositional statement given below:

{Pre}S1{Post
′} {Post′}S2{Post}

{Pre}S1;S 2{Post}

The rule states that if there is a predicate Post′ such that the triples {Pre}S1{Post
′} and

{Post′}S2{Post} hold then the triple {Pre}S 1;S 2{Post} holds. Although the inference rule tells
us what must be proved for the substatements for establishing the correctness of {Pre}S 1;S 2{Post},
it does not tell which is the predicate Post′. A user interaction is needed to determine Post′. This
situation occurs often also with the other rules in the logic. Actually, even for small programs, a
lot of human interaction is necessary when using Hoare style reasoning.

Another possibility is to apply a more calculation approach. It consists in an algorithm
wp which from a given postcondition Post of statement S calculates the weakest predicate
wp(S , P ost) that must hold in the prestate of S . Then, for establishing that S respects a pre-
condition Pre and the postcondition Post it is sufficient to show that Pre implies wp(S , P ost),
i.e. that the verification condition Pre ⇒ wp(S , P ost) holds. The calculation of the weakest
predicate can also be a difficult task because the weakest precondition for a while statement of
wp(while(c)S}, P ost) = X is the weakest solution of the following recurrence:

(¬c ∧X) ⇒ Post∧
X ⇒ c⇒ wp(S , X)

Actually, the predicateX is the loop invariant but it is a fact there is no automatic procedure for
finding an invariant for any loop. This means that the weakest precondition function can neither
be completely automated. However, there do exist techniques for an approximative calculation
of invariants: induction -iteration [103] based on iteration of the weakest precondition function
over the loop body, predicate abstraction methods [45] using abstract interpretation or dynamic
invariant detection (used in the Daikon tool [40]). For instance, the extended static checker for
Java ESC/java uses the Daikon tool for inferring loop invariants [87]. Unfortunately, all of these
approaches have shortcomings either because the calculation is very intensive and may loop forever
(in the first case), because of an under-approximation (as in the second case) or not always returning
a result (as in the third case). We can actually “help” the wp by supplying the loop invariants for
the loop statements. In that case, the rule of wp in the case for loop would be :

wp(while(c)[INV] S}, P ost) =
INV∧
(INV ∧ ¬c) ⇒ Post∧
(INV ∧ c) ⇒ wp(S , INV)

18 Java verification overview

which makes the wp automated. In this case, although we do not calculate the weakest precondition
but a weak precondition it is actually sufficient for our purposes. Note that in the following, we will
continue to call the predicate transformer which uses annotations a weakest precondition predicate
transformer function.

Note that there also exists a strongest postcondition predicate transformer function which works
in a forward direction (contrary to the weakest precondition). However, the strongest postcondition
predicate transformer did not gain popularity because of the way it treats assignments. Particu-
larly, the strongest postcondition calculus quantifies existentially over the old value of the assigned
variable while in a weakest predicate transformer assignments are treated with substitutions. For
more detailed information on strongest postcondition calculus the reader may refer to [39]. Us-
ing weakest predicate transformers in program verification thus, avoids to deal with Hoare logic
inference rules. This means that the user interacts (if needed) only in proving the verification
conditions. This approach underlines the extended static checker for ESC/java [72], the Jack tool
[28] and Krakatoa [76]. These tools scale up and has been used in verification of real case studies
[57, 16, 62].

Another aspect of program verification using logical methods is also whether the verification
should be performed directly over the original program or an intermediate language should be used.
Let us see what are intermediate languages and how they can be used in the verification scheme.
For instance, the simple guarded command language can be used as an intermediate language in the
verification procedure. The guarded command language supports only few program constructs but
which are sufficiently expressive to encode a rich programming language. If a guarded command
language is used in the verification procedure this would mean a stage where bytecode programs
are transformed in guarded command language programs. Using guarded command language as
an intermediate representation of programs is useful because the verification condition generator
can interface and can be extended to interface easily several programming languages. Moreover, if
a change in the logic must be made, the change will impact only the constructs of the intermediate
language which in the case of a guarded command language are few. Such an intermediate repre-
sentation is used in the extended static checker ESC/java ([72]) and the Java verification system
Krakatoa [76] which uses the input language of the verification tool Why3. However, we consider
that an intermediate language opens a gap between the verified code and the source code as we
verify a program in the intermediate language and not the original source program. Establishing
the correctness of a verification systems which uses an intermediate language may be not trivial as
the stages of the transformation of the original source program to its encoding in the intermediate
language must be also proved correct. In particular, the verification ESC/java tool which uses an
intermediate language does not have a proof of correctness [44].

A point that we would like also to discuss here is the use of loop frame conditions. For instance,
as we saw from the examples in JML and our source language, we accompany loops not only with
loop invariants but with loop frame conditions, i.e. list of locations that may be modified by a loop.
Although this complicates slightly the verification condition generator, the loop frame condition is
useful as it can work on weaker specification than a verification condition generator which does not
support it. This in particular, implies that the burden of writing specification becomes definitely
lighter, as the person which specifies an application must identify not the strongest loop invariant
but a loop invariant. Of course, he should also identify the locations which are modified by the
loop (locations that may have different values at the end and at the beginning of a loop iteration).
However, modified locations in a loop is easier than identifying the variables not modified in the
loop which must be done if we decide not use loop frame conditions.

To conclude, we consider that using predicate transformers for the generation of verification
conditions makes the verification condition generator automatic. Moreover, performing the veri-
fication directly on the program code is more reliable as it guarantees that the proved program
corresponds to the program that we want to prove. Last, we opt for specification which includes
frame conditions as this leverages the specification burden.

3http://why.lri.fr/

2.4 Weakest precondition predicate transformer for Java like source language 19

2.4 Weakest precondition predicate transformer for Java

like source language

We proceed here with the presentation of the weakest predicate transformer function. We would like
first to remark that our predicate transformer deals both with normal and exceptional termination
of programs. Among the first works on exceptional termination in weakest precondition predicate
transformers is the work of R.Leino [71]. We adopt here a similar approach as the above cited
work. Thus, the predicate transformer takes as arguments a statement S , a normal postcondition
nPostsrc and an exceptional postcondition function excPostsrc.

The intended meaning of the predicate WP that should be calculated by a weakest predicate
transformer function against S , nPostsrc and excPostsrc. The predicate WP must be such that if
it holds in the pre state of S and if S terminates normally then nPostsrc holds in the poststate and
if S terminates on exception Exc then excPostsrc(Exc) holds. The function excPostsrc returns the
predicate excPostsrc(Exc) that must hold in a particular program point if at this point an exception
of type Exc is thrown.

In the following, we will use function updates for the exceptional postcondition of the form
excPostsrc(⊕Exc′ → P) over excPostsrc which are defined in the usual way:

excPostsrc(⊕Exc′ → P)(Exc) =

{

P if Exc <: Exc′

excPostsrc(Exc) else

Note that allowing for exceptional termination in the programming language, makes the defini-
tion of the wp more complicated than standard definitions of the weakest precondition predicate.
Usually, those assume that programs terminate normally. Consider, for instance the standard rule
of the weakest precondition predicate transformer over the conditional statement:

wp((Econd)then{S1}else {S2}, nPostsrc) =

Econd ⇒ wp(S 1, nPostsrc) ∧ ¬Econd ⇒ wp(S 2, nPostsrc)

This rule is correct as far as the evaluation of the expression Econd evaluates normally. But

in our settings, this is not always the case. For instance, if Econd is the relational expression
a.f > 0 and a evaluates to null the above rule does not capture the semantics of the exceptional
termination. As we shall see in the following, the definition presented here will allow us to manage
in appropriate way exceptional termination4. In particular, we extend the wp function also over
expressions which makes the predicate calculus sensible to the exceptional and normal termination
of the expression evaluation. A similar weakest precondition predicate transformer underlines the
verification condition of the Jack verification framework.

In the following, we shall limit ourselves to a simpler specification than described in the previous
Section 2.2. Particularly, we shall assume that methods are provided only with one specification
case for the sake of clarity. Extending the definitions here to multiple specification cases should
not present a major difficulty.

We shall also assume here that frame conditions are correct, i.e. we shall not desugar them
into the appropriate specification (postconditions in the case of method frame conditions and loop
invariants in the case of loop frame conditions) as described in subsection 2.2.5.

In the following, we give a brief discussion on the substitution over expressions and afterwords,
we concentrate on the definition of a weakest precondition predicate transformer function over the
source expressions and statements.

2.4.1 Substitution

Substitution is defined inductively in a standard way over the expression and formula structure.
Still, we extend substitution to deal with field and array updates as follows:

4although here, we rule out these cases, such a definition also allows for dealing with side effects of expression
evaluation like change the value of a variable or location during the evaluation as for instance is the case for Java
expressions like i++

20 Java verification overview

E [f\f(⊕E → E)]

This substitution affects only field access expressions. For instance, the following substitution does
not change the variable a:

a[f\f(⊕E → E)] = a

Field substitution affects only field objects as in the following example:

b.f[f\f(⊕a→ 3)] = b.f(⊕a→ 3)

Here, the substitution affects the field expression by making an update over the field f: b.f(⊕a→
3). The semantics of the resulting expression is that if b = a then the whole expression b.f(⊕a→ 3)
simplifies to 3 otherwise simplifies to b.f.

Formally, we define substitution over field objects as follows:

E .f1[f2\f2[⊕E 1 −→ E 2]] =

E .f1 if f1 6= f2

E .f2[⊕E 1 −→ E 2] else

E .f1(⊕E 1 → E 2)[f2\f2(⊕E 3 → E 4)] =

f1(⊕E 1[f2\f2(⊕E 3 → E 4)] → E 2[f2\f2(⊕E 3 → E 4)]) if f1 6= f2

f1
[⊕E 1[f2\f2(⊕E 3 → E 4)] −→ E 2[f2\f2(⊕E 3 → E 4)]]
[⊕E 3 −→ E 4]

else

2.4.2 Weakest precondition predicate transformer for expressions

In the following, we give a definition of a weakest precondition predicate transformer function for
source expressions.

For calculating the wpsrc predicate of an expression E declared in method m, the function wpsrc

takes as arguments E , a postcondition nPostsrc, an exceptional postcondition function excPostsrc

and returns the formula wpsrc(E , ψ, excPostsrc, m)v which is the wp precondition of expression E if
its evaluation is stored in the special logical variable v.

In Fig. 2.6 we can see the wpsrc rules for most of the expressions of the source language (except
for method invocation and instance creation). As we may notice, for some of the expressions the
definition of the weakest precondition function is the identity function as their evaluation always
terminates normally. For instance, the rule for constant expressions does not change the state and
thus, if a predicate nPostsrc holds after its execution this means that it held in the prestate of
the expression. However, this is not the case for expressions that might throw an exception. The
predicate returned by the weakest precondition predicate transformer for expressions which may
throw an exception will basically accumulate the hypothesis under which the evaluation of the
expression terminates normally and the conditions under which it terminates exceptionally. For
instance, the rule for a cast expression (Class) E shows that the evaluation of the expression does
not change the program state in case the E is of subtype of of class Class. In case the latter is not
true the rule reflects the case that the a CastExc exception is thrown. Note that in the exceptional
case, we specify that the thrown exception object is any fresh exception object w.r.t. the heap in
the previous step via the predicate instances whose semantics is that an object belongs to the
heap in the previous state. Similarly, the rule for the field access expression takes into account the
two possible outcomes of its evaluation. If the evaluation v of the expression E is different from
null then the evaluation terminates normally, otherwise the exceptional postcondition for NullExc
must hold.

In Fig.2.7, we give the rule of instance creation. Recall that the semantics of this construct is
that a new instance of the corresponding class Class is created and the class constructor which

2.4 Weakest precondition predicate transformer for Java like source language 21

wpsrc(const, nPostsrc, excPostsrc, m)v = nPostsrc[v\const]
const ∈ {IntConst , null, this,Var}

wpsrc(E1 op E2, nPostsrc, excPostsrc, m)v =

wpsrc(E1,wpsrc(E2,

v2 6= null ⇒ nPostsrc[v\v1opv2]
∧

v2 = null ⇒

„

∀bv, (¬instances(bv) ∧ bv 6= null) ⇒
excPostsrc(ArithExc)[EXC\bv]

« , excPostsrc, m)v2 , excPostsrc, m)v1

where op ∈ {div, rem}

wpsrc(E .f, nPostsrc, excPostsrc, m)v =

wpsrc(E , v1 6= null ⇒ nPostsrc[v\v1.f] ∧ v1 = null ⇒

„

∀bv, (¬instances(bv) ∧ bv 6= null) ⇒
excPostsrc(NullExc)[EXC\bv]

«

, excPostsrc, m)v1

wpsrc((Class) E , nPostsrc, excPostsrc, m)v =
wpsrc(E , typeof(v1) <: Class ∨ v1 = null ⇒ nPostsrc[v\v1]∧

¬ typeof(v1) <: Class ⇒ ∀bv, (¬instances(bv) ∧ bv 6= null) ⇒ excPostsrc(CastExc)[EXC\bv],
excPostsrc, m)v1

wpsrc(E1 cond E2, nPostsrc, excPostsrc, m)v =
wpsrc(E1,wpsrc(E2, nPostsrc[v\v1condv2], excPostsrc, m)v2 , excPostsrc, m)v1

Figure 2.6: WP for source expressions

has the same name initializes the new reference. Class constructors in Java are also methods
and thus, those are supplied with precondition Class.Presrc and a postcondition Class.nPostsrc.
Thus, the rule for instance creation states that in the state where the constructor of Class is
invoked its precondition Class.Presrc holds and in the state in which Class terminates execution its
postcondition Class.nPostsrc implies the postcondition nPostsrc of the instance creation expression.
Note that the implication is quantified over the newly created instance which did not exist in the
prestate of the instance creation expression and which is different from null. The fact that the
instance is new for the heap w.r.t. the previous execution states is expressed via the predicate
(¬ instances(bv)). Moreover, the fields of the new instance, i.e. fields that are declared in any
superclass of Class or in Class(subtype(f.declaredIn, Class)) are set to their default values in
the precondition of the constructor Class. This correspond to the Java semantics of creating new
instances in the heap, i.e. first the reference is created and its fields are set to their default values
and then, the constructor is invoked. The rule for method invocation is given in Fig.2.8 and is
similar to the instance creation expression rule. In the case for method invocation, we may remark
that a quantification is done over the result of the method invocation.

wpsrc(new Class(), nPostsrc, excPostsrc, m)v =
∀bv,
¬ instances(bv) ∧ bv 6= null ∧ typeof(bv) = Class ⇒
0

B

B

B

B

B

@

Class.Presrc[this\bv][f\f(⊕bv → defVal(f.Type))]subtype(f.declaredIn,Class)∧
„

∀ x ∈ Class. mod ,
(Class.nPostsrc ⇒ nPostsrc)[v\bv]

«

∧
„

∀Exc ∈ Class.exceptionssrc,∀ x ∈ Class. mod ,∀bvexc,
(bv 6= null ∧ typeof(bvexc) <: Exc ∧ Class.excPostSpecsrc(Exc)) ⇒ excPostsrc(Exc)

«

[EXC\bvexc][v\bv]

1

C

C

C

C

C

A

Figure 2.7: Weakest precondition for instance creation

2.4.3 Weakest precondition predicate transformer for statements

In the following, we discuss the weakest precondition predicate transformer for control statements.
We will not give an exhaustive overview of the wp rules for statements but we will rather concentrate

22 Java verification overview

wpsrc(E .m(), nPostsrc, excPostsrc, m)v =

wpsrc(E ,

m.Presrc[this\v1]
∧
„

∀ x ∈ m. mod ,∀bv,
m.nPostsrc[this\v1][result\bv] ⇒ nPostsrc[v\bv]

«

∧
„

∀Exc ∈ m.exceptionssrc,∀ x ∈ m. mod ,∀bvexc,
(typeof(bvexc) <: Exc ∧ Class.excPostSpecsrc(Exc)) ⇒ excPostsrc(Exc)

«

[EXC\bvexc]

, excPostsrc, m)v1

Figure 2.8: Weakest precondition for method invocation

on few which we consider illustrative.

Fig. 2.9 gives the rule for statements. The rule for field assignment shows that the statement
may terminate normally or on an exception. In particular, if the dereferenced object reference E 1

does not evaluate to null then the postcondition nPostsrc must hold where the value of the field f

for the evaluation v1 of E 1 is changed to the value v2 of E 2. The aliasing is treated by an update
of the field with the new value for the corresponding reference. If the dereferenced object reference
E 1 evaluates to null then the postcondition excPostsrc(NullExc) must hold.

The rule while which is slightly different from standard rules for wp for loops as it uses the list
modif which stands for the locations that may be modified in a loop iteration.

Actually, if we want to verify it, we can express it as part of the loop invariant as described in
subsection 2.2.5. Recall that a loop invariant is a predicate which must hold whenever the loop
entry is reached. Thus, the first conjunct of the wp asserts that the invariant INV holds when the
loop starts execution. The second conjunct is actually the wp of the loop condition. We calculate
the precondition of the conditional expression upon a postcondition which expresses first that if it
evaluates to true then the invariant must imply the wp of the loop body which terminates execution
in a state where the invariant holds and second, that upon the termination of the loop, i.e. the
condition evaluates to false the invariant implies the statement’s postcondition normalPost. These
two conditions are quantified over the elements of the modif list. This quantification allows to
initialize correctly the variables that keep their values unchanged at the loop borders.

The control statements related to the exception handling and throwing as well as the finally
statements have a more particular definition. Let us look at the rule for try catch statements.
The weakest predicate of a try catch statement try {S 1} catch(Exc c) {S 2} w.r.t. a normal
postcondition nPostsrc and exceptional postcondition function excPostsrc is the weakest predicate
of the try statement S 1 w.r.t. the same normal postcondition nPostsrc and the updated exceptional
function excPostsrc(⊕Exc → wpsrc(S 2, nPostsrc, excPostsrc, m)). We can see the rule for the try catch

statement as dual to the rule of the compositional statement where in the latter we rather change
the normal postcondition.

The try finally statement calculates the precondition of the try statement S 1 where it takes
as normal postcondition the precondition of the finally statement S 2 calculated upon the initial
normal postcondition nPostsrc and exceptional postcondition function excPostsrc. This expresses
the fact that after the try statement terminates normally the finally statement must be executed
and the whole statement will terminate as the finally statement. On the other hand, the excep-
tional postcondition function passed to the try statement S 1 is basically the initial exceptional
postcondition function excPostsrc but updated for the exception type Exception. It is updated
with the precondition of the finally statement S 2 calculated of the wpsrc which takes as normal
postcondition a predicate which we explain in the following. The postcondition which must hold
in the poststate of S2 states that excPostsrc(Exception) holds in the normal poststate of S 2 if the
variable EXC which stands for the thrown exception object is not null. It also states that the
if EXC is not null then the exceptional postcondition excPostsrc(NullExc) in case of a thrown
NullExc is thrown.

The exception type Exception is the super class of all exception types and thus, an update of
the exceptional postcondition function means that for any exception thrown by S 1 the exceptional
postcondition is actually the precondition of the finally statement S 2. This also corresponds to the

2.4 Weakest precondition predicate transformer for Java like source language 23

wpsrc(S1;S2, nPostsrc, excPostsrc, m) =
wpsrc(S1,wpsrc(S2, nPostsrc, excPostsrc, m), excPostsrc, m)

wpsrc(Var = E2, nPostsrc, excPostsrc, m) =
wpsrc(E2, nPostsrc[Var\v], excPostsrc, m)v

wpsrc(E1.f = E2, nPostsrc, excPostsrc, m) =

wpsrc(E1,wpsrc(E2,

v1 6= null ⇒ nPostsrc[f\f(⊕v1 → v2)]
∧
v1 = null ⇒ (∀bv, (¬instances(bv) ∧ bv 6= null) ⇒

excPostsrc(NullExc)[EXC\bv])

, excPostsrc, m)v2 , excPostsrc, m)v1

wpsrc(if (Econd)then{S1}else {S2} , nPostsrc, excPostsrc, m) =if

wpsrc(Econd , v ⇒ wpsrc(S1, nPostsrc, excPostsrc, m) ∧ ¬v ⇒ wpsrc(S2, nPostsrc, excPostsrc, m), excPostsrc, m)v

wpsrc(while (Econd) [INV, modif] {S}, nPostsrc, excPostsrc, m) =
INV
∧
∀ mod, mod ∈ modif,

INV ⇒ wpsrc(Econd , v ⇒ wpsrc(S , INV, excPostsrc, m) ∧ ¬v ⇒ nPostsrc, excPostsrc, m)v

wpsrc(return E , nPostsrc, excPostsrc, m) =return

wpsrc(E , nPostsrc[result\v], excPostsrc, m)v

wpsrc(throw E , nPostsrc, excPostsrc, m) =

wpsrc(E ,

v = null ⇒ (∀bv, (¬instances(bv) ∧ bv 6= null) ⇒ excPostsrc(NullExc)[EXC\bv])
∧

v 6= null ⇒

„

∀Exc ,
typeof(v) <: Exc ⇒ m.excPostsrc(Exc)[EXC\v]

« , excPostsrc, m)v

wpsrc(try {S1} catch(Exc c) {S2}, nPostsrc, excPostsrc, m) =
wpsrc(S1, nPostsrc, excPostsrc(⊕Exc → wpsrc(S2, nPostsrc, excPostsrc, m)[c\EXC]), m)

wpsrc(try {S1} finally {S2}, nPostsrc, excPostsrc, m) =
wpsrc(S1,wpsrc(S2, nPostsrc, excPostsrc, m),

excPostsrc(⊕Exception → wpsrc(S2,

0

B

@

EXC 6= null ⇒ excPostsrc(Exception)∧
EXC = null ⇒
(∀bv, (¬instances(bv) ∧ bv 6= null) ⇒

excPostsrc(NullExc)[EXC\bv])

1

C

A
, excPostsrc, m)), m)

Figure 2.9: Weakest precondition for control statements

semantics of try finally described earlier. In particular, it says that if the try statement terminates on
exception E the finally statement must be executed. If the finally statement terminates normally,
then the whole statement terminates on exception E and if the finally statement terminates on
exception E’ then the whole statement terminates on exception E’.

24 Java verification overview

Chapter 3

Java bytecode language and its

operational semantics

In this chapter, we shall turn our attention to a bytecode language and and its operational seman-
tics. The bytecode language will be used all along the thesis and more particularly later in Chapter
5 for the definition of the verification condition generator. We define the operational semantics of
the bytecode language as a relation between the initial and final states of instruction execution.
The operational semantics will be used for establishing the soundness of the verification proce-
dure. As our verification procedure is tailored to Java bytecode the bytecode language introduced
hereafter is close to the Java Virtual Machine language [75](JVM for short).

In particular, the features supported by our bytecode language are

arithmetic operations like multiplication, division, addition and subtraction.

stack manipulation Similarly to the JVM our abstract machine is stack based, i.e. instructions
get their arguments from the operand stack and push their result on the operand stack.

method invocation In the following, we consider only non void methods. We restrict our mod-
eling for the sake of simplicity without losing any specific feature of the Java language.

object manipulation and creation Java supports all the facilities for object creation and ma-
nipulation. This is an important aspect of the Java language as it is completely object
oriented. Thus, we support field access and update as well as object creation. Note that we
also support arrays with the corresponding facilities for creation, access and update.

exception throwing and handling Our bytecode language supports runtime and programmatic
exceptions as the JVM does. An example for a situation where a runtime exception is thrown
is a null object dereference. Programmatic exceptions are forced by the programmer with a
special instruction in the program text.

classes and class inheritance Like in the JVM language, our bytecode language supports a tree
class hierarchy in which every class has a super class except the class Object which is the
root of the class hierarchy.

integer type The unique basic type which is supported is the integer type. This is not so unre-
alistic as the JVM treats the other integral types e.g. byte and short like the integer type.
JVM actually supports only few instructions for dealing in a special way with the array of
byte and short.

Our bytecode language omits some of the features of Java. Let us see which ones exactly and
why.

The features not supported by our bytecode language are

void methods Note that the current formalization can be extended to void methods without
major difficulties. However, in our implementation we treat void methods.

26 Java bytecode language and its operational semantics

static fields and methods Static data is shared between all the instances of the class where it
is declared. We can extend our formalization to deal with static fields and methods, however
it would have made the presentation heavier without gaining new feature from the JVM
bytecode language. Once again, static methods are supported in the implementation of the
verification condition generator.

static initialization This part of the JVM is discarded as the JVM specification is ambiguous
on it and thus, its formal understanding is difficult and complex. However, research exists
on the subject as is the work by Leino and al. [69] which deals with static initialization and
static invariants.

garbage collection and finalization Both in the formalization presented in the following as
well as in the implementation of the verification condition generator, we do not support
garbage collection, i.e. unused memory is never freed and assume an infinite memory. Garbage
collection is the general name of techniques for freeing unused memory for later reallocation.
Finalizer methods are closely related to garbage collection. A program developer may write a
finalizer method in a class to specify what are the final operations to be done before an object
of this class is reallocated. Finalizers are executed by the garbage collector. Reasoning and
modeling a garbage collected heap should take into account the notion of reachability of an
object in the heap which can be not trivial. In particular, most of the existing formalizations
of Java discard the garbage collection. Also, standard program logic and semantics of program
logic assertions do not take into account garbage collection, as for instance is the standard
Hoare logic. An interesting work which proposes a new semantics of assertions in a language
with garbage collection is [30]. Although the treatment of garbage collection is omitted here,
it is an important part of the JVM and future extensions of the formalization here should
take it into account.

subroutines Subroutines in Java is a piece of code inside a method which must be executed after
another, no matter how the first terminate execution. They correspond to the construction
try{ } finally { } in the Java language. Subroutines are a controversy point in the
JVM because on one hand they complicate a lot the bytecode verification algorithm in Java
and second, slow the JVM execution because of the way they are implemented. While the
standard compilation of try{ } finally { } is with special instructions, the most recent
Java compilers inline the subroutine code which results more efficient for the bytecode verifier
as well as for the code execution. In the implementation of our verification calculus we also
inline subroutines and in this way we omit the special bytecode constructs for subroutines in
our bytecode language.

errors The exception mechanism in Java is provided with two kind of exceptions: exceptions from
which a reasonable application may recover. i.e. handle the exception and exceptions which
cannot be recovered. This last group of exceptions in Java are called JVM errors. JVM
errors are thrown typically when the proper functioning of the JVM cannot continue. The
cause might be an error on loading, linking, initialization time of a class or on execution
time because of deficiency in the JVM resource, e.g. stack, memory overflow. For instance,
during the resolution of a field name may terminate on NoSuchFieldError if such a field is
not found. Another example is the MemoryOverflowError thrown when no more memory
is available. Note that such errors is not always clear how to express in our program logic
presented later in the thesis. This is because, the logic is more related with the functional
properties of the program while the JVM errors are related more to the physical state of the
JVM. Thus, we omit here this aspect of the JVM.

interface types These are reference types whose methods are not implemented and whose vari-
ables are constants. Such interface types are then implemented by classes and allow that a
class get more than one behavior. A class may implement several interfaces. The class must
give an implementation for every method declared in any interface that it implements. If
a class implements an interface then every object which has as type the class is also of the
interface type. Interfaces are the cause of problems in the bytecode verifier as the type hier-
archy is no more a lattice in the presence of interface types and thus, the least common super

3.1 Notation 27

type of two types is not unique. However, in the current thesis we do not deal with bytecode
verification but we will be interested in the program functional behavior. For instance, if a
method overrides a method from the super class or implements a method from an interface,
our objective will be to establish that the method respects the specification of the method it
overrides or implements. In this sense, super classes or interfaces are treated similarly in our
verification tool.

Moreover, considering interfaces would have complicated the current formalization without
gaining more new features of Java. For instance, in the presence of interfaces, we should have
extended the subtyping relation.

arithmetic overflow The arithmetic in Java is bounded. This means that if the result of an
arithmetic operation exceeds (is below) the largest integer (the smallest) the operation will
result in overflow. The arithmetic proposed here is infinite. Note that depending on what are
the objectives of a formalization of a programming language semantics, one might support
or not bounded arithmetic. For instance, ESC/java does not support bounded arithmetic
for the sake of efficiency [44]. However, if the application domain of a verification tool
targets programs which are sensitive to arithmetic errors it is certainly of interest to support
arithmetic overflow. We could have designed the arithmetic operations such that they take
into account the arithmetic overflow as we consider that for the purposes of the present thesis
this is not necessary and will complicate the presentation without bringing any particular
feature of the bytecode.

64 bit arithmetic We do not consider long values as their treatment is similar to the integer
arithmetic. However, it is true that the formalization and manipulation of the long type can
be more complicated as long values are stored in two adjacent registers but it is feasible to
extend the current formalization to deal with long values.

floating point arithmetic We omit this data in our bytecode language for the following reasons.
There is no support for floating point data by automated tools. For instance, the automatic
theorem prover Simplify which interfaces our verification tool lacks support for floating point
data, see [70]. Although larger and more complicated than integral data, formalization of
floating point arithmetic is possible. For example, the specification of IEEE [36] for floating
point arithmetic as well as a proof for its consistency is done in the interactive theorem prover
Coq. However, including floating point data would not bring any interesting part of Java
but would rather turn more complicated and less understandable the formalizations in the
current document.

Now that we have seen the general outlines of our language, in the rest of this chapter we shall
proceed with a more detailed description.

The rest of this chapter is organized as follows: subsection 3.1 gives some particular notations
that will be used from now on along the thesis, subsection 3.2 introduces the structures classes,
fields and methods used in the virtual machine, subsection 3.3 gives the type system which is
supported by the bytecode language, subsection 3.4 introduces the notion of state configuration,
subsection 3.4.1 gives the modeling of the memory heap, subsection 3.7 is a discussion about our
choice for operational semantics, subsection 3.8 gives the operational semantics of our language
and finally we conclude with subsection 3.10 which is an overview of existing formalizations of the
JVM semantics. .

3.1 Notation

Here we introduce several notations used in the rest of this chapter. If we have a function f with
domain type A and range type B we note it with f : A→ B. If the function receives n arguments
of type A1 . . . An respectively and maps them to elements of type B we note the function signature
with f : A1 ∗ ... ∗ An → B. The set of elements which represent the domain of the function f is
given by the function Dom(f) and the elements in its range are given by Range(f).

28 Java bytecode language and its operational semantics

Function updates of function f with n arguments is denoted with f(⊕x1 . . . xn → y) and the
definition of such function is :

f(⊕x1 . . . xn → y)(z1 . . . zn) =

{

y if x1 = z1 ∧ ... ∧ xn = zn

f(z1 . . . zn) else

The type list is used to represent a sequence of elements. The empty list is denoted with []. If
it is true that the element e is in the list l, we use the notation e ∈ l. The function :: receives two
arguments an element e and a list l and returns a new list e::l whose head and tail are respectively
e and l. The number of elements in a list l is denoted with l.length. The i-th element in a list l
is denoted with l[i]. Note that the indexing in a list l starts at 0, thus the last index in l being
l.length − 1.

3.2 Program, classes, fields and methods

We turn our attention to modeling the structure of a Java class. In the following, classes are
encoded with the data structure Class, fields with Field and methods are encoded with Method
data structure. In the following, we use the domain ClassName for class names, FieldName for
field names and MethodName for method names respectively.

An object of type Class is a tuple with the following components: list of field objects (fields),
which are declared in this class, list of the methods declared in the class (methods), the name of
the class (className) and the super class of the class (superClass). All classes, except the special
class Object , have a unique direct super class. Formally, a class of our bytecode language has the
following structure:

Class =

fields : list Field
methods : list Method
className : ClassName
superClass : Class ∪ {⊥}

A field object is a tuple that contains the unique field id (Name) and a field type (Type) and
the class where it is declared (declaredIn):

Field =

Name : FieldName;
Type : JType ;
declaredIn : Class ∪ {⊥}

From the above definition, we can notice that the field declaredIn may have a value ⊥. This is
because we model the length of a reference pointing to an array object as an element from the
set Field . Because the length of an array is not declared in any class, we assign to its attribute
declaredIn the value ⊥. The special field which stands for the array length (the name of the object
and its field Name have the same name) is the following:

arrLength =

Name = length;
Type = int;
declaredIn = ⊥

There are other possible approaches for modeling the array length. For instance, the array
length can be part of the array reference. We consider that both of the choices are equivalent.
However, the current formalization follows closely our implementation of the verification condition
generator which encodes in this way array length which is necessary if we want to do a proof of
correctness of the implementation.

A method has a unique method id (Name), a return type (retType), a list containing the
formal parameter types(argsType), the number of its formal parameters (nArgs), list of bytecode
instructions representing its body (body), the exception handler table (excHndlS) and the list of
exceptions (exceptions) that the method may throw. Finally, the structure also contains information
about the class where the method is declared(declaredIn).

3.3 Program types and values 29

Method =

Name : MethodName
retType : JType
argsType : list JType
nArgs : nat
body : list I
excHndlS : list ExcHandler
exceptions : list Classexc

declaredIn : Class

We assume that for every method m the entry point is the first instruction in the list of instruc-
tions of which the method body consists, i.e. m.entryPnt = m.body[0].

An object of type ExcHandler contains information about the region in the method body
that it protects, i.e. the start position (startPc) of the region and the end position (endPc), about
the exception it protects from (exc), as well as what position in the method body the exception
handler starts (handlerPc) at.

ExcHandler =

startPc : nat
endPc : nat
handlerPc : nat
exc : Classexc

We require that startPc, endPc and handlerPc fields in any exception handler attribute m.excHndlS

for any method m are valid indexes in the list of instructions of the method body m.body:

∀m : Method,
∀i : nat, 0 ≤ i < m.excHndlS.length,

0 ≤ m.excHndlS[i].endPc < m.body.length∧
0 ≤ m.excHndlS[i].startPc < m.body.length∧
0 ≤ m.excHndlS[i].handlerPc < m.body.length

3.3 Program types and values

The types supported by our language are a simplified version of the types supported by the JVM.
Thus, we have a unique simple type : the integer data type int. The reference type (RefType)
stands for the simple reference types (RefTypeCl) and array reference types (RefTypeArr). As we
said in the beginning of this chapter, the language does not support interface types.

JType ::= RefType | int
RefType ::= RefTypeCl | RefTypeArr
RefTypeCl ::= Class
RefTypeArr ::= JType[]

Our language supports two kinds of values : values of the basic type int and reference values
RefVal . RefVal may be references to class objects, references to array objects or the special null
value which denotes the reference pointing nowhere. The set of references of class objects is denoted
with RefValCl , the set of references to array objects is represented with RefValArr and the null
reference value is denoted with null. The following definition gives the formal grammar for values:

Values ::= RefVal | i, i : int
RefVal ::= RefValCl | RefValArr | null

Every reference has an associated type which is determined by the function TypeOf which
maps references to their dynamic type:

TypeOf : RefVal → RefType

30 Java bytecode language and its operational semantics

Every type has an associated default value which can be accessed via the function defVal.
Particularly, for reference types (RefType) the default value is null and the default value of int
type is 0. Thus, the definition of the function defVal is as follows:

defVal : JType → Values

defVal(T) =

{

null T ∈ RefType
0 T = int

We define also a subtyping relation as follows:

subtype(C,C)

C2=C1.superClass
subtype(C1,C2)

C3=C1.superClass subtype(C3,C2)

subtype(C1,C2) subtype(C1,Object)

subtype(C[],Object)

subtype(C1,C2)

subtype(C1[],C2[])

Note that the subtyping relation that we use here is a subset of the Java subtyping relation.
However, differently from the system of program types in Java, here we do not consider interface
and abstract class types.

3.4 State configuration

State configurations model the program state in particular execution program point by specifying
what is the memory heap in the state, the stack and the stack counter, the values of the local
variables of the currently executed method and what is the instruction which is executed next. Note
that, as we stated before our semantics ignores the method call stack and so, state configurations
also omit the call frames stack.

We define two kinds of state configurations:

S = S interm ∪ Sfinal

The set S interm consists of method intermediate state configurations, which stand for an interme-
diate state in which the execution of the current method is not finished i.e. there is still another in-
struction of the method body to be executed. The configuration < H,Cntr, St,Reg,Pc >∈ S interm

has the following elements:

• the function H: HeapType which stands for the heap in the state configuration

• Cntr is a variable that contains a natural number which stands for the number of elements
in the operand stack.

• St is a partial function from natural numbers to values which stands for the operand stack.

• Reg is a partial function from natural numbers to values which stands for the array of local
variables of a method. Thus, for an index i it returns the value reg(i) which is stored at
that index of the array of local variables

• Pc stands for the program counter and contains the index of the instruction to be executed
in the current state

The elements of the set S final are the final states, states in which the current method execution
is terminated and consists of normal termination states (Snorm) and exceptional termination states
(Sexc):

Sfinal = Snorm ∪ S exc

A method may terminate either normally (by reaching a return instruction) or exceptionally
(by throwing an exception).

3.4 State configuration 31

• < H,Res >norm∈ Snorm which describes a normal final state, i.e. the method execution
terminates normally. The normal termination configuration has the following components :

– the function H: HeapType which reflects what is the heap state after the method termi-
nated

– Res stands for the return value of the method

• < H,Exc >exc∈ Sexc which stands for an exceptional final state of a method, i.e. the
method terminates by throwing an exception. The exceptional configuration has the following
components:

– the heap H

– Exc is a reference to the uncaught exception that caused the method termination

We will denote with < H,Final >final for any configuration which belongs to the set S final.
Later on in this chapter, we define in terms of state configuration transition relation the operational
semantics of our bytecode programming language. In the following, we focus in more detail on the
heap modeling and the operand stack.

3.4.1 Modeling the object heap

An important issue for the modeling of an object oriented programming language and its opera-
tional semantics is the memory heap. The heap is the runtime data area from which memory for
all class instances and arrays is allocated. Whenever a new instance is allocated, the JVM returns
a reference value that points to the newly created object. We introduce a record type HeapType

which models the memory heap. We do not take into account garbage collection and thus, we
assume that heap objects has an infinite memory space.

In our modeling, a heap consists of the following components:

• a component named Fld which is a partial function that maps field structures (of type Field
introduced in subsection 3.2) into partial functions from references (RefType) into values
(Values).

• a component Arr which is a partial function from the components of arrays into their values

• a component Loc which stands for the list of references allocated in the heap

Formally, the data type HeapType has the following structure:

H =

Fld : Field ⇀ (RefVal ⇀ Values)
Arr : RefValArr ∗ nat ⇀ Values
Loc : list RefVal

Another possibility is to model the heap as partial function from locations to objects where
objects contain a function from fields to values. Both formalizations are equivalent, still we have
chosen this model as it follows closely the verification condition generator implementation.

In the following, we are interested only in heap objects H for which the components H.Fld and
H.Arr are functions defined only for references from the proper type, i.e. well-typed and which are
in the list of references of the heap H.Loc and are not null, i.e. well-defined. We give the following
formal definition.

Definition 3.4.1. We say that the heap H is well-formed if the following holds:

∀f : Field,
Dom(H.Fld(f)) = {ref | ref ∈ H.Loc∧

ref 6= null
subtype(TypeOf (ref), f.declaredIn)}

and
Dom(H.Arr) = {ref | ref ∈ H.Loc∧

ref 6= null
0 ≤ i < H.Fld(arrLength)(ref)}

32 Java bytecode language and its operational semantics

If a new object of class C is created in the memory, a fresh reference value ref different from
null which points to the newly created object is added in the heap H and all the values of the
field functions that correspond to the fields in class C are updated for the new reference with the
default values for their corresponding types. The function which for a heap H and a class type C
returns the same heap but with a fresh reference of type C has the following name and signature:

newRef : H → RefTypeCl → H ∗ RefValCl

The formalization of the resulting heap and the new reference is given by the following definition.

Definition 3.4.2. Operator for instance allocation

newRef(H,C) = (H′, ref) ⇐⇒ def

ref 6= null∧
ref /∈ H.Loc∧
H′.Loc = ref::H.Loc∧
TypeOf (ref) = C∧
∀f : Field, instFlds(f,C) ⇒

H′.Fld := H′.Fld(⊕f → f(⊕ref → defVal(f.Type)))∧

In the above definition, we use the function instFlds, which for a given field f and C returns
true if f is an instance field of C :

instFlds : Field → Class → bool

instFlds(f,C) =

true f.declaredIn = C
false C = Object∧ f.declaredIn 6= Object

instFlds(f,C .superClass) else

Identically, when allocating a new object of array type whose elements are of type T and length
l, we obtain a new heap object newArrRef(H, T[], l) which is defined similarly to the previous case:

newArrRef : H → RefTypeArr → H ∗ refArr

Definition 3.4.3. Operator for array allocation

newArrRef(H, T[], l) = (H′, ref) ⇐⇒ def

ref 6= null∧
ref /∈ H.Loc∧
H′.Loc = ref::H.Loc∧
TypeOf (ref) = T[]∧
H′.Fld := H′.Fld(⊕arrLength → arrLength(⊕ref → l))∧
∀i, 0 ≤ i < l ⇒ H′.Arr := H′.Arr(⊕(ref, i) → defVal(T))

In the following, we adopt few more naming conventions which do not create any ambiguity.
Getting the function corresponding to a field f in a heap H : H.Fld(f) is replaced with H(f) for
the sake of simplicity.

The same abbreviation is done for access of an element in an array object referenced by the
reference ref at index i in the heap H. Thus, the usual denotation: H.Arr(ref, i) becomes H(ref, i).

Whenever the field f for the object pointed by reference ref is updated with the value val, the
component H.Fld is updated:

H.Fld(⊕f → H.Fld(f)(⊕ref → val))

In the following, for the sake of clarity, we will use another lighter notation for a field update which
do not imply any ambiguities:

H(⊕f → f(⊕ref → val))

3.5 Throwing and handling exceptions 33

If in the heap H the ith component in the array referenced by ref is updated with the new
value val, this results in assigning in an update of the component H.Arr:

H.Arr(⊕(ref, i) → val)

In the following, for the sake of clarity, we will use another lighter notation for an update of an
array component which do not imply any ambiguities:

H(⊕(ref, i) → val)

3.4.2 Registers

State configurations have an array of registers which is denoted with Reg. Registers are addressed
by indexing and the index of the first register is 0. Thus, Reg(0) stands for the first register in
the state configuration. An integer is be considered to be an index into the register array if and
only if that integer is between zero and one less than the size of the register array. Registers are
used to pass parameters on method invocation. On static method invocation, any parameters are
passed in consecutive registers starting from register Reg(0). The register Reg(0) is always used
to pass a reference to the object on which the instance method is being invoked (this in the Java
programming language). The other parameters are subsequently passed in consecutive registers
starting at register at index 1.

3.4.3 The operand stack

Like the JVM language, our bytecode language is stack based. This means that every method is
supplied with a Last In First Out stack which is used for the method execution to store intermediate
results. The method stack is modeled by the partial function St and the variable Cntr keeps track
of the number of the elements in the operand stack. St is defined for any integer ind smaller than
the operand stack counter Cntr and returns the value St(ind) stored in the operand stack at ind
positions of the bottom of the stack. When a method starts execution its operand stack is empty
and we denote the empty stack with []. Like in the JVM our language supports instructions to
load values stored in registers or object fields and vice versa. There are also instructions that take
their arguments from the operand stack St, operate on them and push the result on the operand
stack. The operand stack is also used to prepare parameters to be passed to methods and to receive
method results.

3.4.4 Program counter

The last component of an intermediate state configuration is the program counter Pc. It contains
the number of the instruction in the array of instructions of the current method which must be
executed in the state.

3.5 Throwing and handling exceptions

As the JVM specification states exception are thrown if a program violates the semantic constraints
of the Java programming language, the Java virtual machine signals this error to the program as
an exception. An example of such a violation is an attempt to index outside the bounds of an
array. The Java programming language specifies that an exception will be thrown when semantic
constraints are violated and will cause a nonlocal transfer of control from the point where the
exception occurred to a point that can be specified by the programmer. An exception is said to be
thrown from the point where it occurred and is said to be caught at the point to which control is
transferred. A method invocation that completes because an exception causes transfer of control
to a point outside the method is said to complete abruptly. Programs can also throw exceptions
explicitly, using throw statements . . .

Our language supports an exception handling mechanism similar to the JVM one. More par-
ticularly, it supports Runtime exceptions:

34 Java bytecode language and its operational semantics

• NullExc thrown if a null pointer is dereferenced

• NegArrSizeExc thrown if there is an attempt to create an array with a negative size

• ArrIndBndExc thrown if an array is accessed out of its bounds

• ArithExc thrown if a division by zero is done

• CastExc thrown if an object reference is cast to to an incompatible type

• ArrStoreExc thrown if an object is tried to be stored in an array and the object is of
incompatible type with type of the array elements

The language also supports programming exceptions. Those exceptions are forced by the pro-
grammer, by a special bytecode instruction as we shall see later in the coming section.

The modeling of the exception handling mechanism involves several auxiliary functions. The
function getStateOnExcRT deals with bytecode instructions that may throw runtime exceptions.
This function applies only to instructions which may throw a RuntimeExc exception but which are
not a method invocation neither the special instruction by which the program can throw explicitly
an exception. The function returns the state configuration after the current instruction during the
execution of m throws a runtime exception of type E. If the method m has an exception handler which
can handle exceptions of type E thrown at the index of the current instruction, the execution will
proceed and thus, the state is an intermediate state configuration. If the method m does not have
an exception handler for dealing with exceptions of type E at the current index, the execution of m
terminates exceptionally and the current instruction causes the method exceptional termination.
Note also that the heap is changed as a new instance of the corresponding exceptional type is
created:

getStateOnExcRT : S interm ∗ ExcType ∗ExcHandler[] → S interm ∪ Sexc

getStateOnExcRT(< H,Cntr, St,Reg,Pc >, E, excH[]) =

< H′, 0, St(⊕0 → ref),Reg, handlerPc >
if findExcHandler (E,Pc,excH[])
= handlerPc

< H′, ref >exc if findExcHandler (E,Pc,excH[])
= ⊥

where
(H′, ref) = newRef(H, E)

If an exception E is thrown by instruction at position i while executing the method m, the
exception handler table m.excHndlS will be searched for the first exception handler that can handle
the exception. The search is done by the function findExcHandler . If there exists such a handler
the function returns the index of the instruction at which the exception handler starts, otherwise
it returns ⊥:

findExcHandler : ExcType ∗ nat ∗ExcHandler[] → {nat ∪ ⊥}

findExcHandler (E,Pc, excH[]) =

excH[m].handlerPc
if hExc 6= emptySet
where m = min(hExc)

⊥ else

where

hExc = {k |
excH[k] = (startPc, endPc, handlerPc, E′)∧
startPc ≤ Pc < endPc∧
subtype(E, E′)

}

3.6 Method lookup 35

3.6 Method lookup

Java allows that a class declares a method m with the same signature as in one of its super types. In
this case, we say that method m overrides the corresponding method in the super type or interface.
When defining subtypes, this feature of Java allows to change the behavior of the subtype w.r.t.
the superclass behavior.

This however complicates slightly the invocation mechanism. Let us see why. The problem
arises because the types of variables on execution time differ from the type with which they are
declared. In particular, in Java we talk about dynamic type and static type of expressions. Dynamic
types can not be determined statically, they can only be determined on execution time. For
instance, if we have a Java expression a.m() where the variable a is declared with type A and class
A has a subclass B, in the general case it is not possible to determine statically if a contains a
reference value of dynamic type B or dynamic type A. If a method m is invoked on object of
dynamic type B accordingly to the semantics of Java, we intend to call the method declared in the
class B if a method with such signature is declared in B.

Because this cannot be resolved statically, it is the virtual machine which on execution time
determines which method to execute. In order, to simulate this behavior we define the function
lookUp, which takes a method signature - its name, its argument types and its return value and
a class Class and determines either the method is declared in Class via the function findMethod
which searches in the list of the method of class Class. If this is the case, then the lookup procedure
returns the method in Class, otherwise the procedure continues recursively to look for the method
in the super type Class.superClass of Class. Finally, we give the function for the method look up:

lookUp(name, argTypes, retType, Class) =

m findMethod (name, argTypes, retType, Class) = m

m
findMethod (name, argTypes, retType, Class) = ⊥∧
lookUp(name, argTypes, retType, Class.superClass) = m

3.7 Design choices for the operational semantics

Before proceeding with the motivations for the choice of the operational semantics, we shall first
look at a brief description of the semantics of the Java Virtual Machine (JVM).

JVM is stack based and when a new method is called a new method frame is pushed on the
frame stack and the execution continues on this new frame. A method frame contains the method
operand stack and the array of registers of the method. When a method terminates its execution
normally, the result, if any, is popped from the method operand stack, the method frame is popped
from the frame stack and the method result (if any) is pushed on the operand stack of its caller. If
the method terminates with an exception, it does not return any result and the exception object
is propagated back to its callers. Thus, an operational semantics which follows closely the JVM
would model the method frame stack and use a small step operational semantics.

However, the purpose of the operational semantics presented in this chapter is to give a model
w.r.t.which a proof of correctness of our verification calculus will be done. Because the latter is
modular and assumes program termination, i.e. the verification calculus assumes the correctness
and the termination of the rest of the methods, we do not need a model for reasoning about the
termination or the correctness of invoked methods. A big step operational semantics which is silent
about the method frame stack provides a suitable level of abstraction.

3.8 Bytecode language and its operational semantics

The bytecode language that we introduce here corresponds to a representative subset of the Java
bytecode language. In particular, it supports object manipulation and creation, method invocation,

36 Java bytecode language and its operational semantics

as well as exception throwing and handling. In fig. 3.1, we give the list of instructions that
constitute our bytecode language1.

I ::= nop

| if cond
| goto
| return
| arith op

| load
| store
| push
| pop
| dup
| iinc
| new
| newarray
| putfield
| getfield
| astore
| aload
| arraylength
| instanceof
| checkcast
| athrow
| invoke

Figure 3.1: Bytecode language

We define the operational semantics of a single Java instruction as a relation between its initial
and final state configurations as follows.

Definition 3.8.1 (State Transition). If an instruction I in the body of method m starts execu-
tion in a state with configuration < H,Cntr, St,Reg,Pc > and terminates execution in state with
configuration < H′,Cntr′, St′,Reg′,Pc′ > we denote this by

m ` I :< H,Cntr, St,Reg,Pc >↪→< H′,Cntr′, St′,Reg′,Pc′ >

We also define the transitive closure of the single execution step with the following definition.

Definition 3.8.2 (Transitive closure of a method state transition relation). If in the
execution of the method m in state < H,Cntr, St,Reg,Pc > executes an instruction I and there
exists a transitive state transition to the state < H′,Cntr′, St′,Reg′,Pc′ > we denote this with:

m ` I :< H,Cntr, St,Reg,Pc >↪→∗< H′,Cntr′, St′,Reg′,Pc′ >

The following definition characterizes the executions that terminate.

Definition 3.8.3 (Termination of method execution). If the method m starts execution in a
state < H,Cntr, St,Reg,Pc > at the entry point instruction m.body[0] and there is a transitive state
transition to the final state < H′,Final >final then we denote this with:

m :< H,Cntr, St,Reg,Pc >⇓< H′,Final >final

1The instruction arith op stands for any arithmetic instruction in the list add, sub, mult, and, or, xor , ishr,
ishl, div, rem

3.8 Bytecode language and its operational semantics 37

We now give the operational semantics of a terminating method execution. A terminating
execution of method m is the execution of its body up to reaching a final state configuration:

m ` m.body[0] :< H,Cntr, St,Reg,Pc >↪→∗< H′,Final >final

m :< H,Cntr, St,Reg,Pc >⇓< H′,Final >final

We now turn to the semantics of the individual instructions in our language. Fig. 3.2 gives
the rules for control transfer instructions. The first rule refers to the instruction if cond . The
condition cond= {=, 6=,≤, <,>,≥} is applied to the stack top St(Cntr) and the element below
the stack top St(Cntr -1) which must be of type int. If the condition evaluates to true then the
control is transfered to the instruction at index n, otherwise the control continues at the instruction
following the current instruction. The top two elements St(Cntr) and St(Cntr - 1) of the stack
top are popped from the operand stack. The rule for goto shows that the instruction transfers the
control to the instruction at position n. The instruction return causes the normal termination of
the execution of the current method m. The resulting poststate of the instruction is a final state
where the return value is contained in the stack top element St(Cntr).

m `nop:<H,Cntr,St,Reg,Pc>↪→<H,Cntr,St,Reg,Pc+1>

cond (St(Cntr),St(Cntr−1))

m `if cond n:<H,Cntr,St,Reg,Pc>↪→<H,Cntr−2,St,Reg,n>

not(cond(St(Cntr),St(Cntr−1)))

m`if cond n:<H,Cntr,St,Reg,Pc>↪→<H,Cntr−2,St,Reg,Pc+1>

m`return:<H,Cntr,St,Reg,Pc>↪→<H,St(Cntr)>norm

Figure 3.2: Operational semantics for the nop and control transfer instructions

Fig. 3.3 shows the semantics of arithmetic instructions and instructions for loading and storing
on the operand stack. Arithmetic instruction pop the values which are on the stack top St(Cntr
) and St(Cntr - 1) at the position below and apply the corresponding arithmetic operation on
them. The stack counter is decremented and the resulting value on the stack top St(Cntr - 1)
op St(Cntr) is pushed on the stack top St(Cntr - 1). Note that our formalization does not take
into consideration overflow of arithmetic instructions, i.e. we assume that we can manipulate any
unbounded integers. We may remark that there are two rules for the arithmetic instructions div

and rem. This is because these instructions may terminate on a runtime exception when the second
argument is 0. Let us focus on their rules in more detail. From the rule for exceptional termination
we can see that the exception handler table m.excHndlS of the current method will be searched for
an exception handler protecting the current position Pc from ArithExc exceptions and depending
whether such a handler was found or not the instruction execution will terminate exceptionally or
not.

The instructions load i and store i load and store respectively the value of the local variable
of the currently executing method, while the the instruction iinc increments the value of the local
variable Reg(i). The instruction push i pushes on the stack top the integer value i. The instruction
pop pops the stack top element. The instruction dup duplicates the stack top element St(Cntr).

38 Java bytecode language and its operational semantics

Cntr′ = Cntr − 1
St′ = St(⊕Cntr − 1 → St(Cntr) op St(Cntr − 1))
Pc′ = Pc + 1

m `arith op:<H,Cntr,St,Reg,Pc>↪→<H,Cntr′

,St′,Reg,Pc′

>

op = {div, rem}
St(Cntr) = 0
getStateOnExcRT(< H,Cntr, St,Reg,Pc >, ArithExc, m.excHndlS) = S

m `arith op:<H,Cntr,St,Reg,Pc>↪→S

Cntr′ = Cntr + 1
St′ = St(⊕Cntr + 1 → Reg(i))
Pc′ = Pc + 1

m `load i:<H,Cntr,St,Reg,Pc>↪→<H,Cntr′

,St′,Reg,Pc′

>

Cntr′ = Cntr − 1
Reg′ = Reg(⊕i→ St(Cntr))
Pc′ = Pc + 1

m `store i:<H,Cntr,St,Reg,Pc>↪→<H,Cntr′

,St,Reg′

,Pc′

>

Reg′ = Reg(⊕i→ Reg(i) + 1)
Pc′ = Pc + 1

m `iinc i:<H,Cntr,St,Reg,Pc>↪→<H,Cntr,St,Reg′

,Pc′

>

Cntr′ = Cntr + 1
St′ = St(⊕Cntr + 1 → i)
Pc′ = Pc + 1

m `push i:<H,Cntr,St,Reg,Pc>↪→<H,Cntr′

,St′,Reg,Pc′

>

Cntr′ = Cntr − 1
Pc′ = Pc + 1

m `pop:<H,Cntr,St,Reg,Pc>↪→<H,Cntr′

,St,Reg,Pc′

>

Cntr′ = Cntr + 1
St′ = St(⊕Cntr + 1 → St(Cntr))
Pc′ = Pc + 1

m `dup:<H,Cntr,St,Reg,Pc>↪→<H,Cntr′

,St′,Reg,Pc′

>

Figure 3.3: Operational semantics for arithmetic and load store instructions

3.8 Bytecode language and its operational semantics 39

St(Cntr − 1) 6= null
H′ = H(⊕f → f(⊕St(Cntr − 1) → St(Cntr)))
Cntr′ = Cntr − 2
Pc′ = Pc + 1

m`putfield f:<H,Cntr,St,Reg,Pc>↪→<H′

,Cntr′,St,Reg,Pc′

>

St(Cntr − 1) = null
getStateOnExcRT(< H,Cntr, St,Reg,Pc >, NullExc, m.excHndlS) = S

m`putfield f:<H,Cntr,St,Reg,Pc>↪→S

St(Cntr) 6= null
St′ = St(⊕Cntr → H(f)(St(Cntr)))
Pc′ = Pc + 1

m`getfield f:<H,Cntr,St,Reg,Pc>↪→<H,Cntr,St′

,Reg,Pc′

>

St(Cntr) = null
getStateOnExcRT(< H,Cntr, St,Reg,Pc >, NullExc, m.excHndlS) = S

m`getfield f:<H,Cntr,St,Reg,Pc>↪→S

Figure 3.4: Operational semantics for field manipulation

Fig. 3.4, 3.5 and 3.6 give the semantics for instructions manipulating the program heap. Let us
focus on Fig. 3.4 which shows how object fields are accessed and modified. We shall concentrate
on the instruction for field update putfield, the instruction for astore and array length access
arraylength, the others being similar. The instruction putfield pops the top value contained on
the stack top St(Cntr) and the reference value contained in St(Cntr - 1). If the reference St(Cntr -
1) is not null, the function standing for the f is updated with the valueSt(Cntr) for the reference
St(Cntr - 1) and the counter Cntr is decremented. If the reference in St(Cntr - 1) is null then a
NullExc is thrown.

The instruction astore stores the value in St(Cntr) at index St(Cntr -1) in the array St(Cntr
-2). The three top stack elements St(Cntr), St(Cntr - 1) and St(Cntr - 2) are popped from the
operand stack. The type value contained in St(Cntr) must be assignment compatible with the type
of the elements of the array reference contained in St(Cntr - 2), St(Cntr - 1) must be of type int.
The value in the stack top element is stored in the component at index St(Cntr - 1) of the array
in St(Cntr - 2). If the array reference St(Cntr - 2) is null a NullExc is thrown. If St(Cntr - 1) is
not in the bounds of the array in St(Cntr - 2) an ArrIndBndExc exception is thrown. If St(Cntr
) is not assignment compatible with the type of the components of the array, then ArrStoreExc

is thrown.

The instruction arraylength gets the length of an array. The stack top element is popped
from the stack. It must be a reference that points to an array. If the stack top element is not null
the length of the array arrLengthSt(Cntr) is fetched and pushed on the stack. If the stack top
element is null then a NullExc is thrown. Here we can see how the array length is modeled via
the special object field arrLength.

Let us now look at Fig. 3.6 to see how object creation is modeled.

For example, a new class instance is created by the instruction new. A new fresh location ref

is added in the memory heap H of type C , the stack counter Cntr is incremented. The reference
ref is put on the stack top St(Cntr + 1). It deserves to note that although the semantics of the
instance creation described here is very close to the JVM semantics, we omit the so called VM
errors, e.g. such the class from which an instance must be created is not found.

The instruction newarray creates a new array whose components are of type T and whose length
is the stack top value is allocated on the heap. The array elements are initialized to the default
value of T and a reference to it is put on the stack top. In case the stack top is less than 0, then
NegArrSizeExc is thrown.

Our language also supports instructions for checking if an object is of a given type. They are

40 Java bytecode language and its operational semantics

St(Cntr − 2) 6= null
0 ≤ St(Cntr − 1) < arrLength(St(Cntr − 2))
H′ = H(⊕(St(Cntr − 2), St(Cntr − 1)) → St(Cntr))
Cntr′ = Cntr − 3
Pc′ = Pc + 1

m`astore :<H,Cntr,St,Reg,Pc>↪→<H′

,Cntr′,St,Reg,Pc′

>

St(Cntr − 2) = null
getStateOnExcRT (< H,Cntr, St,Reg,Pc >, NullExc, m.excHndlS) = S

m`astore :<H,Cntr,St,Reg,Pc>↪→S

St(Cntr − 2) 6= null
(St(Cntr − 1) < 0 ∨ St(Cntr − 1) ≥ arrLength(St(Cntr − 2)))
getStateOnExcRT (< H,Cntr, St,Reg,Pc >, ArrIndBndExc, m.excHndlS) = S

m`astore :<H,Cntr,St,Reg,Pc>↪→S

St(Cntr − 1) 6= null
St(Cntr) ≥ 0
St(Cntr) < arrLength(St(Cntr − 1))
Cntr′ = Cntr − 1
St′ = St(⊕Cntr − 1 → H(St(Cntr − 1)St(Cntr)))
Pc′ = Pc + 1

m`aload :<H,Cntr,St,Reg,Pc>↪→<H,Cntr′

,St′,Reg,Pc′

>

St(Cntr − 1) = null
getStateOnExcRT (< H,Cntr, St,Reg,Pc >, NullExc, m.excHndlS) = S

m`aload :<H,Cntr,St,Reg,Pc>↪→S

St(Cntr − 1) 6= null
(St(Cntr) < 0 ∨ St(Cntr) ≥ arrLength(St(Cntr − 1)))
getStateOnExcRT (< H,Cntr, St,Reg,Pc >, ArrIndBndExc, m.excHndlS) = S

m`aload :<H,Cntr,St,Reg,Pc>↪→S

St(Cntr) 6= null
St′ = St(⊕Cntr → H(arrLength)(St(Cntr)))
Pc′ = Pc + 1

m`arraylength:<H,Cntr,St,Reg,Pc>↪→<H,Cntr,St′

,Reg,Pc′

>

St(Cntr) = null
getStateOnExcRT (< H,Cntr, St,Reg,Pc >, NullExc, m.excHndlS) = S

m`arraylength:<H,Cntr,St,Reg,Pc>↪→S

Figure 3.5: Operational semantics for array manipulation

given in Fig. 3.7. For instance, the instruction instanceof checks if the stack top element is of
subtype C , then the 1 is pushed on the stack. If the object reference is nullor not a subtype of C
then 0 is pushed on the stack top. The checkcast instruction has a similar behavior, only that in
case that the stack top element is not a subclass of C a CastExc is thrown.

The language presented here allows also to force exception throwing. This is done via the
instruction athrow presented in Fig. 3.8. The stack top element must be a reference of an object
of type Throwable. If the exception object on the stack top is not null then there are two possible
execution of the instruction. Either there is not an exception handler that protects this bytecode

3.8 Bytecode language and its operational semantics 41

(H′, ref) = newRef(H,C)
Cntr′ = Cntr + 1
St′ = St(⊕Cntr + 1 → ref)
Pc′ = Pc + 1

m `new C :<H,Cntr,St,Reg,Pc>↪→<H′

,Cntr′,St′

,Reg,Pc′

>

St(Cntr) ≥ 0
(H′, ref) = newArrRef(H, type, St(Cntr))
Cntr′ = Cntr + 1
St′ = St(⊕Cntr + 1 → ref)
Pc′ = Pc + 1

m`newarray T:<H,Cntr,St,Reg,Pc>↪→<H′

,Cntr′,St′,Reg,Pc′

>

St(Cntr) < 0
getStateOnExcRT(< H,Cntr, St,Reg,Pc >, NegArrSizeExc, m.excHndlS) = S

m`newarray T:<H,Cntr,St,Reg,Pc>↪→S

Figure 3.6: Operational semantics for object creation

subtype(H.TypeOf (St(Cntr)),C)
St′ = St(⊕Cntr → 1)
Pc′ = Pc + 1

instanceof C :<H,Cntr,St,Reg,Pc>↪→<H,Cntr,St′

,Reg,Pc′

>

¬(subtype(H.TypeOf (St(Cntr)),C)) ∨ St(Cntr) = null
St′ = St(⊕Cntr → 0)
Pc′ = Pc + 1

m`instanceof C:<H,Cntr,St,Reg,Pc>↪→<H,Cntr,St′

,Reg,Pc′

>

subtype(H.TypeOf (St(Cntr)),C) ∨ St(Cntr) = null
Pc′ = Pc + 1

m`checkcast C :<H,Cntr,St,Reg,Pc>↪→<H,Cntr,St,Reg,Pc′

>

St(Cntr) ∈ H.Loc

¬(subtype(H.TypeOf (St(Cntr)),C))
getStateOnExcRT(< H,Cntr, St,Reg,Pc >, CastExc, m.excHndlS) = S

m`checkcast C :<H,Cntr,St,Reg,Pc>↪→S

Figure 3.7: Operational semantics for type checking

instruction from the exception type and the current method m terminates exceptionally by throwing
the exception object St(Cntr) or there is a handler that protects this bytecode instruction from
the exception thrown and the control is transfered to the instruction at index PceH at which the
exception handler starts. If the object on the stack top is null, a NullExc is thrown and is handled
as the function getStateOnExcRT prescribes.

Finally, in Fig. 3.9, we can see the semantics of method invocation. As the rule shows, first
the proper method n to be executed will be looked for via the function lookUp. This is is done
by taking from the data structure meth the method signature - the method name meth.Name, its
argument types meth.argsType and its return type method.retType. The search starts from the
dynamic type of the object reference on which the method must be called. Once the proper method
method n is found it is invoked. Next, the first top n.nArgs elements in the operand stack St are

42 Java bytecode language and its operational semantics

St(Cntr) 6= null
findExcHandler (H.TypeOf (St(Cntr)),Pc, m.excHndlS) = ⊥

m`athrow:<H,Cntr,St,Reg,Pc>↪→<H,St(Cntr)>exc

St(Cntr) 6= null

findExcHandler (H.TypeOf (St(Cntr)),Pc, m.excHndlS) = PceH

St′ = St(⊕0 → St(Cntr))

m`athrow:<H,Cntr,St,Reg,Pc>↪→<H,0,St′

,Reg,PceH
>

St(Cntr) = null
getStateOnExcRT (< H,Cntr, St,Reg,Pc >, NullExc, m.excHndlS) = S

m`athrow:<H,Cntr,St,Reg,Pc>↪→S

Figure 3.8: Operational semantics for programmatic exceptions

popped from the operand stack. If St(Cntr - n .nArgs) is not null, the method n is executed on
the object St(Cntr - n.nArgs) and where the first n.nArgs+ 1 elements of the list of its of local
variables is initialized with St(Cntr - n .nArgs) . . . St(Cntr). In case that the execution of method
n terminates normally, the return value Res of its execution is stored on the operand stack of the
invoker. If the execution of of method n terminates because of an exception Exc, then the exception
handler of the invoker is searched for a handler that can handle the exception. In case the object
St(Cntr - n.nArgs) on which the method n must be called is null, a NullExc is thrown. Note that
in this last case we do not perform method lookup as it is sure that an exception can be thrown.

lookUp(meth.Name,meth.argsType,meth.retType,TypeOf (St(Cntr − meth.nArgs))) = n
St(Cntr − n.nArgs) 6= null
n :< H, 0, [], [St(Cntr − n.nArgs), . . . , St(Cntr)], 0 >⇓< H′,Res >norm

Cntr′ = Cntr − m.nArgs + 1
St′ = St(⊕Cntr′ → Res)
Pc′ = Pc + 1

m`invoke meth:<H,Cntr,St,Reg,Pc>↪→<H′

,Cntr′,St′

,Reg,Pc′

>

lookUp(meth.Name,meth.argsType,meth.retType,TypeOf (St(Cntr − meth.nArgs))) = n
St(Cntr − n.nArgs) 6= null
n :< H, 0, [], [St(Cntr − n.nArgs), . . . , St(Cntr)], 0 >⇓< H′,Exc >exc

findExcHandler (H′.TypeOf (Exc),Pc, m.excHndlS) = ⊥
m`invoke meth:<H,Cntr,St,Reg,Pc>↪→<H′

,Exc>exc

lookUp(meth.Name,meth.argsType,meth.retType,TypeOf (St(Cntr − meth.nArgs))) = n
St(Cntr − meth.nArgs) 6= null
n :< H, 0, [], [St(Cntr − n.nArgs), . . . , St(Cntr)], 0 >⇓< H′,Exc >exc

findExcHandler (H′.TypeOf (Exc),Pc, m.excHndlS) = PceH

St′ = St(⊕0 → Exc)

m`invoke meth:<H,Cntr,St,Reg,Pc>↪→<H′

,0,St′,Reg,PceH
>

St(Cntr − meth.nArgs) = null
getStateOnExcRT (< H,Cntr, St,Reg,Pc >, NullExc, m.excHndlS) = S

m`invoke meth:<H,Cntr,St,Reg,Pc>↪→S

Figure 3.9: Operational semantics for method invocation

3.9 Representing bytecode programs as control flow graphs 43

3.9 Representing bytecode programs as control flow graphs

This section will introduce a formalization of an unstructured program in terms of a control flow
graph. The notion of a loop in a bytecode program will be also defined. Note that in the following,
the control flow graph corresponds to a method body.

Recall from Section 3.2 that every method m has an array of bytecode instructions m.body. A
method entry point instruction is an instruction at which an execution of a method starts. We
assume that a method body has exactly one entry point and this is the first element in the method
body m.body[0].

The array of bytecode instructions of a method m determine the control flow graph G(V,−→)
of method m in which the vertexes are the instruction indexes of the method body:

V = {k | 0 ≤ k < m.body.length}

Fig. 3.10 gives the definition of the execution relation between instructions. Note first that we
rather use the infix notation j −→ k instead of (j, k) ∈−→. Moreover, there is an edge between
two vertices’s j and k if they may execute immediately one after another. We say that j is a
predecessor of k and that k is a successor of j. The definition states the return instruction does
not have successors. If m.body[j] is the jump instruction if cond k then its successors are the
instruction at index k and the instruction at index j in m.body. From the definition, we also get
that every instruction which potentially may throw an exception of type Exc has as successor the
first instruction of the exception handler that may handle the exception type Exc. For instance, a
successor of the instruction putfield is the exception handler entry point which can handle the
NullExc exception. The possible successors of the instruction athrow are the entry point of any
exception handler in the method m. .

We assume that the control flow graph of every method is reducible, i.e. every loop has exactly
one entry point. This actually is admissible as it is rarely the case that a compiler produce a
bytecode with a non reducible control flow graph and the practice shows that even hand written
code is usually reducible. However, there exist algorithms to transform a non reducible control
flow graph into a reducible one. For more information on program control flow graphs, the curious
reader may refer to [9]. The next definition identifies backlogs in the reducible control flow graph
(intuitively, the edge that goes from an instruction in a given loop in the control flow graph to
the loop entry) with the special execution relation −→l as follows:

Definition 3.9.1 (Backedge Definition). Assume we have the method m with body m.body which
determine the control flow graph G(V,−→) with entry point m.body[0]. In such a graph G, we say
that loopEntry is a loop entry instruction and loopEnd is a loop end instruction of the same loop
if the following conditions hold:

• for every path P in the control flow graph P from m.body[0] to loopEnd there exists a subpath
subP which is a prefix of P and which terminates at loopEntry such that loopEnd does not
belong to subP

• there is a path in the control flow graph in which loopEntry follows immediately after loopEnd
(loopEnd −→ loopEntry)

We denote the execution relation between loopEnd and loopEntry with
loopEnd −→l loopEntry and we say that −→l is a loop backedge.

In [9], reducibility is defined in terms of the dominator relation. Although not said explicitly,
the first condition in the upper definition corresponds to the dominator relation.

We illustrate the above definition with the control flow graph of the example from Fig. 2.2.In
the figure, we rather show the execution relation between basic blocks which is a standard notion
denoting a sequence of instructions which execute sequentially and where only the last one may be
a jump and the first may be a target of a jump. The black edges represent a sequential execution
relation, while dashed edges represent loop backedge, i.e. the edge which stands for the execution
relation between a final instruction (instruction at index 18) in the bytecode cycle and the entry
instruction of the cycle (instruction at index 19). Note that the “back” in “backedge” stands for

44 Java bytecode language and its operational semantics

m.body[j]=nop
j−→j+1

m.body[j]=if cond k
j−→k

m.body[j]=goto k

j−→k

m.body[j]=putfield findExcHandler (NullExc,j,m.excHndlS)=k

j−→k

m.body[j]=putfield findExcHandler (NullExc,j,m.excHndlS)=k

j−→k

m.body[j]=getfield findExcHandler (NullExc,j,m.excHndlS)=k
j−→k

m.body[j]=astore findExcHandler (NullExc,j,m.excHndlS)=k
j−→k

m.body[j]=astore findExcHandler (ArrIndBndExc,j,m.excHndlS)=k
j−→k

m.body[j]=aload findExcHandler (NullExc,j,m.excHndlS)=k
j−→k

m.body[j]=aload findExcHandler (ArrIndBndExc,j,m.excHndlS)=k
j−→k

m.body[j]=invoke n findExcHandler (NullExc,j,m.excHndlS)=k
j−→k

m.body[j]=invoke n
∀Exc, ∃s, n.exceptions[s] = Exc∧
findExcHandler (Exc, j, m.excHndlS) = k

j−→k

m.body[j]=athrow ∀Exc,findExcHandler (Exc,j,m.excHndlS)=k
j−→k

m.body[j]6=goto m.body[j]6=return k=j+1

j−→k

Figure 3.10: Execution relation between bytecode instructions in a control flow
graph

that the control flow goes back to an instruction through which the execution path has already
passed which does not imply that the orientation of the edge is in a backwards direction in the
graphical representation of the control flow graph.

3.10 Related Work

A considerable effort has been done on the formalization of the JVM semantics as a reply to the
holes and ambiguities encountered in the specification of the Java bytecode verifier. Thus, most of
the existing formalizations are used for reasoning over the Java bytecode well-typedness. Differently
from the aforementioned formalizations, our formalization will serve us to prove the verification
condition scheme introduced in Chapter 5.

We can start with the work of Stata and Abadi [102] in which they propose a semantics and
typing rules for checking the correct behavior of subroutines in the presence of polymorphism. In
[48] N.Freund and J.Mitchell extend the aforementioned work to a language which supports all the
Java features e.g. object manipulation and instance initialization, exception handling, arrays. In
[24], Boerger and all formalize the semantics of the JVM as well as a compiler from Java to Java

3.10 Related Work 45

sequential execution
edge

backedge

24 iconst_0
25 ireturn

19 iload_3
20 aload_0

22 arraylength
23 if_icmplt 5

21 getfield list

18 iinc 3

11 aload_0
12 getfield list
13 iload_3

15 aastore
14 aload_2

16 iconst_1
17 ireturn

9 aload_1

6 getfield list
7 iload_3
8 aaload

5 aload_0

10 if_acmpne 18

2 iconst_0
3 istore_3
4 goto 19

1 istore 3
0 iconst_0

Figure 3.11: The control flow graph of the source program from Fig. 2.2

bytecode and exhibit conditions upon which a Java compiler can be proved to compile Java code
correctly. In [94] Qian gives a formalization in terms of a small step operational semantics of a large
subset of the Java bytecode language including method calls, object creation and manipulation,
exception throwing and handling as well subroutines, which is used for the formal specification
of the language and the bytecode verifier. Based on the work of Qian, in [93] C.Pusch gives a
formalization of the JVM and the Java Bytecode Verifier in Isabelle/HOL and proves in it the
soundness of the specification of the verifier. In [63], Klein and Nipkow give a formal small step
and big step operational semantics of a Java-like language called Jinja, an operational semantics
of a Jinja VM and its type system and a bytecode verifier as well as a compiler from Jinja to the
language of the JVM. They prove the equivalence between the small and big step semantics of Jinja,
the type safety for the Jinja VM, the correctness of the bytecode verifier w.r.t. the type system and
finally that the compiler preserves semantics and well-typedness. The small size and complexity
of the JavaCard platform (the JVM version tailored to smart cards) simplifies the formalization
of the system and thus, has attracted particularly the scientific interest. CertiCartes [19, 18] is
an in-depth formalization of JavaCard. It has a formal executable specification written in Coq of
a defensive and an offensive JCVM and an abstract JCVM together with the specification of the
Java Bytecode Verifier. Siveroni proposes a formalization of the JCVM in [101] in terms of a small
step operational semantics.

46 Java bytecode language and its operational semantics

Chapter 4

Bytecode modeling language

This chapter presents the bytecode level specification language, called for short BML and a compiler
from a subset of the high level Java specification language JML to BML which from now we shall
call JML2BML. The chapter is organized as follows. In Section 4.1, we start with discussing the
basic design features of BML and its compiler. A detailed overview of the syntax and semantics of
BML is given in Section 4.2. In Section 4.3, we discuss the issue of well typed BML specification.
As we stated before, we support also a compiler from the high level specification language JML
into BML. The compilation process from JML to BML is discussed in Section 4.4. We conclude
the chapter with an overview of related works in Section 4.5.

4.1 Design features of BML

Before proceeding with the syntax and semantics of BML, we would like to discuss the design
choices made in the encoding and the compiler of the language. Particularly, we will see what are
the benefits of our approach as well as the restrictions that we have to adopt. Now, we focus on
the desired features of BML, how they compare to JML and what are the motivations that led us
to these decisions:

Java compiler independence Producing class files containing BML specification must not de-
pend on any particular Java compiler.

To do this, the process of the Java source compilation is separate from the JML compilation.
More particularly, the JML2BML(short for the compiler from JML to BML) compiler takes
as input a Java source file annotated with JML specification and its Java class produced by
a non optimizing compiler containing a debug information.

JVM compatibility The class files augmented with the BML specification must be executable
by any implementation of the JVM specification. Because the JVM specification does not
allow inlining of any user specific data in the bytecode instructions BML annotations must be
stored separately from the method body (the list of bytecode instructions which represents
its body).

In particular, the BML specification is written in the so called user defined attributes in the
class file. The JVM specification defines the format of those attributes and mandates that
any user specific information should be stored in such attributes. Note, that attribute which
encodes the specification referring to a particular bytecode instruction contains information
about the index of this instruction. For instance, BML loop invariants are stored in a user
defined attribute in the class file format which contains the invariant as well as the index of
the entry point instruction of the loop.

Thus, BML encoding is different from the encoding of JML specification where annotations
are written directly in the source text as comments at a particular point in the program text
or accompany a particular program structure. For instance, in Fig. 2.2 the reader may notice
that the loop specification refers to the control structure which follows after the specification

48 Bytecode modeling language

and which corresponds to the loop. This is possible first because the Java source language
is structured, and second because writing comments in the source text does not violate the
Java or the JVM specifications.

BML corresponds to a partially desugared version of JML BML is designed to correspond
to a partially desugared version of JML, namely BML supports a desugared version of the
BML behavioral specification cases. We consider that such encoding makes the verification
procedure more efficient. Because BML corresponds to a desugared version of JML, this
means that on verification time the BML specification does not need much processing and
thus, it can be easily translated to the data structures used in the verification scheme. This
makes BML suitable for verification on devices with limited resources.

We impose also few restrictions on the structure of the class file:

Line Number Table and Local Variable Table A requirement to the class file format is that
it must contain the Line Number Table and Local Variable Table attributes. The pres-
ence in the Java class file format of these attribute is optional [75], yet almost all standard
non optimizing compilers can optionally generate these data. The Line Number Table is
part of the compilation of a method and describes the link between the Java source lines and
the Java bytecode. The Local Variable Table describes the local variables that appear
in a method. These attributes are usually used by debuggers as they describe the relation
between source and bytecode. It is also necessary for the compiler from JML to BML, as we
shall see later in Section 4.4.

Non-optimizing compilation The compilation process from JML to BML relies on finding the
relation between source and its compilation into bytecode. As code optimization can make
this relation to disappear, we require that the bytecode be produced by a non-optimizing
compiler. Note that this is not a major restriction as most of the Java compilers do not
support optimizations. Of course, this situation may change with the evolution of the Java
platform which must be taken in future upgrades of BML. We provide a discussion on opti-
mizing compilers in Chapter 10.

4.2 The subset of JML supported in BML

BML corresponds to a representative subset of JML and is expressive enough for most purposes
including the description of non trivial functional and security properties. The following Section
4.2.1 gives the notation conventions adopted here and Section 4.2.2 gives the formal grammar of
BML as well as an informal description of its semantics.

4.2.1 Notation convention

• Nonterminals are written with a italics font

• Terminals are written with a boldface font

• brackets [] surround optional text.

4.2.2 BML Grammar

constantsbml ::= intLiteral | signedIntLiteral | null| ident

signedIntLiteral ::= + nonZerodigit [digits]| - nonZerodigit [digits]

intLiteral ::= digit | nonZerodigit [digits]

digits ::= digit [digits]

4.2 The subset of JML supported in BML 49

digit ::= 0 | nonZerodigit

nonZerodigit ::= 1 | . . . | 9

ident ::= # intLiteral

bv ::= v intLiteral

E ::= constantsbml

| reg(digits)
| E .FieldConstRef
| ident
| arrAccess(E ,E)
| E op E
| cntr
| st(E)
| old(E)
| EXC
| result
| bv
| typeof(E)
| type(ident)
| elemtype(E)
| TYPE

FieldConstRef ::= ident

op ::= +| -| mult| div| rem

R ::= = | 6= | ≤ | < | ≥ | > | <:

P ::= E R E
| true
| false
| not P
| P ∧ P
| P ∨ P
| P ⇒ P
| P ⇐⇒ P
| ∀ bv ,P
| ∃ bv ,P

classSpec ::= invariant modifier P
| classConstraint P
| declare ghost ident ident

modifier ::= instance| static

intraMethodSpec ::=
atIndex nat;
assertion ;

assertion ::= loopSpec
| assert P
| set E E

50 Bytecode modeling language

loopSpec ::=
loop invariant P ;
loop modifies modLocations ;
loop decreases E ;

methodSpec ::=
requires P ;
specCases ;

specCases ::= specCase
| specCase also specCases

specCase ::= {|
requires P ;
modifies modLocations ;
ensures P ;
exsuresList

|}

exsuresList ::= [] | exsures (ident) P ; exsuresList

modLocations ::= [] | modLocation , modLocations

modLocation ::= E .FieldConstRef
| reg(i)
| arrayModAt(E , specIndex)
| everything
| nothing

specIndex ::= all| E 1 . . .E 2 | E

4.2.3 Syntax and semantics of BML

In the following, we will discuss informally the semantics of the syntax structures of BML. Note
that most of them have an identical counterpart in JML and their semantics in both languages is
the same.

4.2.3.1 BML expressions

Among the common features of BML and JML are the following expressions: field access expressions
E .ident , array access (arrAccess(E 1,E 2)), arithmetic expressions (E op E). Like JML, BML
may talk about expression types. The BML expression typeof(E) denotes the dynamic type of
the expression E , type(ident) is the class described at index ident in the constant pool of the
corresponding class file. The construction elemtype(E) denotes the type of the elements of the
array E , and TYPE , like in JML, stands for the Java type java.lang.Class.

However, expressions in JML and BML differ in the syntax more particularly this is true for
identifiers of local variables, method parameters, field and class identifiers. In JML, all these
constructs are represented syntactically by their names in the Java source file. This is not the case
in BML.

We first look at the syntax of method local variables and parameters. The class file format
stores information for them in the array of local variables. That is why, both method parameters
and local variables are represented in BML with the construct reg(i) which refers to the element
at index i in the array of local variables (registers) of a method. Note that the this expression in
BML is encoded as reg(0). This is because the reference to the current object is stored at index 0
in the array of local variables.

Field and class identifiers in BML are encoded by the respective number in the constant pool
table of the class file. For instance, the syntax of field access expressions in BML is E .ident which

4.2 The subset of JML supported in BML 51

stands for the value in the field at index ident in the class constant pool for the reference denoted
by the expression E .

The BML grammar defines the syntax of identifiers differently from their usual syntax. Partic-
ularly, in BML those are positive numbers preceded by the symbol # while usually the syntax of
identifiers is a chain of characters which always starts with a letter. The reason for this choice in
BML is that identifiers in BML are indexes in the constant pool table of the corresponding class.

Fig.4.1 gives the bytecode as well as the BML specification of the code presented in Fig.2.4. As
we can see, the names of the local variables, field and class names are compiled as described above.
For instance, at line 3 in the specification we can see the precondition of the first specification case.
It talks about reg(1) which is the element in the array of local variables of the method and which
is the compilation of the method parameter b (see Fig. 2.4).

About the syntax of class names, after the exsures clause at line 5 follows a BML identifier
(#25) enclosed in parenthesis. This is the constant pool index at which the Java exception type
java.lang.Exception is declared.

� �

1

2 Class in s tance i nva r i an t :
3 l v (0).#19 > 0 ;
4

5

6 Method s p e c i f i c a t i o n :
7 requires l v (1) 6= 0 ∨ l v (1) = 0 ;
8 { |
9 requires l v (1) 6= 0 ;

10 modifies l v (0) .#19;
11 ensures l v (0).#19 = \old (l v (0).#19) / lv (1) ;
12 exsures (#25) fa l se ;
13 | }
14 also
15 { |
16 requires l v (1) == 0 ;
17 modifies \nothing ;
18 ensures fa l se ;
19 exsures (#26) lv (0).#19 = \old (l v (0) .#19) ;
20 | }
21

22 public void d iv ide (int l v (1))
23 0 load 0
24 1 dup
25 2 getf ie ld #19 // in s tance f i e l d a
26 3 load 1
27 4 div
28 5 putfield #19 // in s tance f i e l d a
29 6 return

� �

Figure 4.1: An example for a heavy weight specification in BML

A particular feature of BML is that it supports stack expressions which do not have a counter-
part in JML. These expressions are related to the way in which the virtual machine works, i.e. we
refer to the stack and the stack counter. Because intermediate calculations are done by using the
stack, often we will need stack expressions in order to characterize the states before and after an
instruction execution. Stack expressions are represented in BML as follows:

• cntr represents the stack counter.

• st(E) stands for the element in the operand stack at position E . For instance, the element

52 Bytecode modeling language

below the stack top is represented with st(cntr− 1) Note that those expressions may appear
in predicates that refer to intermediate instructions in the bytecode.

4.2.3.2 BML predicates

The properties that our bytecode language can express are from first order predicate logic. The
formal grammar of the predicates is given by the nonterminal P . From the formal syntax, we
can notice that BML supports the standard logical connectors ∧,∨,⇒, existential ∃ and universal
quantification ∀ as well as standard relation between the expressions of our language like 6=,=,≤
,≤ . . .

4.2.3.3 Class Specification

The nonterminal classSpec in the BML grammar defines syntax constructs for the support of
class specification. Note that these specification features exist in JML and have exactly the same
semantics. However, we give a brief description of the syntax. Class invariants are introduced by
the terminal invariant, history constraints are introduced by the terminal classConstraint. For
instance, in Fig. 4.1 we can see the BML invariant resulting from the compilation of the JML
specification in Fig. 2.4.

Like JML, BML supports ghost variables. As we can notice in the BML grammar, their syntax
in the grammar is declare ghost ident ident . The first ident is the index in the constant pool
which contains a description of the type of the ghost field. The second ident is the index in the
constant pool which corresponds to the name of the ghost field.

4.2.3.4 Frame conditions

BML supports frame conditions for methods and loops. These have exactly the same semantics
as in JML. The nonterminal that defines the syntax for frameconditions is modLocation . We look
now what are the syntax constructs that may appear in the frame condition:

• E .ident states that the method or loop modifies the value of the field at index ident in the
constant pool for the reference denoted by E

• reg(i) states that the local variable may modified by a loop. Note that this kind of modified
expression makes sense only for expressions modified in a loop. Indeed, a modification of
a local variable does not make sense for a method frame condition, as methods in Java are
called by value, and thus, a method can not cause a modification of a local variable that is
observable from the outside of the method.

• arrayModAt(E , specIndex) states that the components at the indexes specified by specIndex
in the array denoted by E may be modified. The indexes of the array components that may
be modified specIndex have the following syntax:

– i is the index of the component at index i. For instance, arrayModAt(E , i) means that
the array component at index i might be modified.

– all specifies that all the components of the array may be modified, i.e. the expression
arrayModAt(E , all) means that any element in the array may potentially be modified.

– E 1..E 2 specifies the interval of array components between the index E 1 and E 2.

• everything states that every location might be modified by the method or loop

• nothing states that no location might be modified by a method or loop

4.3 Well formed BML specification 53

4.2.3.5 Inter — method specification

In this subsection, we will focus on the method specification which is visible by the other methods
in the program or in other words the method pre, post and frame conditions. The syntax of those
constructs is given by the nonterminal methodSpec. As their meaning is exactly the same as in
JML and we have already discussed the latter in Section 2.2, we shall not spend more lines here
on those.

The part of the method specification which deserves more attention is the syntax of heavy
weight method specification in BML. In Section 2.2, we saw that JML supports syntactic sugar
for the definition of the normal and exceptional behavior of a method. The syntax BML does
not support these syntactic constructs but rather supports their desugared version (see [96] for a
detailed specification of the JML desugaring process). A specification in BML may declare several
method specification cases like in JML (specCases). The syntactic structure of a specification case
is defined by the nonterminal specCase .

We illustrate this with an example in Fig. 4.1. In the figure, we remark that BML does
not have the syntactic sugar for normal and exceptional behavior. On the contrary, the specifi-
cation now states as precondition the disjunction of the preconditions of every specification case
and the specification cases explicitly declare their behavior as described in subsection 2.2.4 from
Chapter 2.2.

4.2.3.6 Intra — method specification

As we can see from the formal grammar in subsection 4.2.2, BML allows to specify a property that
must hold at particular program point inside a method body. The nonterminal which describes the
grammar of intra— method assertions is intraMethodSpec. Note that a particularity of BML speci-
fication, i.e. loop specifications or assertion at particular program point contains information about
the point in the method body at which it refers (atIndex). BML supports specification constructs
for loop entry points. The loop specification in BML given by the nonterminal loopSpec contains
the loop invariant predicate (loop invariant), the list of modified locations (loop modifies) and
the decreasing expression (loop decreases). The atIndex attribute for loop specification con-
tains the index of the loop entry point instruction. Moreover, the language allows for assertions at
arbitrary program point in a method’s bytecode. The syntax for this is assert P which specifies
the predicate P that must hold at the corresponding position in the bytecode. BML has also
constructs for setting the values of the specification ghost variables. The set E E is a special
expression that allows to set the value of a specification ghost variable. This means that the first
argument must denote a reference to a ghost variable, while the second expression is the new value
that this ghost variable is assigned to.

We illustrate by in example in Fig. 4.2 how BML loop specification looks like. The example
represents the bytecode and the BML specification of the source program in Fig. 2.2. The first line
of the BML specification specifies that the loop entry is the instruction at index 19 in the array
of bytecode instructions. The predicate representing the loop invariant introduced by the keyword
loop invariant respects the syntax for BML expressions and predicates that we described above.

4.3 Well formed BML specification

In the previous Section 4.2, we gave the formal grammar of BML. However, we are interested in
a strict subset of the specifications that can be generated from this grammar. In particular, we
want that a BML specification is well typed and respects structural constraints. The constraints
that we impose here are similar to the type and structural constraints that the bytecode verifier
imposes over the class file format.

Examples for type constraints that a valid BML specification must respect :

• the array expression arrAccess(E 1,E 2) must be such that E 1 is of array type and E 2 is of
integer type.

• the field access expression E .ident is such that E is of subtype of the class where the field
described by the constant pool element at index ident is declared

54 Bytecode modeling language

� �

1

2

3 Loop s p e c i f i c a t i o n :
4

5 atIndex 19 ;
6 loop modifies l v (0) .#19 [∗] , l v (3) ;
7 loop invariant
8 l v (3) >= 0 ∧
9 l v (3) < l v (0) .#19. arrLength ∧

10 \ f o ra l l bv 1 ;
11 (bv 1 ≥ 0 ∧
12 bv 1 < l v (0) .#19. arrLength ⇒
13 l v (0) .#19[bv 1] 6= lv (1))
14

15 public int r ep l a c e (Object l v (1) , Object l v (2))
16 0 const 0
17 1 store 3
18 2 const 0
19 3 store 3
20 4 goto 19
21 5 load 0
22 6 getf ie ld #19 // in s tance f i e l d l i s t
23 7 load 3
24 8 aaload
25 9 load 1
26 10 if acmpne 18
27 11 load 0
28 12 getf ie ld #19 // in s tance f i e l d l i s t
29 13 load 3
30 14 load 2
31 15 aastore
32 16 const 1
33 17 return
34 18 i inc 3
35 19 load 3 // loop entry
36 20 load 0
37 21 getf ie ld #19 // in s tance f i e l d l i s t
38 22 arraylength
39 23 i f icmplt 5
40 24 const 0
41 25 return

� �

Figure 4.2: An example for a loop specification in BML

4.4 Compiling JML into BML 55

• For any expression E 1opE 2, E 1 and E 2 must be of a numeric type.

• in the predicate E 1rE 2 where r =≤, <,≥, > the expressions E 1 and E 2 must be of integer
type.

• in the predicate E 1 <: E 2, the expressions E 1 and E 2 must be of type TYPE (which is the
same as java.lang.Class).

• the expression elemtype(E) must be such that E has an array type.

Examples for structural constraint are :

• All references to the constant pool must be to an entry of the appropriate type. For example:
the field access expression E .ident is such that the ident must reference a field in the constant
pool; or for the expression type(ident), ident must be a reference to a constant class in the
constant pool

• every ident in a BML specification must be a correct index in the constant pool table.

• if the expression reg(i) appears in a method BML specification, then i must be a valid index
in the array of local variables of the method

An extension of the Java bytecode verifier may perform the checks over BML specification
against such kind of structural and type constraints. However, we have not worked on this problem
and is a good candidate for future work. For the curious reader, it will be certainly of interest to
turn to the Java Virtual Machine description [75] which contains the official specification of the
Java bytecode verifier or to the existing literature on bytecode verification (see the overview article
[73]).

4.4 Compiling JML into BML

In this section, we turn to the JML2BML compiler. As we shall see, the compilation consists
of several phases, namely compiling the Java source file, preprocessing of the JML specification,
resolution and linking of names, locating the position of intra — method specification, processing of
boolean expressions and finally encoding the BML specification in user defined class file attributes.
(their structure is predefined by JVMS). In the following, we look in details at the phases of the
compilation process:

1. Compilation of the Java source file
This can be done by any Java compiler that supplies for every method in the generated class
file the Line Number Table and Local Variable Table attributes. Those attributes are
important for the next phases of the JML compilation.

2. Compilation of Ghost field declarations
JML specification is invisible by the Java compilers. Thus Java compilers omit the compi-
lation of ghost variables declaration. That is why it is the responsibility of the JML2BML
compiler to do this work. For instance, the compilation of the declaration of the ghost variable
from Fig. 2.3 is given in Fig.4.3 which shows the data structure Ghost field Attribute in
which the information about the field TRANS is encoded in the class file format. Note that, the
constant pool indexes #18 and #19 which contain its description were not in the constant
pool table of the class file Transaction.class before running the JML2BML compiler on it.

3. Desugaring of the JML specification
The phase consists in converting the JML method heavy-weight behaviors and the light -
weight non complete specification into BML specification cases. It corresponds to part of the
standard JML desugaring as described in [96]. For instance, the BML compiler will produce
from the specification in Fig.2.4 the BML specification given in Fig.4.1

56 Bytecode modeling language

Ghost field Attribute {
...
{ access flag 10;

name index = #18;
descriptor index = #19

} ghost[1];
}

• access flag: The kind of access that is allowed to the field. Possible values are public,
protected and private

• name index: The index in the constant pool which contains information about the source
name of the field

• descriptor index: The index in the constant pool which contains information about the
name of the field type

Figure 4.3: Compilation of ghost variable declaration

4. Linking with source data structures
When the JML specification is desugared, we are ready for the linking and resolving phases.
In this stage, the JML specification gets into an intermediate format in which the identi-
fiers are resolved to their corresponding data structures in the class file. The Java and JML
source identifiers are linked with their identifiers on bytecode level, namely with the corre-
sponding indexes either from the constant pool or the array of local variables described in
the Local Variable Table attribute.

For instance, consider once again the example in Fig. 2.4 and more particularly the first
specification case of method divide whose precondition b > 0 contains the method pa-
rameter identifier b. In the linking phase, the identifier b is resolved to the local variable
reg(1) in the array of local variables for the method divide. We have a similar situation
with the postcondition a == old(a) / b which mentions also the field a of the current
object. The field name a is compiled to the index in the class constant pool which describes
the constant field reference. The result of the linking process is in Fig.4.1.

If, in the JML specification a field identifier appears for which no constant pool index exists,
it is added in the constant pool and the identifier in question is compiled to the new constant
pool index. This happens when the compiled specification refers to JML ghost fields.

5. Locating the points for the intra —method specification

In this phase the specification parts like the loop invariants and the assertions which should
hold at a certain point in the source program must be associated to the respective pro-
gram point in the bytecode. For this, the Line Number Table attribute is used. The
Line Number Table attribute describes the correspondence between the Java source line
and the instructions of its respective bytecode. In particular, for every line in the Java source
code the Line Number Table specifies the index of the beginning of the basic block1 in
the bytecode which corresponds to the source line. Note however, that a source line may
correspond to more than one instruction in the Line Number Table.

This poses problems for identifying loop entry instruction of a loop in the bytecode which
corresponds to a particular loop in the source code. For instance, for method replace

in the Java source example in Fig. 2.2 the java compiler will produce two lines in the

1a basic block is a sequence of instructions which does not contain jumps except may be for the last instruction
and neither contains target of jumps except for the first instruction. This notion comes from the compiler community
and more information on this one can find at [9]

4.4 Compiling JML into BML 57

Line Number Table

start pc line
. . .
2 17
18 17

Figure 4.4: Line Number Table for the method replace in Fig. 2.2

Line Number Table which correspond to the source line 17 as shown in Fig. 4.4. The
problem is that none of the basic blocks determined by instructions 2 and 18 contain the
loop entry instruction of the compilation of the loop at line 17 in Fig. 2.2. Actually, the
loop entry instruction in the bytecode in Fig. 4.2 (remember that this is the compilation in
bytecode of the Java source in Fig. 2.2) which corresponds to the in the bytecode is at index
19.

Thus for identifying loop entry instruction corresponding to a particular loop in the source
code, we use an heuristics. It consists in looking for the first bytecode loop entry instruction
starting from one of the start pc indexes (if there is more than one) corresponding to the
start line of the source loop in the Line Number Table. The algorithm works under the
assumption that the control flow graph of the method bytecode is reducible. This assumption
guarantees that the first loop entry instruction found starting the search from an index in the
Line Number Table corresponding to the first line of a source loop will be the loop entry
corresponding to this source loop. However, we do not have a formal argumentation for this
algorithm because it depends on the particular implementation of the compiler. From our
experiments, the heuristic works successfully for the Java Sun non optimizing compiler.

6. Compilation of the JML boolean expressions into BML

Another important issue in this stage of the JML compilation is how the type differences
on source and bytecode level are treated. By type differences we refer to the fact that the
JVM (Java Virtual Machine) does not provide direct support for integral types like byte,
short, char, neither for boolean. Those types are rather encoded as integers in the bytecode.
Concretely, this means that if a Java source variable has a boolean type it will be compiled
to a variable with an integer type.

For instance, in the example for the method replace and its specification in Fig.2.2 the
postcondition states the equality between the JML expression result and a predicate. This
is correct as the method replace in the Java source is declared with return type boolean
and thus, the expression result has type boolean. Still, the bytecode resulting from the
compilation of the method replace returns a value of type integer. This means that the
JML compiler has to “make more effort” than simply compiling the left and right side of the
equality in the postcondition, otherwise its compilation will not make sense as it will not be
well typed. Actually, if the JML specification contains program boolean expressions that the
Java compiler will compile to bytecode expression with an integer type, the JML compiler
will also compile them in integer expressions and will transform the specification condition
in equivalent one2.

Finally, the compilation of the postcondition of method replace is given in Fig. 4.5. From
the postcondition compilation, one can see that the expression result has integer type and
the equality between the boolean expressions in the postcondition in Fig.2.2 is compiled into
logical equivalence.

2when generating proof obligations we add for every source boolean expression an assumption that it must be
equal to 0 or 1. A reasonable compiler would encode boolean values in a similar way

58 Bytecode modeling language

result = 1

⇐⇒

∃v 0,

(0 ≤ v 0∧
v 0 < len(#19(reg(0)))∧
arrAccess(#19(reg(0)),v 0) = reg(1)

)

Figure 4.5: The compilation of the postcondition in Fig. 2.2

JMLLoop specification attribute {
...
{ u2 index;

u2 modifies count;
formula modifies[modifies count];
formula invariant;
expression decreases;

} loop[loop count];
}

• index: The index in the LineNumberTable where the beginning of the corresponding loop
is described. It is of length 2 bytes (u2)

• modifies[]: The array of locations that may be modified. It is of length 2 bytes (u2)

• invariant : The predicate that is the loop invariant. It is a compilation of the JML formula
in the low level specification language

• decreases: The expression which decreases at every loop iteration

Figure 4.6: Structure of the Loop Attribute

7. Encoding BML specification into user defined class attributes
The specification expression and predicates are compiled in binary form using tags in the
standard way. The compilation of an expression is a tag followed by the compilation of its
subexpressions.

Method specifications, class invariants, loop invariants are newly defined attributes in the
class file. For example, the specifications of all the loops in a method are compiled to a
unique method attribute whose syntax is given in Fig. 4.6. This attribute is an array of data
structures each describing a single loop from the method source code. From the figure, we
notice that every element describing the specification for a particular loop contains the index
of the corresponding loop entry instruction index, the loop modifies clause (modifies), the
loop invariant (invariant), an expression which guarantees termination (decreases). Every
kind of method specification (e.g. method specification cases, intra method assertions like
assert and set) is encoded in a similar way in a corresponding user defined attribute. Those
attributes are attached to the corresponding method attribute in the class file. Note that the
data structures describing methods in the class are generated by the java compiler (i.e. in
the first phase of the compilation of BML specification described above). The documentation
of the encoding format of JML in Java class files is provided as an appendix in the end of
the document.

4.5 Related work 59

4.5 Related work

The idea of introducing annotations in the bytecode is actually not so recent. For instance, the
possibility to check a property at run-time, using the assert construct, has been long adopted
in the C programming language and recently also in Java (Java 1.5, see [50, §14.10]). Checking
runtime simple assertions, as for instance that a reference is not null is certainly very useful as it
allows for detecting bugs early in the development process. But in the presence of mobile code,
the need for more powerful specification mechanisms on the executable or interpreted code arises.
Moreover, it represents an interest for software audit which does not trust the compiler. Another
reason to consider a rich specification bytecode language is the verification of programs which are
written directly in bytecode.

Although verification of bytecode programs has started to attract the scientific interest, not
too much work has been done in the direction of bytecode specification. Several logics have been
developed to reason about bytecode but none of them discusses the issue about a formalism for
expressing program properties. For instance, in [11] Bannwart & Müller propose a general purpose
Hoare style bytecode logic which is proved correct and complete. They also show how to compile
Hoare style derivations from the source language into Hoare style derivations over bytecode in order
to cope with complex properties in a PCC scenarios. However, they do not introduce a formalism
into which to express those program properties. Within the MRG project [6], a resource aware
logic is designed for Grail, a bytecode language which combines functional and object oriented
features. However, there also the main focus is the development of a sound proof system. BML
comes in reply to the need of writing and encoding understandable specifications for bytecode.

The development of BML is clearly inspired by the development of the JML specification
language [67]. Both JML and BML follow the Design by Contract principle introduced first in
Eiffel [78]. JML is a rich specification language which supports many specification constructs.
Note that the semantics of few of the specification constructs in BML is still under discussion.
Currently, BML supports only a subset of JML corresponding basically to the so called Level
0 of JML [67] but which has a well established semantics. JML is “the most popular formal
specification” of Java and thus we consider that supporting a relation between a Java bytecode
specification language and JML is important.

The Extended Virtual Platform project3 also is very close to JML. This project aims at develop-
ing a framework that allows to compile JML annotations, to allow run-time checking [4]. However,
in contrast to our work, they do not intend to do static verification of bytecode programs. More-
over, the Extended Virtual Platform takes JML-annotated source code files as starting point, so it
is not possible to annotate bytecode applications directly.

The Spec# programming system [15] is probably the system which is closest to BML as intro-
duces in similarly the Design by Contract principles into the C# programming language. However,
we consider that the design goals of both Spec# and BML are not exactly the same. Let us give a
brief description of the architecture of the Spec# system. It consists of the following components:
a programming language Spec#, a compiler from Spec# to CLR,(the .NET intermediate language
[3]), a runtime checker and a static verification scheme based on an intermediate language BoogiePL
and the static verifier Boogie [13]. In particular, Spec# is a superset of the programming language
C#. Spec# allows for expressing method (preconditions, postconditions and frameconditions)
and class contracts as well as class contracts (class invariants). Moreover, the language extends the
programming type system with non - null types, field initializers and expose blocks for an object
(those constructs embrace a block which may break the object’s invariant and at the end of its ex-
ecution must reestablish it). These additional elements of the language are enforced with runtime
checks emitted by the Spec# compiler. Spec# programs can be verified dynamically and stati-
cally. Both verification styles work on CLR as the Spec# compiler produces not only intermediate
interpreted code but also metadata which contains the translation of the source specifications. As
we stated above, the design of Spec# is such that it alters the underlying programming language
C#. This is especially suitable for producing a high level quality software as the language obliges
programmers to respect a good programming discipline. However, this does not fit completely in
a mobile code scenario as a specified and statically verified CLR code using the Spec# system,

3See http://www.cs.usm.maine.edu/~mroyer/xvp/.

60 Bytecode modeling language

should be produced only if the code has been originally written in Spec#. But restricting mobile
code producers to use a special programming system may be a hard restriction. This is a difference
between BML and Spec#. BML targets standard Java source programs and specifications written
in JML which is not part of the Java language. Moreover, it is compatible with any non optimizing
Java compiler and thus does not provide a major restriction over the producer of the source code.

Chapter 5

Verification condition generator

for Java bytecode

This section describes a Hoare style verification condition generator for bytecode based on a weakest
precondition predicate transformer function.

The vcGen is tailored to the bytecode language introduced in Section 3.8 and thus, it deals with
stack manipulation, object creation and manipulation, field access and update, as well as exception
throwing and handling. Different ways of generating verification conditions exist. The verification
condition generator presented propagates the weakest precondition and exploits the information
about the modified locations by methods and loops.

In Section 5.1, we discuss the assertion language which the formalization of the verification
condition generator manipulates. The assertion language consists of a subset of the BML language
extended with few new constructs. In Section 5.2, we show the data structures which encode
the specification. In Section 5.3, we focus on the verification calculus. As we stated earlier, our
verification condition generator is based on a weakest precondition (wp) calculus. However, a
logic tailored to stack based bytecode should take into account particular bytecode features as
for example the operand stack. Another particularity of the verification condition calculus is the
propagation of verification conditions up to the program point similar to the definition of the
weakest precondition calculus for the Java-like source language in Chapter 2. To do this, we define
the weakest precondition predicate transformer in terms of two mutually recursive functions. The
first one calculates the precondition of instructions over an intermediate predicate which should
hold in between the current instruction and its successor. A predicate which must hold between
an instruction and its successor depends on the precondition of the successor and the execution
relation between the two instructions, namely it depends on if the successor is a loop entry or not.
Section 5.4 gives an example for how the verification condition generator works. Finally, section
5.5 is an overview of the existing work in the domain.

5.1 Assertion language for the verification condition gener-

ator

In this chapter we shall focus on a particular fragment of BML which will be extended with few new
constructs. The part of BML in question is the assertion language that our verification condition
generator manipulates as we shall see in the next Chapter 5.

The assertion language presented here will abstract from most of the BML specification clauses
described in Section 4.2. Our interest will be focused only on method and loop specification. Also,
the assertion language presented here discards class invariants, history constraints because they boil
down to method pre and postconditions. We shall also restrict our attention to expressions that
refer only to one state, i.e. we do not consider old expressions. This aspect needs a formalization
of heaps in intermediate states especially in the case of method invocation. This aspect is well
studied for structured object oriented languages. Such a semantics and proof of a logic which deals

62 Verification condition generator for Java bytecode

expressions referring to the initial state of method execution is presented in the thesis of Cees
Pierik [90].

The rest of this chapter is organized as follows. Section 5.1.1 presents what is exactly the
BML fragment of interest and its extensions. Section 5.2 shows how we encode method and loop
specification as well as presents a discussion how some of the ignored BML specification constructs
are transformed into method pre and postconditions. Finally, Section 5.1.2 gives formal semantics
of the assertion language.

5.1.1 The assertion language

The assertion language in which we are interested corresponds to the BML expressions (nonterminal
E) and predicates (nonterminal P) extended with several new constructs. The extensions that we
add are the following:

Extensions to expressions The assertion language that we present here must be suitable for
the verification condition calculus. Because the verification calculus talks about updated
field and array access we should be able to express them in the assertion language. Thus we
extend the grammar of BML expression with the following constructs concerning update of
fields and arrays :

• update field access expression E .f(⊕E → E).

• update array access expression arrAccess(⊕(E ,E) → E)(E ,E)

The semantics of those syntactic constructs has been explained already in subsection 2.4.1
on 19.

The verification calculus will need to talk about reference values. Thus we extend the BML
expression grammar to support reference values RefVal . Note that in the following integers
int and RefVal will be referred to with Values .

Extensions to predicates Our bytecode language is object oriented and thus supports new ob-
ject creation. Thus we will need a means for expressing that a new object has been created
during the method execution.

We extend the language of BML formulas with a new user defined predicate instances(RefVal).
Informally, the semantics of the predicate instances(ref) where ref ∈ RefVal means that
the reference ref is allocated in the current state.

The assertion language will use the names of fields and classes for the sake of readability instead
of their corresponding indexes in the constant pool as is in BML. The assertion language discussed
here supports only method pre and postconditions. Note that as we discussed earlier in Section
2.2 class invariants and history constraints can be encodes as pre and postconditions.

5.1.2 Interpretation

In this section, we shall focus on the semantics of formulas and expressions w.r.t. a state con-
figuration. A subtle point in giving the evaluation rules for expressions and the interpretation of
formulas is the fact that the evaluation is actually a partial function. What we mean by partiality
is the existence of functions like division or dereferencing of a field, array indexing etc. To get a
precise idea of the problem we can consider the following logical statements:

(1) E .f == 3
(2) arrAccess(E 1,E 2) == 5

Under certain conditions, these formulas may not have a meaning. In case (1), the statement
does not make sense in a state where E is a reference which does not belong to the valid references
in the heap or evaluates to null. In case (2) the statement does not make sense in a state where
if either E 1 is not a valid reference in the current or is null or E 2 is not in the bounds of E 1.

Building a logic for partiality is not trivial. Different solutions exist. A naive three valued logic,
where expressions may be evaluated to a value or undefined in a state and formulas might be false ,

5.1 Assertion language for the verification condition generator 63

true or undefined in a state appear to loose certain nice properties which standard logic with equal-
ity have as for instance associativity of equality, the excluded middle [51] etc. Gries and Schnieder
[51] give a solution which consists in function underspecification and thus avoid the problem of
undefideness. More particularly, their approach considers all functions as total but for argument
values for which the function is actually not defined the function may return whatever value. For
instance, using the semantics of underspecification, the formula null.f == null.f will evaluate to
true. This approach is adopted in JML [67]. However, seeing the expressions in specifications as
totally defined functions may sometimes lead to unsoundness in program verification. Thus, not
all tools supporting JML support the semantics of underspecification. An alternative is to check
specifications for if they are well formed. For instance, ESC/java supports well-definedness checks
of specifications.

In [26], L. Burdy proposes a three valued logic in which the above features of classical logic
are preserved. He introduces a well-definedness operator ∆() : E ∪ P → P over expressions and
formulas. Thus, formulas can be either true , false or not defined and expressions may evaluate to
a value or be undefined. The operator ∆(E) (∆(P)) gives the necessary and sufficient conditions
such that E (P) is defined. Particularly, the application of the operator ∆(E) (∆(P)) over E (P)
evaluates only either to true or false , i.e. it holds in a state only if the expression E has a value
in this state, otherwise it is interpreted to false .

This in particular, means that for every formula and its subexpressions additional verification
conditions for well-definedness must be generated. Thus a formula may hold in a state only under
the condition that it is defined, i.e. all the expression contained in the formula should have a
meaning in this state. Here, we shall not enter in details of the definition of the well definedness
operator ∆() but discuss it informally through an example. Let us see the definition of the operator
∆() in case of an array access:

∆(arrAccess(E 1,E 2)) =

∆(E 1)∧
∆(E 2)∧
E 1 6= null∧
0 ≤ E 2 < arraylength(E 1)

Thus for an array access to be well formed, we require that its two subexpressions are well
formed, that E 1 denotes a reference in the heap in the current state, that the evaluation of E 2 is
a valid index in the array E 1.

Although the evaluation of expression is partial, we shall consider only the validity of well
defined formulas in a state, i.e. formulas which talk only about well defined expressions in a state.
Thus we define interpretation of formulas in a two valued logic.

We ignore a lot of formulas, i.e. those which are not well defined, this will be sufficient for our
proof of correctness of the verification condition generator later in Chapter 6 as we assume that
programs are bytecode verified and that specifications are well defined. Under these assumptions
and because the verification condition generator preserves well definedness of formulas, we can
perform the correctness proof in Chapter 6.

We use the notation s � P to say that the well defined formula P is valid w.r.t. a current state
s and an initial state s0.

The interpretation s � P is defined in the standard way. For instance, the statement s �

E 1 R E 2 by definition means that the evaluation [[E 1]]s of E 1 and the evaluation [[E 2]]s of E 2 are
in relation R or written formally that the following holds: [[E 1]]s R [[E 2]]s. The formal statement
s � instances(ref) by definition means that the reference ref is part of the heap locations in
state s or in other words that the following holds ref ∈ s.H.Loc.

We define a function for expression evaluation which evaluates expressions in a state and which
has the following signature:

[[∗]]∗ : E → S → S ⇀ Values ∪ JType

The evaluation function takes an expression of the assertion language presented in the previous
Section 5.1.1 and a state (see Section 3.4 for the definition of state) and returns a value or a class
type (see Section 3.3 for the definition of values and types in the language).

64 Verification condition generator for Java bytecode

Definition 5.1.1 (Evaluation of expressions). The evaluation in a state s =< H,Cntr, St,Reg,Pc >
or s =< H,Final >final of an expression E w.r.t. an initial state s0 =< H0, 0, [],Reg, 0 > is de-
noted with [[E]]s and is defined in its domain inductively over the grammar of expressions E as
follows:

[[v]]s = v
where v ∈ int ∨ v ∈ RefVal
[[E .f)]]s = H(f)([[E]]s)
[[E 3.f(⊕E 1 → E 2)]]s = H(⊕f → f(⊕[[E 1]]s → [[E 2]]s))(f)([[E 3]]s)
[[arrAccess(E 1,E 2)]]s = H([[E 1]]s, [[E 2]]s)
[[arrAccess(⊕(E 1,E 2) → E 3)(E 4,E 5)]]s = H(⊕([[E 1]]s, [[E 2]]s) → [[E 3]]s)([[E 4]]s, [[E 5]]s)
[[reg(i)]]s = Reg(i)
[[E 1 op E 2]]s = [[E 1]]sop[[E 2]]s

[[typeof(E)]]s =

{

int [[E]]s ∈ int
TypeOf ([[E]]s) else

[[elemtype(E)]]s = T where TypeOf ([[E]]s) = T[]

[[TYPE]]s = java.lang.Class

The evaluation of stack expressions can be done only in intermediate state configurations s =<
H,Cntr, St,Reg,Pc > :

[[cntr]]s = Cntr
[[st(E)]]s = St([[E]]s)

The evaluation of the following expressions can be done only in a final state:

[[result]]s = Res where s =< H,Res >norm

[[EXC]]s = Exc where s =< H,Exc >exc

The next definition introduces the notion of an assertion formula logically valid in every program
state. We call such formulas valid formulas.

Definition 5.1.2 (Valid formulas). We say that the formula P a valid formula if forall states s
s � Ps. We note this with � P

5.2 Extending method declarations with specification

In the following, we propose an extension of the method formalization given in Section 3.2. The
extension takes into account the method specification. The extended method structure is given
below:

Method =

Name : MethodName
retType : JType
argsType : list (name ∗ JType)
nArgs : nat
body : list I
excHndlS : list ExcHandler
exceptions : list Classexc

pre : P
modif : modLocations
excPostSpec : ExcType⇀ P
normalPost : P
loopSpecS : list LoopSpec

Let’s see the meaning of the new elements in the method data structure.

• m.pre gives the precondition of the method, i.e. the predicate that must hold whenever m is
called

5.3 Weakest precondition calculus 65

• m.normalPost is the postcondition of the method in case m terminates normally

• m.modif is also called the method frame condition. It is a list of locations that the method
may modify during its execution

• m.excPostSpec is a total function from exception types to formulas which returns the predicate
m.excPostSpec(Exc) that must hold in the method’s poststate if the method m terminates on
an exception of type Exc. Note that this function is constructed from the exsures clause
of a method introduced in Chapter 4, section 4.2. For instance, if method m has an exsures
clause:

exsures (Exc) reg(1) == null

then for every exception type SExc such that subtype(SExc ,Exc) the result of the function
m.excPostSpec for SExc is m.excPostSpec(SExc) = reg(1) == null. If for an exception Exc

there is not specified explicitly an exsures clause then the function excPostSpec returns the
default exceptional postcondition predicate false, i.e. m.excPostSpec(Exc) = false

• m.loopSpecS is a list of LoopSpec data structures which give the specification information
for a particular loop in the bytecode

The contents of a LoopSpec data structure is given hereafter:

LoopSpec =

pos : nat
invariant : P
modif : modLocations

For any method m for any k such that 0 ≤ k < m.loopSpecS.length

• the field m.loopSpecS[k].pos is a valid index in the body of m:
0 ≤ m.loopSpecS[k].pos < m.body.length and is a loop entry instruction in the sense of
Def.3.9.1

• m.loopSpecS[k].invariant is the predicate that must hold whenever the instruction
m.body[m.loopSpecS[k].pos] is reached in the execution of the method m

• m.loopSpecS[k].modif are the locations such that for any two states state1, state2 in which the
instruction m.body[m.loopSpecS[k].pos] executes agree on local variables and the heap modulo
the locations that are in the list modif. We denote the equality between state1, state2 modulo

the modifies locations like this state1 =modif state2

5.3 Weakest precondition calculus

Now that we have introduced the assertion language of the verification condition generator as well
as the encoding of the method specification in the method data structure, we can turn to the
definition of the weakest predicate transformer function which underlines the verification condition
generator.

Thus, the weakest precondition predicate transformer function which for any instruction of the
Java sequential fragment determines the predicate that must hold in the prestate of the instruction
has the following signature:

wp : int −→ Method −→ P

The function wp takes two arguments : the second argument is the method m to which the instruc-
tion belongs and the first argument is a point in the body of m.

Let us first see what is the desired meaning of wp. Particularly, we would like that the function
wp returns a predicate wp(i , m) such that if it holds in the prestate of the method m and if the m ter-
minates normally then the normal postcondition m.normalPost holds when m terminates execution,
otherwise if m terminates on an exception Exc the exceptional postcondition m.excPostSpec(Exc)
holds where the function excPostSpec was introduced in Section 5.2. Thus, the wp function takes

66 Verification condition generator for Java bytecode

into account both normal and exceptional program termination. The truthfulness of the predicate
returned by the wp function may only guarantee that the postcondition holds under the assumption
that the program terminates.

In the following, we will give an intuition to the way in which we have defined our verification
condition generator. Consider the example in Fig. 5.1 which shows both the source code and the
bytecode of a method 1 which calculates the sum of all the natural numbers smaller or equal to the
parameter k. The source and bytecode are annotated, the first one in JML and the latter in BML.
However, the bytecode annotations are actually stored separately from the bytecode instructions
as we have described in Section 5.2 but we have put them explicitly in the bytecode at the point
where they must hold for the sake of clarity. We have also marked the instructions which are
identified as loop start and end according to Def.3.10 in Chapter 3.8, Section 3.9.

� �
1 // @requi res reg(1)>=0
2 0 const 0
3 1 store 2
4 2 const 0
5 3 store 3
6 4 goto 10
7 5 load 2
8 6 load 3
9 7 add

10 8 store 2
11 9 i inc 3 //LOOP END
12 // @loop modi f i e s reg(2) , reg(3)
13 // @loop invar iant I : reg(3) ≥ 0 ∧ reg(3) ≤ reg(1) ∧ reg(2) == reg(3) ∗ (reg(3) − 1)/2
14 10 load 3 //LOOP ENTRY
15 11 load 1
16 12 i f icmplt 5
17 13 return
18 //@ensures result== reg(1) *(reg(1) + 1)/2

� �

� �
1 // @requi res k >= 0 ;
2 //@ensures \ result == k∗(k+1)/2;
3 public void m(int k){
4 int sum = 0 ;
5 // @loop modi f i e s sum , i ;
6 // @loop invar iant i≥0 ∧ i≤k ∧ sum == i ∗(i −1)/2;
7 for (int i = 0 ; i < k ; i++){
8 sum = sum + i ;
9 }

10 }
� �

Figure 5.1: bytecode of method sum and its specification

It is worth first to note that because the bytecode is not structured we cannot define the
weakest precondition in the same way in which a predicate transformer for structured languages is
defined. We will rather define the predicate transformer for instructions that may have one possible
successor to depend on this successor:

wp(j) = Sk(wp(k)), where j −→ k

where Sk stands for a function which might be the identity function or a function which applies
some substitution over its argument. We would proceed in a similar way with instructions that
may branch - instructions which may jump (goto and if cond) as well as instructions which may
throw an exception (e.g. putfield, astore), but this time the predicate transformer for them
depends on all of its successors:

wp(j) =
∧

k

Ck ⇒ Sk(wp(k)), where j −→ k

The predicates Ck stand for some condition to be filled in order that after the execution of instruc-
tion at index j the instruction at index k is executed. Note that here, in this example, we are using

1Here, we prefer to use almost the same syntax for source and bytecode specifications. For instance, alhough
JML syntax encodes conjunction as && we shall rather use the mathematical symbol ∧ as is done in BML

5.3 Weakest precondition calculus 67

a loose notation for wp function, as we only depends here on one parameter, namely the index of
the instruction for which we calculate the weakest precondition.

Returning back to our example in Fig. 5.1, the weakest precondition for the instruction at
index 12 (in the bytecode version) which is a conditional jump of the program will be:

wp(12) = st(cntr − 1) < st(cntr) ⇒ wp(13)[cntr\cntr − 2]
∧
st(cntr − 1) >= st(cntr) ⇒ wp(5)[cntr\cntr − 2],
where 12 −→ 13, 12 −→ 5

Let us see now what we would expect about the result of the function wp when applied to
the instructions that have as successor the loop entry instruction at index 10. For instance, we
can look at the instruction at index 9 which is marked in the figure as the end of the loop. As
we said earlier we have inlined annotations in the bytecode at the places where they must hold.
Thus after the execution of the instruction at index 9 the loop invariant must hold. It follows then
that for a loop end instruction we will rather require that the wp function takes into account the
corresponding loop invariant:

wp(9) = I [reg(3)\reg(3) + 1],
where 9 −→l 10

The situation is similar for the instruction at index 4 which jumps to the loop entry instruction
at index 10. The semantics of the invariant requires that in the state after the execution of
instruction at index 4 and before the execution of the instruction at index 10 the loop invariant
must hold and second, whatever are the values of the program variables that might be modified
by the loop, the invariant should imply the precondition of the loop entry instruction at 10. Thus
we would like that the function wp gives us something like:

wp(4) = I
∧
∀reg(2), reg(3), I ⇒ wp(10),
where 4 −→ 10 ∧ 10 is a loop entry

The example shows that the function wp depends on the semantics of the instruction for which
it calculates a precondition and also on the execution relation it has with its successors. In order
to define the function wp we will use an intermediate function which shall decide what is the
postcondition of an instruction upon the execution relation with its successors. This function is
introduced in the next subsection 5.3.1. We will also see how the weakest precondition is defined
in the presence of exceptions in subsection 5.3.2.

Note also that the calculation of the wp predicate may be done in a forward or backwards
direction. By backwards direction, we mean that the calculation starts from the “ends” of the
control flow graph, i.e. from the return and athrow instructions and goes in a backwards directions
to the predecessors up to reaching the program entry point. A forward calculation starts from the
entry point instruction and goes in a forward direction to the successors up to reaching the return
instructions or athrow instructions of the control flow graph.

5.3.1 Intermediate predicates

In this subsection, we define the function inter which for two instructions that may execute one
after another in a control flow graph of method m determines the predicate inter(j, k, m) which
must hold in between them. The function has the signature:

inter : int −→ int −→ Method −→ P

The predicate inter(j, k, m) will be used for determining the weakest predicate that must hold
in the poststate of the instruction j in the execution path where j is followed by the instruction
k. This predicate depends on the execution relation between the two instructions j and k. The
function inter allows to generate correct verification conditions for loops. For this, inter does a

68 Verification condition generator for Java bytecode

case analysis over the relation −→ (introduced in Chapter 3.8, Section 3.9) between the current
instruction and its successor. If the relation is a −→l, i.e. the next instruction is a loop entry
instruction and the current is a loop end (as defined in Def.3.9.1) then the predicate that must
hold in between the current instruction and the next one is the loop invariant associated to the
loop entry. The rest of the cases are two. In case that the next instruction is a loop entry then
two conditions must hold in between it and the current instruction. First, the invariant must hold
there and second, the invariant must imply the weakest predicate of the loop entry instruction.
For the last case, when the next instruction is not a loop entry, we get that the predicate that must
hold between the current instruction and the successor instruction is the weakest precondition of
the successor.

Definition 5.3.1.1 (Intermediate predicate between two instructions). Assume that in-
structions j and k may execute one after another, i.e. j −→ k. The predicate inter(j, k, m) must
hold after the execution of j and before the execution of k and is defined as follows:

• if k is a loop entry and j is a loop end, i.e. j −→l k then there exists an index s in the loop
specification table m.loopSpecS such that m.loopSpecS[s].pos = k then the corresponding loop
invariant must hold:

inter(j, k, m) = m.loopSpecS[s].invariant

• else if k is a loop entry then there exists an index s in the loop specification table m.loopSpecS

such that m.loopSpecS[s].pos = k and the corresponding loop invariant m.loopSpecS[s].invariant

must hold before k is executed, i.e. after the execution of j. We also require that
m.loopSpecS[s].invariant implies the weakest precondition of the loop entry instruction. The
implication is quantified over the locations m.loopSpecS[s].modif that may be modified in the
loop body:

inter(j, k, m) =
m.loopSpecS[s].invariant ∧
∀i, i = 1..m.loopSpecS[s].modif.length,
∀m.loopSpecS[s].modif[i], (m.loopSpecS[s].invariant ⇒ wp(k , m))

• else
inter(j, k, m) = wp(k , m)

5.3.2 Weakest precondition in the presence of exceptions

Our weakest precondition calculus deals with exceptional termination and thus, we need a way
for calculating the postcondition of an instruction in case it terminates on an exception. In par-
ticular, the postcondition should depend on if there is an exception handler or not. In the first
case, the execution continues at the exception handler entry point and thus the postcondition of
the exceptionally terminating instruction will be the precondition of the instruction from which
the exception handler starts. In the case where there is no exception handler, this means that
the current method also terminates on exception and thus, the specified exceptional exceptional
postcondition of the method for this exception should hold.

We define the function excPostIns with signature :

excPostIns : int −→ ExcType −→ P

The function m.excPostIns takes as arguments an index i in the array of instructions of method m

and an exception type Exc and returns the predicate m.excPostIns(i, Exc) that must hold after
the instruction at index i throws an exception of type Exc. We give a formal definition hereafter.

Definition 5.3.2.1 (Postcondition in case of a thrown exception).

m.excPostIns(i, Exc) =
{

wp(handlerPc , m) if findExcHandler(Exc, i, m.excHndlS) = handlerPc

m.excPostSpec(Exc) findExcHandler(Exc, i, m.excHndlS) = ⊥

5.3 Weakest precondition calculus 69

Next, we introduce an auxiliary function which will be used in the definition of the wp function
for instructions that may throw runtime exceptions. Thus, for every method m we define the
auxiliary function m.excPostRTE with signature:

m.excPostRTE : int −→ ExcType −→ P

m.excPostRTE(i , Exc) returns the predicate that must hold in the prestate of the instruction
at index i which may throw a runtime exception of type Exc. Note that the function m.excPostRTE

does not deal with programmatic exceptions thrown by the instruction athrow, neither exception
caused by a method invocation (execution of instruction invoke) as the exceptions thrown by those
instructions are handled in a different way as we shall see later in the definition of the wp function
in the next subsection.

The function application m.excPostRTE(i , Exc) is defined as follows:

Definition 5.3.2.2 (Auxuliary function for instructions throwing runtime exceptions).

i 6= athrow∧ i 6= invoke⇒
m.excPostRTE(i , Exc) =
∀ref,

(¬ instances(ref)∧
ref 6= null
typeof(ref) = Exc) ⇒
(

m.excPostIns(i , Exc)[cntr\0][st(0)\ref][f\f(⊕ref → defVal(f.Type))]
subtype(f.declaredIn, Exc)

f

)

The function m.excPostRTE will return a predicate which states that for every newly created
exception reference the predicate returned by the function excPostIns for the exception type Exc

and program point i must hold.

5.3.3 Rules for single instruction

In the following, we give the definition of the weakest precondition function for every instruction.

• Control transfer instructions

1. unconditional jumps, i = goto n

wp(i , m) = inter(i, n, m)

The rule says that an unconditional jump does not modify the program state and thus,
the postcondition and the precondition of this instruction are the same

2. conditional jumps, i = if cond n

wp(i , m) =
st(cntr) cond st(cntr − 1) ⇒ inter(i, n, m)[cntr\cntr − 2]
∧
¬(st(cntr) cond st(cntr − 1)) ⇒ inter(i, i+ 1, m)[cntr\cntr − 2]

In case of a conditional jump, the weakest precondition depends on if the condition
of the jump is satisfied by the two stack top elements. If the condition of the in-
struction evaluates to true then the predicate between the current instruction and
the instruction at index n must hold where the stack counter is decremented with 2
inter(i, n, m)[cntr\cntr − 2] If the condition evaluates to false then the predicate be-

tween the current instruction and its next instruction holds where once again the stack
counter is decremented with two inter(i, i+ 1, m)[cntr\cntr − 2].

3. return, i = return

wp(m , i) = m.normalPost[result\st(cntr)]

70 Verification condition generator for Java bytecode

As the instruction return marks the end of the execution path, we require that its
postcondition is the normal method postcondition normalPost. Thus, the weakest pre-
condition of the instruction is normalPost where the specification variable result is
substituted with the stack top element.

• the skip instruction, i = nop

wp(i , m) = inter(i, i+ 1, m)

• load and store instructions

1. load a local variable on the operand stack, i = load j

wp(i , m) =
inter(i, i+ 1, m)[cntr\cntr + 1][st(cntr + 1)\reg(j)]

The weakest precondition of the instruction then is the predicate that must hold between
the current instruction and its successor, but where the stack counter is incremented
and the stack top is substituted with reg(j). For instance, if we have that the predicate
inter(i, i + 1, m) is equal to st(counter) == 3 then we get that the precondition of
instruction is reg(j) == 3:

{reg(j) == 3}
i : load j
{st(cntr) == 3}
i+ 1 : . . .

2. store the stack top element in a local variable i = store j

wp(i , m) =
inter(i, i+ 1, m)[cntr\cntr − 1][reg(j)\st(cntr)]

Contrary to the previous instruction, the instruction store j will take the stack top
element and will store its contents in the local variable reg(j).

3. push an integer constant on the operand stack i = push j

wp(i , m) =
inter(i, i+ 1, m)[cntr\cntr + 1][st(cntr + 1)\ j]

The predicate that holds after the instruction holds in the prestate of the instruction
but where the stack counter cntr is incremented and the constant j is stored in the
stack top element

4. incrementing a local variable i = iinc j

wp(m , i) =
inter(i, i+ 1, m)[reg(j)\reg(j) + 1]

• arithmetic instructions

1. instructions that cannot cause exception throwing i ∈ {add, sub, mult, and, or, xor, ishr, ishl}

wp(i , m) =
inter(i, i+ 1, m)[cntr\cntr − 1][st(cntr − 1)\st(cntr)op st(cntr − 1)]

We illustrate this rule with an example. Let us have the arithmetic instruction add at
index i such that the predicate inter(i, i+ 1, m) ≡ st(cntr) ≥ 0. In this case, applying
the rule we get that the weakest precondition is st(cntr − 1) + st(cntr) ≥ 0 :

{st(cntr − 1) + st(cntr) ≥ 0}
i : add
{st(cntr) ≥ 0}

5.3 Weakest precondition calculus 71

2. instructions that may throw exceptions i = {rem, div}

wp(i , m) =
st(cntr) 6= null ⇒

inter(i, i+ 1, m)[cntr\cntr − 1][st(cntr − 1)\st(cntr) op st(cntr − 1)]
∧
st(cntr) = null ⇒ m.excPostRTE(i, ArithExc)

• object creation and manipulation

1. create a new object, i = new Class

wp(i , m) =
∀bv,

¬ instances(bv) ∧ typeof(bv) = C ∧ bv 6= null ⇒

inter(i, i+ 1, m)

[cntr\cntr + 1]
[st(cntr + 1)\bv]

[f\f(⊕bv → defVal(f.Type))]
subtype(f.declaredIn,Class)

f

The postcondition of the instruction new is the intermediate predicate inter(i, i+1, m).
The weakest precondition of the instruction says that for any reference bv if bv is not an
instance reference in the state before the execution of the instruction and whose type is
Class then the precondition is the same predicate but in which the stack counter is incre-
mented and bv is pushed on the stack top. The fields for the bv have the default value
of their type which is expressed through series of substitutions subtype(f.declaredIn, Class).

2. array creation, i = newarray T

wp(i , m) =
∀ref,

not instances(ref)∧
ref 6= null ∧ typeof(ref) = type(T[]) ∧ st(cntr) ≥ 0 ⇒

inter(i, i+ 1, m)
[st(cntr)\ref]
[arrAccess\arrAccess(⊕(ref, j) → defVal(T))]∀j,0≤j<st(cntr)

[arrLength\arrLength(⊕ref → st(cntr))]
∧
st(cntr) < 0 ⇒ m.excPostRTE(i, NegArrSizeExc)

Here, the rule for array creation is similar to the rule for object creation. However,
creation of an array might terminate exceptionally in case the length of the array stored
in the stack top element st(cntr) is smaller than 0. In this case, function m.excPostRTE

will search for the corresponding postcondition of the instruction at position i and the
exception NegArrSizeExc

3. field access i = getfield f

wp(i , m) =
st(cntr) 6= null ⇒ inter(i, i+ 1, m)[st(cntr)\f(st(cntr))]
∧
st(cntr) = null ⇒ m.excPostRTE(i, NullExc)

The instruction for accessing a field value takes as postcondition the predicate that must
hold between it and its next instruction inter(i, i+1, m). This instruction may terminate
normally or on an exception. In case the stack top element is not null, the precondition
of getfield is its postcondition where the stack top element is substituted by the field
access expression f(st(cntr). If the stack top element is null, then the instruction will
terminate on a NullExc exception. In this case the precondition of the instruction is
the predicate returned by the function m.excPostRTE for position i in the bytecode and
exception NullExc

72 Verification condition generator for Java bytecode

4. field update i = putfield f

wp(i , m) =
st(cntr) 6= null ⇒ inter(i, i+ 1, m)[cntr\cntr − 2][f\f(⊕st(cntr − 1) → st(cntr))]
∧
st(cntr) = null ⇒ m.excPostRTE(i, NullExc)

This instruction also may terminate normally or exceptionally. The termination depends
on the value of the stack top element in the prestate of the instruction. If the top stack
element is not null then in the precondition of the instruction inter(i, i+1, m) must hold
where the stack counter is decremented with two elements and the fobject is substituted
with an updated version f(⊕st(cntr − 2) → st(cntr − 1)).

For example, let us have the instruction putfield fin method m. Its normal postcon-
dition is inter(i, i+ 1, m) ≡ f(reg(1)) 6= null. Assume that m does not have exception
handler for NullExc exception for the region in which the putfield instruction. Let
the exceptional postcondition of m for NullExc be false, i.e. m.excPostSpec(NullExc)
= false. If all these conditions hold, the function wp will return for the putfield

instruction the following formula :

st(cntr) 6= null ⇒ (f(reg(1)) 6= null)[cntr\cntr − 2][f\f(⊕st(cntr − 1) → st(cntr))]
∧
st(cntr) = null ⇒ false

After applying the substitution following the rules described in Section 2.4.1, we obtain
that the precondition is

st(cntr) 6= null ⇒ f(⊕st(cntr − 1) → st(cntr))(reg(1)) 6= null
∧
st(cntr) = null ⇒ false

Finally, we give the instruction putfieldits postcondition and the respective weakest
precondition:

{
st(cntr) 6= null ⇒ f(⊕st(cntr − 1) → st(cntr))(reg(1)) 6= null}
∧
st(cntr) = null ⇒ false

}

i : putfield f

{f(reg(1)) 6= null}
i+ 1 : . . .

5. access the length of an array i = arraylength

wp(i , m) =
st(cntr) 6= null ⇒ inter(i, i+ 1, m)[st(cntr)\arrLength(st(cntr))]
∧
st(cntr) = null ⇒ m.excPostRTE(i, NullExc)

The semantics of arraylengthis that it takes the stack top element which must be an
array reference and puts on the operand stack the length of the array referenced by
this reference. This instruction may terminate either normally or exceptionally. The
termination depends on if the stack top element is null or not. In case st(cntr) 6= null
the predicate inter(i, i + 1, m) must hold where the stack top element is substituted
with its length. The case when a NullExcis thrown is similar to the previous cases with
exceptional termination

6. checkcast i = checkcast C

wp(i , m) =
typeof(st(cntr)) <: C ∨ st(cntr) = null ⇒ inter(i, i+ 1, m)
∧
¬(typeof(st(cntr)) <: C) ⇒ m.excPostRTE(i, CastExc)

5.3 Weakest precondition calculus 73

The instruction checks if the stack top element can be cast to the class C . Two ter-
mination of the instruction are possible. If the stack top element st(cntr) is of type
which is a subtype of class C or is null then the predicate inter(i, i + 1, m) holds in
the prestate. Otherwise, if st(cntr) is not of type which is a subtype of class C , the
instruction terminates on CastExc and the predicate returned by m.excPostRTE for the
position i and exception CastExc must hold

7. instanceof i = instanceof C

wp(i , m) =
typeof(st(cntr)) <: C ⇒ inter(i, i+ 1, m)[st(cntr)\1]
∧
¬(typeof(st(cntr)) <: C) ∨ st(cntr) = null ⇒ inter(i, i+ 1, m)[st(cntr)\0]

This instruction, depending on if the stack top element can be cast to the class type C
pushes on the stack top either 0 or 1. Thus, the rule is almost the same as the previous
instruction checkcast.

• method invocation (only the case for non void instance method is given). i = invoke n

wp(i , m) =

n .pre[reg(s)\st(cntr + s− m.nArgs)]
n .nArgs
s=0

∧

∀res,m(m ∈ n .modif)
(

n .normalPost[result\res][reg(s)\st(cntr + s− n .nArgs)]
n .nArgs
s=0 ⇒

inter(i, i+ 1, m)[cntr\cntr − n .nArgs][st(cntr − n .nArgs)\res]

)

∧
n .exceptions.length−1
j=0

∧findExcHandler (n .exceptions[j], i, m.excHndlS) = ⊥ ⇒
∀e,m(m ∈ n .modif),
(

n .excPostSpec(n .exceptions[j])[EXC\e]m.excPostIns(i, m.exceptions[j])[EXC\e]
)

∧
(findExcHandler (m .excPostSpec(n .exceptions[j]), i, m.excHndlS) = k ⇒
∀e,m(m ∈ n .modif),
(

n .excPostSpec(n .exceptions[j])[EXC\e] ⇒

inter(i, k, m)[cntr\0][st(0)\e][n .modif[i]\bv i]
n .modif .length
i=0

)

Let us look in detail what is the meaning of the weakest precondition for method invokation.
Because we are following a contract based approach the caller, i.e. the current method m must
establish several facts. First, we require that the precondition n.pre of the invoked method
n holds where the formal parameters are correctly initialized with the first n.nArgs elements
from the operand stack.

Second, we get a logical statement which guarantees the correctness of the method invokation
in case of normal termination. On the other hand, its postcondition n.normalPost is assumed
to hold and thus, we want to establish that under the assumption that m.normalPost holds
with result substituted with a fresh bound variable res and correctly initialized formal pa-
rameters is true we want to establish that the predicate inter(i, i+1 , m) holds . This implica-
tion is quantified over the locations n.modif that a method may modify. We denote the quan-
tification with m(m ∈ n .modif) to say that we quantify over the locations which are in the
modifies list. The third part of the rule deals with the exceptional termination of the method
invokation. In this case, if the invoked method n terminates on any exception which belongs
to the array of exceptions n.exceptions that n may throw. Two cases are considered - either

74 Verification condition generator for Java bytecode

the thrown exception can be handled by m or not. If the thrown exception Exc can not be han-
dled by the method m (i.e. findExcHandler (n .excPostSpec(n .exceptions[j]), i, m.excHndlS) =
⊥) then if the exceptional postcondition predicate n .excPostSpec(Exc) of n holds then
m.excPostSpec(Exc) for any value of the thrown exception object. In case the thrown excep-
tionExc is handled by m, i.e. findExcHandler (n .excPostSpec(n .exceptions[j]), i, m.excHndlS) =
k then if the exceptional postcondition n .excPostSpec(Exc) of n holds then the intermediate
predicate inter(i, k, m) that must hold after i and before k must hold once again for any
value of thrown exception.

• throw exception instruction, i = athrow

wp(i , m) =
st(cntr) = null ⇒ m.excPostRTE(i, NullExc)
∧
st(cntr) 6= null ⇒ ∀Exc, (typeof(st(cntr)) <: Exc ⇒ m.excPostIns(i, Exc)[EXC\st(cntr)])

The thrown object is on the top of the stack st(cntr). If the stack top object st(cntr) is
null, then the instruction athrow terminates on an exception NullExc where the predicate
returned by the function m.excPostRTE(i, NullExc) must hold. The case when the thrown
object is not null should consider all the possible exceptions that might be thrown by the
current instruction. This is because we do not know the type of the thrown object which is
on the stack top. The part of the wp when the thrown object on the stack top st(cntr) is
not null considers all the possible types of the exception thrown. In any of

5.3.4 Verification conditions

Let us see now how with the help of the wp we can express formulas whose validity implies
the correctness of a program in our language. We shall express program correctness in terms
of correctness of methods declared in the classes of a program. In particular, the verification
conditions for a program is the set of the verification conditions for all the classes in P. The
verification conditions for a class are the verification conditions for all methods declared in a class.
Method correctness is understood as the compliance between the specified method contract (pre
and postconditions) and method implementation. Moreover, if a method in a class overrides a
method declared in a super type the correctness of the overriding method requires that it behaves
as the method it overrides.

Thus, in the following, we take a closer look at the formulas that concern method correctness.

5.3.4.1 Method implementation respects method contract

Supposing the execution of a method always terminates, the verification condition which expresses
the fact that a method m respects its specification states that the specified method precondition
m.pre implies the predicate wp(0 , m) calculated over the body of m. Moreover, we have few
more assumptions concerning the register (local) variables which store the receiver object and the
method parameters. Those assumptions actually reflect properly the semantics of our programming
language. Thus the verification condition will be as shown in the following:

Definition 5.3.1. Let us have a method m with a precondition m.pre, postcondition m.normalPost

and exceptional postcondition function m.excPostSpec. The verification condition which expresses
that the method respects its specification is the following:

m.pre ∧ reg(0) ∧ instances(reg(0))∧ 6= null ∧ locVarWD(m) ∧ locVarWT(m) ⇒ wp(0 , m)

As we can see, the verification condition assumes not only the specified method precondition
but also that the local variable reg(0) which stores the current object is not null and that it
contains a reference to an object in the heap. Actually, this is a natural condition as because of the

5.3 Weakest precondition calculus 75

semantics of our language method may be executed only on a non null reference which belongs to
the current heap. Next, we also take as a hypothesis the formula locVarWD which is parameterized
by the method m and which stands stands for:

locVarWD(m) = ∀i.1 ≤ i ≤ m.nArgs, m.argsType[i] <: Object⇒ instances(reg(i)) ∨ reg(i) = null

Thus we constrain the values of the local variables which are of reference type(i.e. are of type
which is a subtype of the root class Object of all reference types) to be either a reference to an
object allocated in the heap or null. This is also in correspondence with the semantics of the
language, which manipulates either references which are in the domain of the heap or are null.

The next formula in the assumption of the verification condition is locVarWD also parameterized
with m which stands for the following:

locVarWT(m) = ∀i.0 ≤ i ≤ m.nArgs, typeof(reg(i)) <: m.argsType[i]

Thus we assume that any local variable reg(i), 0 ≤ i ≤ m.nArgs (including the local variable
reg(0) which stores reference to the current object) is assumed to be with the expected type
reg(i) <: m.argsType[i] with which it is declared.

Consider for instance, the simple method which assigns the value 3 to a field f of the receiver
object stored in the method register reg(1) .

� �

1 A {
2 int f ;
3

4 //@ requires true
5 //@ ensures reg(0).f = 3
6 //@ exsures (Exception) false
7 m ()
8 load 0
9 const 3

10 putfield f

11 return
12 }

� �

This method respects its specification as in its body it assigns the value 3 to the field f of the
current object. Its verification condition is:

(true ∧ reg(0) 6= null ∧ locVarWD ∧ locVarWT) ⇒
reg(0) 6= null ⇒ reg(0).f(⊕reg(0) → 3) = 3
∧
reg(0) = null ⇒ false

We can see that the verification condition also holds. The first conjunct in it corresponds to a
normal termination of the method and holds because the left hand side of the equality simplifies to 3.
The second conjunct concerns the exceptional termination of the method (in case the dereferenced
object by the instruction putfield is null). This case also holds because of the contradiction of
in the hypothesis where reg(0) is both equal and different from null.

5.3.4.2 Behavioral subtyping

As we said above, in an object oriented language with subclassing and method overriding, the
notion of method correctness must also include the fact that the behavior of an overriding method
conforms with the semantics of the method it overrides.

We illustrate the importance of this issue by the following example:
� �

1 A {
2 //@ requires Pre1 ;
3 //@ ensures Post1 ;

76 Verification condition generator for Java bytecode

4 int m () { . . . }
5 }
6

7 B extends A{
8 //@ requires Pre1 ;
9 //@ ensures Post1 ;

10 m () { . . . }
11 }
12

13 C {
14 n(A a) {
15 int a .m() ;
16 }
17 }

� �

In the example, the class B extends the class A and overrides the method m. The last part
of the example shows a method n declared in class C which makes a call to m over the method
parameter a declared with static type the class A. If we had to verify this method call, as we
saw in the previous section we would use the specification of method m declared in A, i.e. the
precondition Pre1 and the postcondition Post1. Unfortunately, this is not sufficient to establish
the correctness of the method n as the dynamic type of the parameter a might be B and we do not
have any guarantee that the overriden method and its specification makes the verification condition
for method n valid.

One way to cope with this situation is to generate verification conditions at every method call
site for all the methods and their specifications that override the called method (methods with the
same signature declared in the subclasses of the static type of the object over which the method
call is done) respect. But this solution is not modular as it requires to reverify the whole program
every time a new subclass extension is made in the program. Such approach is taken in [91].

We adopt here an alternative solution which consists in the following. If a method m declared
in a class B overrides method A from the super class B of A, the specification of method m must
conform with the specification of method n: This is expressed by the two conditions (contravariant
and covariant) over their pre and postconditions:

• the precondition of the overriden method n must imply the precondition of the overriding
method m. Intuitively, this means that where the overriden method is called the overriding
method can be also called.

• the postcondition of the overriding method m must imply the postcondition of the overriden
method n. This must be true for normal postcondition and every exceptional postcondi-
tion case. This means that the overriding method guarantees stronger properties than the
overriden method

In the next, we show the conditions for establishing the correctness of a method m if method m

overrides method n:

Definition 5.3.2. Verification conditions for correct subtyping The verification condition which
express that a method m which overrides method n is a behavioral subtype is given in the following:

5.4 Example 77

∀bv 0, . . . , bvn.nArgs,
((

n.pre ∧ reg(0) 6= null ∧ instances(reg(0))∧
locVarWD(n) ∧ locVarWT(n)

)

⇒ m.pre

)

[reg(i)\bv i]
n.nArgs
i=0

∀bv , bv0, . . . , bvn.nArgs,

m.normalPost[result\bv] ∧ bv <: n.retType∧
reg(0) 6= null ∧ instances(reg(0))∧
locVarWD(n) ∧ locVarWT(n)∧
instances(reg(0))

⇒ n.normalPost[result\bv]

[reg(i)\bv i]
n.nArgs
i=0

∀bv , bv0, . . . , bvn.nArgs,

m.excPostSpec(Exc)[EXC\bv]∧
instances(bv)∧
bv <: Exc∧
reg(0) 6= null∧
instances(reg(0))∧
locVarWD ∧ locVarWT

⇒ n.excPostSpec(Exc)[EXC\bv]

[reg(i)\bv i]
n.nArgs
i=0

where Exc ∈ n.exceptions

As in the verification conditions conditions concerning only method specification above, they
all use additional assumption concerning the types and values of the local variables. As explained
above, the first condition expresses the fact that the precondition of the overriding method is
stronger than the precondition it overrides. This is the so called contravariant rule. Note that the
implication must hold for any valid value of the local variables (i.e. for those of reference type they
must be valid references in the heap and moreover, the receiver of the call must be not null)

The second condition expresses the fact that the normal postcondition of the overriding method
is stronger than than the postcondition specified in the method it overrides. We quantify over
the postcondition result as well as the values of the local variables including the receiver of the
method call reg(0) . The third formula represents a series of formulas which show that the
postcondition for any exceptional outcome of the overriding method on any exception type Exc

declared in n.exceptionsmust respect the condition of the overriden method. Similarly, we want
that the implication holds for any values of the local variables and of the exception object which
of the expected exception type Exc.

Note that here, because we do not treat old expressions, the verification condition is simple
w.r.t. verification conditions which might take into account the initial state. The latter involves a
modeling of the heap which expresses the relation between the initial and final states of a method
execution. A detailed explanation for how to construct such verification conditions may refer to
[90].

5.4 Example

In the following, we shall see what are the resulting preconditions that the wp will calculate for
the instructions in the bytecode from the program in Fig. 5.1.

Fig.5.2 shows the weakest preconditions for some of the instructions in the bytecode of the
method sum. In the figure, the line before every instruction gives the calculated weakest precondi-
tion of the instruction. Thus, the weakest precondition of the instruction return at line 74 states
that before the instruction is executed the stack top element st(cntr) must contain the sum of the
natural numbers smaller than the local variable reg(1) . This precondition is calculated from the
method postcondition which is given in curly brackets at line 75.

The instruction preceding the return instruction is a conditional branch which may jump to
instruction at line 44 (or at position 5 in the bytecode array). This instruction has as precondition a
predicate which reflects the two possible choices after it: if the element below the stack top st(cntr-
1) is smaller than the stack top element st(cntr) then the precondition P5 of the instruction at

78 Verification condition generator for Java bytecode

line 44 must hold, otherwise the precondition Pre13 of the instruction at line 74 holds. For every
instruction which does not targets a loop entry instruction the precondition is calculated from
the precondition of its successor instructions. The special cases are the instructions at lines 37
and 56 which point to the loop entry instruction at line 61. As described earlier we can see that
the resulting precondition of the instruction at line 56 is calculated upon the loop invariant. The
precondition of the instruction at line 37 is calculated also upon the loop invariant but also confirms
that the invariant implies the precondition of the loop entry instruction.

Finally, we can remark that the verification condition for the method Pre⇒ Pre0 is valid.

5.5 Related work

Floyd is among the first to work on program verification using logic methods for program languages
(see [98]). Following the Floyd’s approach, T.Hoare gives a formal logic for program verification in
[53] known today under the name Hoare logic. Dijkstra and Scholten [39] proposes then an efficient
way for applying Hoare logic in program verification, in particular they propose two predicate
transformer calculus and give their formal semantics.

In the following, we review briefly the existing work related to bytecode verification and more
particularly program verification tailored to Java bytecode programs. Few works have been ded-
icated to the definition of a bytecode logic. Among the earliest work in the field of bytecode
verification is the thesis of C.Quigley [95] in which Hoare logic rules are given for a bytecode like
language. This work is limited to a subset of the Java virtual machine instructions and does not
treat for example method calls, neither exceptional termination. The logic is defined by searching
a structure in the bytecode control flow graph, which gives an issue to complex and weak rules.

The work by Nick Benton [22] gives a typed logic for a bytecode language with stacks and
jumps. The technique that he proposes checks that both types and specifications are respected. The
language is simple and supports basically stack and arithmetic operations. A proof of correctness
w.r.t. an operational semantics is given. Differently from this work, here we assume that program
are well typed. This is a safe assumption as the JVM is supplied with a bytecode verifier [73]. We
consider that the separation of the concerns for well typedness and functional correctness between
the bytecode verifier and a verification condition generator is a good design decision.

Following the work of Nick Benton, Bannwart and Muller [11] give a Hoare logic rules for
a bytecode language with objects and exceptions. A compiler from source proofs into bytecode
proofs is also defined. As in our work, they assume that the bytecode is well-typed. In particular,
they define a Hoare-style bytecode logic which consists in building a derivation tree and the leaves
of the derivation tree must be proved in a classical logic. This is different from our solution
where we generate directly verification conditions using a weakest precondition calculus which are
then proved in a logic. A main inconvenient of using Hoare logic triples for proving program
correctness is that this is a complex process and needs even in simple cases a high level of user
interaction and competence. Of course, our approach also requires user interaction as far as
the generated verification conditions are hard to prove but automation is possible as far as the
verification conditions are simple.

In [106], M. Wildmoser and T. Nipkow describe a framework for verifying Jinja (a Java byte-
code subset) which features object manipulation, exceptions, method invocations. The verification
framework is based on a verification condition generator which uses weakest preconditions. The
framework is developped in the interactive theorem prover Isabelle/HOL and proved sound and
complete. They show how the safety policy against an arithmetic overflow can be checked. As in
our case, they also assume that the program is provided with annotations (e.g. loop invariants).

The Spec# [15] programming system developed at Microsoft proposes a static verification
framework where the method and class contracts (pre, post conditions, exceptional postconditions,
class invariants) are inserted in the intermediate code . Spec# is a superset of the C# programming
language, with a built-in specification language, which proposes a verification framework (there
is a choice to perform the checks either at runtime or statically). The verification procedure
[14] includes several processing stages of the bytecode program - elimination of irreducible loops,
transformation into an acyclic control flow graph, translation of the bytecode into a guarded passive
command language program. These transformations of course, facilitate the verification procedure.

5.5 Related work 79

� �
1 {Pre := reg(1) ≥ 0 }
2 {Pre0 := 0≥ 0 ∧ 0≤ reg(1) ∧ 0 == 0 ∗ (0 − 1)/2∧
3 ∀reg(3), reg(2),
4 reg(3) ≥ 0 ∧ reg(3) ≤ reg(1) ∧ reg(2) == reg(3) ∗ (reg(3) − 1)/2
5 ⇒ reg(3) < reg(1) ⇒ Pre5∧
6 reg(3) ≥ reg(1) ⇒ Pre13
7 }
8 0 const 0
9

10 {0 ≥ 0 ∧ 0 ≤ reg(1) ∧ st(cntr) == 0 ∗ (0 − 1)/2
11 ∧
12 ∀reg(3), reg(2)
13 reg(3) >= 0 ∧ reg(3) ≤ reg(1) ∧ reg(2) == reg(3) ∗ (reg(3) − 1)/2
14 ⇒ reg(3) < reg(1) ⇒ Pre5
15 ∧
16 reg(3) >= reg(1) ⇒ Pre13 }
17 1 store 2
18
19 { 0 ≥ 0 ∧ 0 <= reg(1) ∧ reg(2) == 0 ∗ (0 − 1)/2
20 ∧∀reg(3), reg(2)
21 reg(3) ≥ 0 ∧ reg(3) <= reg(1) ∧ reg(2) == reg(3) ∗ (reg(3) − 1)/2
22 ⇒ reg(3) < reg(1) ⇒ Pre5
23 ∧
24 reg(3) ≥ reg(1) ⇒ Pre13 }
25 2 const 0
26
27 { st(cntr) ≥ 0 ∧ st(cntr) <= reg(1) ∧ reg(2) == st(cntr) ∗ (st(cntr) + 1)/2
28 ∧
29 ∀reg(3), reg(2),
30 reg(3) ≥ 0 ∧ reg(3) <= reg(1) ∧ reg(2) == reg(3) ∗ (reg(3) − 1)/2 ⇒
31 reg(3) < reg(1) ⇒ Pre5 ∧ reg(3) ≥ reg(1) ⇒ Pre13 }
32 3 store 3
33
34 {I ∧ ∀reg(2), reg(3)(I ⇒ Pre10) }
35 4 goto 10
36
37 { Pre5 := reg(3) + 1 ≥ 0 ∧ reg(3) + 1 <= reg(1) ∧ reg(2) + reg(3) == (reg(3) + 1) ∗ (reg(3))/2 }
38 5 load 2
39
40 { reg(3) + 1 ≥ 0 ∧ reg(3) + 1 <= reg(1) ∧ st(cntr) + reg(3) == (reg(3) + 1) ∗ (reg(3))/2 }
41 6 load 3
42
43 { reg(3) + 1 ≥ 0 ∧ reg(3) + 1 <= reg(1)∧
44 st(cntr − 1) + st(cntr) == (reg(3) + 1) ∗ (reg(3))/2 }
45 7 add
46
47 { reg(3) + 1 ≥ 0 ∧ reg(3) + 1 <= reg(1)∧
48 st(cntr) == (reg(3) + 1) ∗ (reg(3))/2 }
49 8 store 2
50
51 { reg(3) + 1 ≥ 0 ∧ reg(3) + 1 <= reg(1)∧
52 reg(2) == (reg(3) + 1) ∗ (reg(3))/2 }
53 9 i inc 3 //LOOP END
54
55 { Pre10 := reg(3) < reg(1) ⇒ Pre5∧
56 reg(3) ≥ reg(1) ⇒ Pre13 }
57 10 load 3 //LOOP ENTRY
58
59 { st(cntr) < reg(1) ⇒ Pre5∧
60 st(cntr) ≥ reg(1) ⇒ Pre13 }
61 11 load 1
62
63 { st(cntr − 1) < st(cntr) ⇒ Pre5∧
64 st(cntr − 1) ≥ st(cntr) ⇒ Pre13 }
65 12 i f icmplt 5
66
67 { Pre13 := st(cntr) == reg(1) ∗ (reg(1) + 1)/2 }
68 13 return
69 { Post := result == reg(1) ∗ (reg(1) + 1)/2 }

� �

Figure 5.2: weakest precondition predicates for the instructions of the bytecode
of method sum

80 Verification condition generator for Java bytecode

Transforming the bytecode into an acyclic control flow graph (or simply identifying the loop entries)
allows for an easy treatment of loop invariants. As we said earlier, using an intermediate language
allows to treat a smaller language and thus the changes in the verification condition generator
can be easily applied. Moreover, supporting an intermediate language allows for using the same
verification framework for different programming languages. Passification avoids duplication of
formulas which can be exponential in the number of the conditional branches in a program [68].
This method consists basically in converting a program into a single assignment form. Despite that
in our implementation we also transform the control graph into an acyclic program, we consider that
in a mobile code scenario one should limit the number of program transformations for the following
reasons. A design of a verification condition generator should be as simple as possible especially
when it is tailored to be installed on the client site of a mobile code scenario. Bur a verification
framework which relies on several transformation layers can be relatively complex. Second, a
verification condition generator must be proved correct. In the case of several transformations this
may be not trivial.

Chapter 6

Correctness of the verification

condition generator

In the previous chapter, we defined a verification condition generator for a Java bytecode like
language. In this section, we will show formally that the proposed verification condition generator
is correct, or in other words that it is sufficient to prove the verification conditions generated over
a method’s body and its specification for establishing that the method respects the specification.
In particular, we will prove the correctness of our methodology w.r.t. the operational semantics of
our bytecode language given in chapter 3.8.

In the following, in Section 6.1 we shall formulate the correctness statement of the verification
condition generator. In Section 6.2, we describe the steps which must be overtaken in the proof. The
second Section 6.3 establishes the relation between syntactic substitution and semantic evaluation.
The latter will play a role in the correctness proof of the verification condition generator in Section
6.4.

6.1 Formulation of the correctness statement

In order to define what it means for the verification calculus to be correct we will need to precise
what does it mean that a method respects its specification. As we have stated before the intuition
behind this notion is that if the method starts execution in a state where its precondition holds
then if it terminates execution then its postcondition holds.

We shall concentrate on the correctness of method pre and postconditions. We shall assume
that the modified locations are correct.

As we want also to treat recursive calls, we use a technique known in the literature [88] which
consists in annotating the execution relation in the operational semantics with levels. A level of
execution stands for the maximal call depth in the execution of a method. Thus, the operational
semantics of a method invokation in case of normal termination1 would be :

lookUp(meth.Name,meth.argsType,meth.retType,TypeOf (St(Cntr − meth.nArgs))) = n
St(Cntr − n.nArgs) 6= null
n :< H, 0, [], [St(Cntr − n.nArgs), . . . , St(Cntr)], 0 >⇓k< H′,Res >norm

Cntr′ = Cntr − m.nArgs + 1
St′ = St(⊕Cntr′ → Res)
Pc′ = Pc + 1

m`invoke meth:<H,Cntr,St,Reg,Pc>↪→k + 1<H′

,Cntr′,St′

,Reg,Pc′

>

If a method invocation is at level k this means that the maximal call depth of the method is
at most k-1. If a method invocation is at level 1 this means that the method execution does not

1we are not exhaustive here about all the possible rules of the operational semantics for method invokation, but
the other cases are similar

82 Correctness of the verification condition generator

perform any method calls. Thus, a method invocation labeled with 0 does not exist. Moreover, if
the invocation of m is at level k+1 any method meth called in its body will have a level k. For the
other instructions the weight of the maximal call depth is just passed. The rules for the instructions
different from method invocation have this general form:

i6=invoke m`i:s1↪→ks2 k>0

m`s1↪→ks2

A method respects its specification if every terminating execution is such that if in its initial
state the method precondition holds then in its final state the method postcondition holds. We
also have to define the method correctness at execution at level k which follows.

Definition 6.1.1 (method respects its specification at level k). For every method m with
precondition m.pre, normal postcondition m.normalPost and the exceptional postcondition function
m.excPostSpec, we say that m respects its specification at level k if for every two states s0 and s1
such that :

• m : s0 ⇓k s1

• s0 � m.pre

Then if m terminates normally then the normal postcondition holds in the final state s1, i.e. s1 �

m.normalPost holds. Otherwise, if m terminates on an exception Exc the exceptional postcondition
holds in the poststate s1, i.e. s1 � m.excPostSpec(Exc) holds.

Next, we give a definition for program correctness at level k.

Definition 6.1.2 (program is correct at level k). A program is correct if for all classes Class

in the program, every method m in Class respects its specification at level k.

We generalize the definition for program correctness w.r.t. the level k.

Definition 6.1.3 (program is correct). A program is correct if for all levels k ≥ 0 the program
is correct at level k.

Let us now see informally the correctness condition for the verification calculus. We would like
to establish that if the verification conditions generated for all methods in a program are valid then
we can conclude that the program is correct. We formulate this as a the theorem:

Theorem 6.1.1 (Verification condition generator is correct). If the verification conditions
for all methods in a program P (see subsection 5.3.4) are valid then P is correct w.r.t. Def. 6.1.3

The main purpose of the current chapter is to establish this theorem. Before entering in
technical part of the proof we shall give an outline of the steps to be taken for establishing it.

6.2 Proof outline

We give now an informal description of the steps to be overtaken for the proof of Theorem 6.1.1.
We will describe our reasoning in the direction opposite to its formalization in the later sections.
We start with our main objective and then start to “zoom” in the steps that must be made in
order that it be achieved.

Thus, in order to establish our main theorem, we have to see under what conditions a single
method is correct at a level k. The greater part of the proof is concentrated on this. Remind
that a method correctness at level k means if the precondition calculated by the wp for the entry
instruction of the method holds in the initial state of the method then the postcondition of the
method will hold in the final state of the method provided that the method terminates. This is
the statement of Lemma 6.4.5.

For justifying Lemma 6.4.5, we first establish that if the precondition calculated by the wp for
the entry instruction of the method holds in the initial state of the method then the precondition
calculated by wp for every instruction reachable from the method entry instruction also holds in

6.3 Relation between syntactic substitution and semantic evaluation 83

the prestate of that instruction. This is done in Lemma 6.4.4. We use here an induction over the
number of execution steps made in the execution path. The induction case uses Lemma 6.4.3.

Lemma 6.4.3 shows that if in an execution path the preconditions calculated by wp for the
instructions in the path are such that the respective precondition holds in the prestate of the
respective instruction then either the respective normal or exceptional method postcondition holds
or if another execution step can be made then the weakest precondition of the next instruction
holds. This is also known as a subject reduction property. The latter lemma is may be the most
complicated one as it uses the argument of the reducibility of the execution graph (Section 3.9,
Def. 3.9.1). The lemma has three cases:

• the case where the next instruction is not a loop entry instruction. In this case the proof is
standard and uses the single step soundness of wp.

• the case when the next instruction is a loop entry instruction and the current instruction is
not a loop end. In this case, we use the single step soundness of wp as well the special form
of the precondition of the current instruction.

• the case where the next instruction is a loop entry and the current is a loop end instruction
(see Def. 3.9.1). In this case, we use the reducibility of the control flow graph which gives us
that the execution path has a prefix subpath which passes through the loop entry instruction
but not through the current loop end instruction. This fact allows us to conclude that also
in that case the Lemma 6.4.3 holds

What we mean by single step soundness of the wp function is that if the predicate calculated
by wp for an instruction holds in its prestate then the postcondition upon which the precondition
is calculated holds in its poststate (Lemma 6.4.2). The argument for the single step soundness uses
the relation between syntactic substitution and semantic evaluation which looks like:

[[E 1[E 2\E 3]]]s1 = [[E 1]]s1(⊕[[E 2]]s1→[[E 3]]s1)

This equivalence is standardly used for establishing the soundness of predicate transformer
function w.r.t. a program semantics and means that it does not matter if we use a syntactic
substitution over the expression and evaluate the resulting expression or update the state and
evaluate the original expression. The next section is dedicated to the relation between substitution
and evaluation.

Note that we do the proof under several assumptions. The first one is that the bytecode
has passed the bytecode verification. This guarantees that when the bytecode is executed every
instructions gets from the operand stack values of the expected type. This assumption liberates
of us from the obligation to make type checks in the verification condition generator. Next, we
assume that the control flow graph of a method is reducible, or in other words there are no cycles
in the graph with two entries. This means that if program have cycles then they should conform
to Def. 3.9.1 from Section 3.9. As we shall in the following, control flow graph reducibility plays
an important role in the proof of soundness of the verification condition generator. Note that this
restriction (as we said earlier) is realistic as every non-optimizing Java compiler produces reducible
control flow graphs and even hand written code is usually reducible.

6.3 Relation between syntactic substitution and semantic

evaluation

In this section, we will show what is the relation between the syntactic notion of substitution
and the semantic notion of evaluation. Particularly, we shall see that they commute. As an
intermediate execution state < H,Cntr, St,Reg,Pc > is composed from several elements, a heap
H, the stack counter Cntr , the operand stack St and the array of registers Reg, we shall state
for each component a separate lemma. In the following, we shall sketch the proof only of those
lemmas, that we consider representative the others having a similar proof.

Let us now look at the next formal statement. It refers to the fact that if we substitute in an
expression E 1 the expression reg(i) which represents the local variable at index i with another

84 Correctness of the verification condition generator

expression E 2 and evaluate the resulting expression in a state s1 we will get the same value if we
evaluate E 1 in the state s1(⊕Reg(i) → [[E 2]]s1).

Lemma 6.3.1 (Update a local variable). For any expressions E 1,E 2 if we have that the states
s1 and s2 are such that s1 =< H,Cntr, St,Reg,Pc >, s2 =< H,Cntr, St,Reg(⊕i→ [[E 2]]s1),Pc >
and i is a valid index in the array of method register Reg then the following holds:

1. [[E 1[reg(i)\E 2]]]s1 = [[E 1]]s2

2. s1 � ψ[reg(i)\E 2] ⇐⇒ s2 � ψ

Proof

1. we look at the first part of the lemma concerning expression evaluation. It is by structural
induction on the structure of E 1. We look only at the simple case when E 1 = reg(i). The
other cases proceed in a similar way.

[[reg(i)[reg(i)\E 2]]]s1 =
{ apply substitution }
[[E 2]]s1 =
{ evaluation of local variables and by the initial hypothesis for s2 }
[[reg(i)]]s2

2. second case of the lemma. It is by induction on the structure of the formula ψ. We sketch
the case when ψ = E 1 R E 2

s1 � (E 1 R E 2)[reg(i)\E 2] =
{ apply substitution }
s1 � E 1[reg(i)\E 2] R E 2[reg(i)\E 2] =
{ interpretation of formulas }
[[E 1[reg(i)\E 2]]]s1 R [[E 2[reg(i)\E 2]]]s1 =
{ from the first part of the lemma and the initial hypothesis for s2 we get }
[[E 1]]s2 R [[E 2]]s2 =
{ from definition of formula interpretation in a state }
s2 � E 1 R E 2

Lemma 6.3.2 (Update of the heap). For any expressions E 1,E 2,E 3 and any field f if we have
that the states s1 and s2 are such that the evaluation of E 1 [[E 2]]s1 is different from null and the
evaluation of E 3 is either an instance in the heap or of type int, s1 =< H,Cntr, St,Reg,Pc >,and
s2 =< H(⊕f → f(⊕[[E 2]]s1 → [[E 3]]s1)),Cntr, St,Reg,Pc > the following holds

1. [[E 1[f\f(⊕E 2 → E 3)]]]s1 = [[E 1]]s2

2. s1 � ψ[f\f(⊕E 2 → E 3)] ⇐⇒ s2 � ψ

Proof
We sketch only the first part of the lemma, the second part is by structural induction as in the
previous lemma, second case.

1. By structural induction on the structure of E 1. We look at the case when E 1 = E 2.f

[[E 2.f[f\f(⊕E 2 → E 3)]]]s1 =
{ apply substitution over fields as described in subsection 2.4.1 page 19 }
[[E 2.f(⊕E 2 → E 3)]]s1 =
{ simplify the expression as in subsection 2.4.1 page 19 }
[[E 3]]s1 =
{ evaluation of field access expression and by the initial hypothesis for s2 }
[[E 2.f]]s2

6.3 Relation between syntactic substitution and semantic evaluation 85

Lemma 6.3.3 (Update of the heap with a newly allocated object). For any expressions
E 1 if we have that the states s1 and s2 are such that s1 =< H,Cntr, St,Reg,Pc > and s2 =<
H′,Cntr, St(⊕Cntr → [[ref]]s1),Reg,Pc > where newRef(H,C) = (H′, ref) the following holds

1.
[[E 1[st(cntr)\ref][f\f(⊕ref → defVal(f.Type))]

subtype(f.declaredIn,C)

f
]]s1

=
[[E 1]]s2

2.

s1 � ψ[st(cntr)\ref][f\f(⊕ref→ defVal(f.Type))]
subtype(f.declaredIn,C)

f

⇐⇒
s2 � ψ

Proof
We sketch only the first part of the lemma, the second part is by structural induction as in the
first lemma, second case.

1. By structural induction on the structure of E 1. We look at the case when E 1 = st(cntr).g
where the field g is declared in class C .

[[st(cntr).g[st(cntr)\ref][f\f(⊕ref→ defVal(f.Type))]
subtype(f.declaredIn,C)

f
]]s1 =

{ applying the first substitution over st(cntr).g }

[[ref.g[f\f(⊕ref→ defVal(f.Type))]
subtype(f.declaredIn,C)

f
]]s1 =

{ as by initial hypothesis g is declared in class C the series of substitutions over
the fields declared in any subtype of C results in }
[[ref.g(⊕ref → defVal(g.Type))]]s1 =
{ simplify the field update expression }
[[defVal(g.Type)]]s1 =
{ by initial hypothesis about the state s2 and definition of the function newRef(H,C)
in section 3.4.1 we get }

[[st(cntr).g]]s2

Lemma 6.3.4 (Update the stack). For any expressions E 1,E 2,E 3 if we have that the states s1
and s2 are such that s1 =< H,Cntr, St,Reg,Pc > and s2 =< H,Cntr, St(⊕[[E 2]]s1 → [[E 3]]s1),Reg,Pc >
then the following holds:

1. [[E 1[st(E 2)\E 3]]]s1 = [[E 1]]s2

2. s1 � ψ[st(E 2)\E 3] ⇐⇒ s2 � ψ

Lemma 6.3.5 (Update the stack counter). For any expressions E 1,E 2 if we have that the
states s1 and s2 are such that s1 =< H,Cntr, St,Reg,Pc >, s2 =< H, [[E 2]]s1 , St,Reg,Pc > then
the following holds:

1. [[E 1[cntr\E 2]]]s1 = [[E 1]]s2

2. s1 � ψ[cntr\E 2] ⇐⇒ s2 � ψ

Lemma 6.3.6 (Return value property). For any expression E 1 and E 2, for any two states s1
and s2 such that s1 =< H,Cntr, St,Reg,Pc >,s2 =< H, [[E 2]]s1 >

norm then the following holds:

1. [[E 1[result\E2]]]s1 = [[E 1]]s2

2. s1 � ψ[result\E 2] ⇐⇒ s2 � ψ

86 Correctness of the verification condition generator

6.4 Proof of Correctness

In the following, we shall consider also that we manipulate meaningful states. A meaningful state
means that the heap is well - formed as defined in Definition 3.4.1. Moreover, in a meaningful state
local variables and the stack contain only references from the current heap or integer values.

Definition 6.4.1 (Meaningful state). The state < H,Cntr, St,Reg,Pc > is meaningful if the
heap respects conditions in Def. 3.4.1 and every local variable l (l ∈ Reg) l ∈ H.Loc ∨ l ∈ int
Moreover, the stack also must contain well formed values : (∀i, 0 ≤ i ≤ Cntr ⇒ St(i) ∈ H.Loc ∨
St(i) ∈ int)

Actually, the operational semantics preserves the meaningful states, i.e. if an instruction starts
execution in a meaningful state it terminates execution in such state

Lemma 6.4.1 (Operational semantics preserves meaningful states). If the state s with
the following configuration < H,Cntr, St,Reg,Pc > is meaningful and occurs in the execution of
method m then the state s′ resulting from one execution step, i.e. m ` m[Pc] : s ↪→ s′ is also
meaningful.

Our first concern now will be to establish that the rules for single bytecode instructions have
the following property: if the wp (short for weakest precondition) of an instruction holds in the
prestate then in the poststate of the instruction the postcondition upon which the wp is caclulated
holds.

Lemma 6.4.2 (Single execution step correctness). Let us have a program P and a method
m in P. For every intermediate state sn =< Hn,Cntrn, Stn,Regn,Pcn > and initial state s0 =<
H0, 0, [],Reg, 0 > of the execution of method m if the following conditions hold:

• m.body[0] : s0 ↪→
∗
k sn

• m.body[Pcn] : sn ↪→k sn+1

• sn � wp(Pcn, m)

• all methods in P respect their specification at level k-1

• the verification conditions for P are valid formulas

then :

• if m.body[Pcn] = return and sn+1 =< Hn, Stn(Cntrn) >norm then sn+1 � m.normalPost holds

• if m.body[Pcn] 6= athrow throws a not handled exception of type Exc, sn+1 =< Hn+1, ref >
exc

and TypeOf (ref) = Exc and newRef(Hn,Exc) = (Hn+1, ref) then < Hn+1, ref >exc
�

m.excPostSpec(Exc) holds.

• if m.body[Pcn] = athrow throws a not handled exception of type Exc and moreover we have
that sn+1 =< Hn, St(Cntr) >exc and H.TypeOf (St(Cntr)) = Exc then < Hn, St(Cntr) >exc

�

m.excPostSpec(Exc) holds.

• else sn+1 � inter(Pcn,Pcn+1, m) holds

Proof: The proof is by case analysis on the type of instruction. We are going to see only the
proofs for the instructions return, load, new, putfield and invoke, the other cases being the
same

Return instruction By initial hypothesis we have that the wp of the current instruction holds

< Hn,Cntrn, Stn,Regn,Pcn >� m.normalPost[result\st(cntr)]

From Lemma 6.3.6, which describes a substitution property for the expression result, we
get:

< Hn, [[st(cntr)]]<Hn,Cntrn,Stn,Reg
n

,Pcn> >norm
� normalPost

6.4 Proof of Correctness 87

By the definition of the evaluation function, we can get that the postcondition normalPost

holds in the configuration < Hn, Stn(Cntrn) >norm

< Hn, Stn(Cntrn) >norm
� normalPost

From the operational semantics for return (Section 3.8), we have that the state sn+1 =<
Hn, Stn(Cntrn) >norm which allows us to conclude that this case holds.

Instance creation From the definition of the wp instruction for the instruction new we obtain
that the following holds:

< Hn,Cntrn, Stn,Regn,Pcn >�

∀ref, (¬ instances(ref) ∧ typeof(ref) = C ∧ ref 6= null) ⇒

inter(i, i+ 1, m)

[cntr\cntr + 1]
[st(cntr + 1)\ref]

[f\f(⊕ref → defVal(f.Type))]
subtype(f.declaredIn,C)

f:Field

(8.1.1.1)

Moreover, from the operational semantics of the new instruction, we obtain that the state
sn+1 is of the form

sn+1 =< Hn+1,Cntrn + 1, Stn(⊕Cntrn + 1 → ref′),Regn,Pcn + 1 > (8.1.1.2)

where the heap Hn+1 in state sn+1 is obtained from the allocation operator newRef(H,C) =
(Hn+1, ref

′)

We can instantiate in (8.1.1.1) with ref′. Moreover, because the ref′ is not null not in the
heap Hn and is of type C (see Def. 3.4.2) we get that

< Hn,Cntrn, Stn,Regn,Pcn >�

inter(i, i+ 1, m)

[cntr\cntr + 1]
[st(cntr + 1)\ref′]

[f\f(⊕ref′ → defVal(f.Type))]
subtype(f.declaredIn,C)

f:Field

From lemmas 6.3.5, 6.4 and 6.3.2, 6.3.3 which state substitution properties for the stack
counter, the stack and the heap and from (8.1.1.2), we conclude that this case holds

Field update The cases getfield, astore, aload, arraylength are similar to this case. This
instruction may potentially throw a NullExc as the object reference whose field is updated
may be null. Thus, we should consider three cases : the case when the reference is null
and the NullExc exception is not caught, case when the reference is null and the NullExc

exception is caught, and the case when the reference is not null. We consider in the following
only the case, when an uncaught exception of type NullExc is thrown. By initial hypothesis,
we have that the wp function holds. In particular, we consider the case when an exception is
thrown we get that

< Hn,Cntrn, Stn,Regn,Pcn >� st(cntr) = null ⇒ m.excPostRTE(i, NullExc) (8.1.3.1)

From the operational semantics of the instruction putfield in case of a thrown exception
we get that st(cntr) = null and thus from (8.1.3.1) we conclude that

< Hn,Cntrn, Stn,Regn,Pcn >� m.excPostRTE(i, NullExc)

We unfold the function excPostRTE (see its Def. 5.3.2.2) and obtain

s1 �

∀ref(¬ instances(ref) ∧ ref 6= null ∧ typeof(ref) = NullExc) ⇒

m.excPostSpec(NullExc)

[cntr\0]
[st(0)\ref]

[f\f(⊕ref → defVal(f.Type))]
subtype(f.declaredIn,NullExc)

f

(8.1.3.2)

88 Correctness of the verification condition generator

We assume that the exception is not caught. Thus from the operational semantics of
putfield we get that the instruction execution terminates in a terminal exceptional state
< H′, ref′ >exc

sn+1 =< H′, ref′ >exc, where (H′, ref′) = newRef(H, NullExc) (8.1.3.3)

From Def.3.4.2 of the function newRef, we know that the reference ref′ is not null, is not
in the heap Hn and moreover it is of type NullExc. This allows us to instantiate (8.1.3.2)
and obtain

sn � m.excPostSpec(NullExc)

[cntr\0]
[st(0)\ref′]

[f\f(⊕ref→ defVal(f.Type))]
subtype(f.declaredIn,NullExc)

f

(8.1.3.4)
From substitution lemmas 6.3.5, 6.3.2, 6.4 and 6.3.3 conclude that the result holds in this
case.

method invocation In the following, we ignore the part of the predicate calculated by the wp
predicate transformer which concerns the exceptional termination for reasons of clarity.
Treating the whole definition of the wp for method invokation is done in a rather similar
way as the part that we sketch here. By initial hypothesis, we get that the wp of method
invocation holds. This in particular means that the precondition n .pre of the invoked method
n holds

sn � n .pre[reg(s)\st(cntr + s− n .nArgs)]
n .nArgs
s=0 (8.1.4.1)

Moreover, we get that the postcondition n .normalPost of the invoked method implies the
intermediate predicate inter(i, i+1, m) between the current and the next instruction in the
execution

sn �

∀res,m(m ∈ n.modif),

n .normalPost[result\res][reg(s)\st(cntr + s− n .nArgs)]
n .nArgs
s=0 ⇒

inter(i, i+ 1, m)[cntr\cntr − n .nArgs][st(cntr − n .nArgs)\res]

(8.1.4.2)

As the verification conditions for the program P are valid, we can get that the verification
conditions that n′ is a behavioral subtype the overriden method n and we get that the first
two conditions from Def. 5.3.2 (page 76) hold which concern the behavioral subtyping of n′

and n. From this fact and that we consider only meaningful states and from the validity of
(8.1.4.2) we deduce that the precondition of n′ holds in state sn

sn � n′.pre[reg(i)\st(cntr + s− n .nArgs)]
n.nArgs
i=0 (8.1.4.3)

From the operational semantics of method invocation the method lookup function lookUp will
find the method n′ which overrides method n and which will be actually executed. The method
n′ will be executed in initial state s′ described below and ends in the state < H′,Res >norm

Because n′ respects its specification level at k-1 we can apply the initial hypothesis for n′

and the concrete initial and final states and we then get

s′ � n′.pre ⇒< H′,Res >norm
� n′.normalPost

where
s′ =< Hn, 0, [], [Stn(Cntrn − n′.nArgs), . . . , Stn(Cntrn)], 0 >
Cntrn+1 = Cntrn − n.nArgs + 1
Stn+1 = Stn(⊕Cntrn → Res)
Pcn+1 = Pcn + 1
Hn+1 = H′

(8.1.4.4)

6.4 Proof of Correctness 89

From the fact that method n′ respects its specification at level k, (8.1.4.3) and (8.1.4.4) we
get that the postcondition of n′ holds in the terminal state < H′,Res >norm w.r.t. the initial
state s′ of the execution of method n′

< H′,Res >norm
� n′.normalPost (8.1.4.5)

Because the postcondition n′.normalPost does not mention the operand stack, neither the
stack counter and because of the relation between sn+1 and < H′,Res >norm we can conclude
from (8.1.4.5) that the following holds

sn � n′.normalPost[reg(s)\st(cntr + s− n .nArgs)]
n .nArgs
s=0 [result\Res]

This and the fact that the states operational semantics preserves meaningful states (Lemma
6.4.1), we can apply the verification condition concerning the fact that the method n′ is a
behavioral subtype of n, the postcondition of the former is stronger than latter

sn � n.normalPost[reg(s)\st(cntr + s− n .nArgs)]
n .nArgs
s=0 [result\Res]

We can apply the resulting judgment with modus ponens to (8.1.4.4) where we initialize the
quantification over the modified locations with their values in state sn and the variable res
to Res

sn � inter(i, i+ 1, m)[cntr\cntr − n .nArgs][st(cntr − n .nArgs)\Res]

From Lemma 6.3.5 for substitution of the stack counter as well as the stack and by the
operational semantics of the instruction invoke in case of normal termination we conclude
that this case holds.

Qed.

We now establish a property of the correctness of the wp function for an execution path. The
following lemma states that if the calculated preconditions of all the instructions in an execution
path holds then either the execution terminates normally (executing a return) or exceptionally,
or another step can be made and the wp of the next instruction holds.

Lemma 6.4.3. Let us have a program P and a method m in P. For every two state configurations
< H0,Cntr0, St0,Reg0,Pc0 > and < Hn,Cntrn, Stn,Regn,Pcn > denoted respectively with s0 and
sn, such that :

• m.body[0] : s0 ↪→
n
k sn

• m.body[Pcn] : sn ↪→k sn+1

• ∀i, (0 ≤ i ≤ n), si � wp(Pci, m)

• all methods in P respect their specification at level k-1

• the verification conditions for P are valid formulas

then the following holds:

1. if m.body[Pcn] = return and sn+1 =< Hn, Stn(Cntrn) >norm then sn+1 � m.normalPost

holds.

2. if m.body[Pcn] 6= athrow throws a not handled exception of type Exc, sn+1 =< Hn+1, ref >
exc,

H.TypeOf (ref) = Exc and newRef(Hn,Exc) = (Hn+1, ref) then the following holds
< Hn+1, ref >

exc
� m.excPostSpec(Exc).

3. if m.body[Pcn] = athrow throws a not handled exception of type Exc and we have moreover
that sn+1 =< Hn, St(Cntr) >exc and H.TypeOf (St(Cntr)) = Exc then < Hn, St(Cntr) >exc

�

m.excPostSpec(Exc) holds.

90 Correctness of the verification condition generator

4. else sn+1 � wp(Pcn+1, m) holds

Proof : The proof is by case analysis on the execution relation −→ between the current
instruction and the next instruction. We have three cases: the case when the next execution step
does not enter a cycle (the next instruction is not a loop entry in the sense of Def.3.9.1) the case
when the current instruction is a loop end and the next instruction to be executed is a loop entry
instruction (the execution step is −→l) and the case when the current instruction is not a loop
end and the next instruction is a loop entry instruction (corresponds to the first iteration of a
loop)

Case 1 the next instruction to be executed is not a loop entry instruction. Following Def. 5.3.1.1
of the function inter in this case we get inter(Pcn,Pcn+1, m) = wp(Pcn+1, m). By ini-
tial hypothesis, we have moreover that the weakest predicate for Pcn is valid in state sn,
i.e. sn � wp(Pcn, m). Thus by the previous lemma 6.4.2 we know that the predicate
inter(Pcn,Pcn+1, m) holds in sn+1, i.e. sn+1 � inter(Pcn,Pcn+1, m). This actually means

that the judgment sn+1 � wp(Pcn+1, m) holds.

Case 2 Pcn is not a loop end and the next instruction to be executed is a loop entry instruction
at index loopEntry in the array of bytecode instructions of the method m. Thus, there exists
a natural number i, 0 ≤ i < m.loopSpecS.length such that m.loopSpecS[i].pos = loopEntry,
m.loopSpecS[i].invariant = I and m.loopSpecS[i].modif = {modi, i = 1..s}.

Because initial hypothesis we have that sn � wp(Pcn, m), from Lemma 6.4.2 we have that
the intermediate predicate inter(Pcn,Pcn+1, m) holds in state sn+1, i.e. the following holds
sn+1 � inter(Pcn,Pcn+1, m). From the Def. 5.3.1.1 of the predicate inter , we get that in
the case for an edge between a loop entry and a loop end inter(Pcn,Pcn+1, m) is of the form:

sn+1 � I ∧ ∀modi, i = 1..s (I ⇒ wp(Pcn+1, m))

We can get from the last formulation and the semantics of the universal quantification that

sn+1 � I
sn+1 � I ⇒ wp(Pcn+1, m)

By modus ponens, this allows to conclude that wp(Pcn+1, m) holds in state sn+1

Case 3 Instruction Pcn is an end of a cycle and the next instruction to be executed is a loop
entry instruction at index loopEntry, i.e. loopEntry = Pcn+1 (i.e. the execution step is
of kind −→l). Thus, there exists a natural number i, 0 ≤ i < m.loopSpecS.length such
that m.loopSpecS[i].pos = loopEntry, m.loopSpecS[i].invariant = I and m.loopSpecS[i].modif =
{modi, i = 1..s}. We consider the case when the current instruction is a sequential instruction.
The cases when the current instruction is a jump instruction are similar. By initial hypothesis
we have that sn � wp(Pcn, m). From Def. 5.3.1.1 for the case when the current instruction
is a loop end and the next instruction is a loop entry, we get that the initial hypothesis is
equivalent to

sn+1 � I (8.3.1)

From def. 3.9.1, we conclude that there is a prefix subP = m.body[0] −→∗ loopEntry of the
current execution path which does not pass through Pcn. We can conclude that the transition
between loopEntry and its predecessor k (which is at index k in m.body) in the path subP is
not a backedge. By hypothesis we know that ∀i, 0 ≤ i ≤ n, si � wp(Pci, m). From def.5.3.1.1
and lemma 6.4.2 we conclude

∃k, 0 ≤ k ≤ n⇒ sk � I ∧ ∀modi, i = 1..s
(

I ⇒ wp(loopEntry, m)
)

(8.3.2)

It also follows that the states sk and sn+1 are the same except for the locations in the modifies

list modif of the loop sk =modif sn+1 because m.loopSpecS[i].modif = {modi, i = 1..s} We
obtain from (8.3.2) by instantiating every location modi in by its value in sn+1

sn+1 � I ⇒ wp(loopEntry, m) (8.3.3)

6.4 Proof of Correctness 91

From (8.3.1) and (8.3.3) and because loopEntry = Pcn+1 we conclude that

sn+1 � wp(Pcn+1, m)

Qed.
We now show that starting execution of a method in a state where the wp predicate for the

entry instruction holds implies that the wp for all the instructions in the execution path hold.

Lemma 6.4.4 (wp precondition for method entry point holds initially). Let us have a
program P and a method m in P. Let us have states s0 and sn such that:

• execution of method m starts in state s0

• makes n steps to reach the intermediate state sn: s0 ↪→
n
k sn

• s0 � wp(0, m) holds

• all methods in P respect their specification at level k-1

• the verification conditions for P are valid formulas

then the following holds
∀i, 0 < i ≤ n, si � wp(Pci, m)

Proof : Induction over the number of execution steps n

1. s0 ↪→k s1. By initial hypothesis we have that s0 � wp(0, m) we can apply lemma 6.4.3, we
get that s1 � wp(Pc1, m) and thus, the case when one step is made from the initial state s0
holds

2. Induction step: s0 ↪→
n−1
k sn−1 and

∀i, 0 < i ≤ n − 1, si � wp(Pci, m) and there can be made one step sn−1 ↪→k sn. Lemma
6.4.3 can be applied and we get that (1) sn � wp(Pcn, m). From the induction hypothesis
and (1) follows that

∀i, 0 < i ≤ n, si � wp(Pci, m)

Qed.

Having the last lemma we can establish that if a method starts execution in a state in which
the wp precondition for the method entry instruction holds and the method terminates then the
method postcondition holds in the method final state.

Lemma 6.4.5 (wp precondition for method entry point holds initially). Let us have a
program P and a method m in program P. For all states s0 and sn such that m : s0 ⇓k sn and let
s0 � wp(0 , m) holds. Assume that all methods in P respect their specification at level k-1 and the
verification condition for P are valid formulas. Let the program counter in state sn points to an
instruction return or an instruction which throws an unhandled exception of type Exc, then the
following holds:

• if m.body[Pcn−1] = return then sn � m.normalPost

• if m.body[Pcn−1] throws a not handled exception of type Exc then sn � m.excPostSpec(Exc)
holds.

Proof: Let s0 ↪→
∗
k sn and m.body[Pcn] is a return or an instruction that throws a not handled

exception. Applying lemma 6.4.4, we can get that ∀i, 0 ≤ i < n, si � wp(Pci, m). We apply lemma
6.4.3 for the case for a return or instruction that throws an unhandled exception which allows to
conclude that the current statement holds.
Qed.

Now, we establish under what conditions we can conclude that a method respects its specifica-
tion at level k.

92 Correctness of the verification condition generator

Lemma 6.4.6 (method respects its specification at level k). Let us have a program P and
a method m in P. If all methods in P respect their specification at level k -1 and the verification
conditions for P are valid formulas then m respects its specification at level k

The proof follows directly from Lemma 6.4.5. We are now ready to prove Theorem 6.1.1.

Theorem 6.1.1. If the verification conditions of program P (see subsection 5.3.4) are valid then
P is correct w.r.t. Def. 6.1.3

Proof: We want to establish now that if for every m in every class Class in a program P the
respective verification conditions are valid then the P is correct as defined in Def. 6.1.3. This, in
particular, means that for all levels k ≥ 0 the program is correct in level k. We reason by induction
on the level k.

base case k = 0 In this case, because we can not have an execution step at level 0, we conclude
that all methods at level 0 are correct

induction step Let us have that the program is correct at level k-1. In particular, this means that
for every class Class, every method m in Class is correct at level k-1. We can apply Lemma
6.4.6 to every single method m in P, the induction hypothesis and the initial hypothesis that
verification conditions of m are valid and we obtain that every method m is correct w.r.t. its
specification at level k. This means that the program is correct at level k.

From the base case and the inductive case, we can conclude that the program P is correct for every
level k and thus, we have proved the statement.

Qed.

6.5 Related work

Proving the soundness of a verification framework is important as such a proof can guarantee the
reliability of such framework. That is why most of the programming logic or verification conditions
are also supplied with such a proof. Being a verification condition generator, a Hoare logic tailored
to a structured or unstructured language, its proof of soundness requires a formalization of the
operational semantics w.r.t. the proof of soundness is done.

Let us make a review of the verification programming logics tailored to source programs and
provided with a proof of correctness. The proof presented here has been inspired by the proof
of soundness presented by Nipkow in [88] of a Hoare logic tailored to structures language which
supports as while loops, exceptions, expression with side effects, recursive procedures, procedure
calls. Moreover, the author gives a completeness proof as well as a proof of total correctness. The
proof has been done in the theorem prover Isabelle/HOL. The modeling of the assertion language
uses a shallow embedding, i.e. the assertions are functions from program states to the propositions
of the theorem prover Isabelle/HOL. The same induction over the method depth call underlines
the proof.

The Loop tool designed to support JML and tailored to the PVS theorem prover provides also
a proof of soundness of the weakest precondition calculus which underlines its verification scheme
[61]. The Jive system which is an interactive program theorem prover tailored to a Java subset is
also proved correct [79].

In [11], Bannwart and Muller define a Hoare style logic for a Java-like bytecode and prove its
correctness on paper using a similar proof technique as used here.

The bytecode logic presented M. Wildmoser and T. Nipkow [106] is also supplied with a proof of
soundness done in the theorem prover Isabelle/HOL. There, the soundness result is expressed w.r.t.
to a safety policy. A safety policy is expressed not only in terms of method pre and postconditions
but but also as annotations at intermediate program points. In particular, the authors prove the
soundness of their verification condition generator with respect to the policy for no arithmetic
overflow. This means that the policy is expressed also as assertions which accompany instructions
and which express that the instruction will not throw an arithmetic exception. Their soundness
result states that if the verification conditions are provable then the assertions which express the
safety policy holds at the particular program states. We have decided not prove the soundness of

6.5 Related work 93

intermediate assertions in order to keep things simple, although we consider this will not present
a major problem.

A verification framework whose objectives is to provide a full automation may sacrifice com-
pleteness or even soundness. This can be especially the case of verification systems for source code
verification where user will be not willing to spend hours on the verification process. For instance,
ESC/java [72] is based on intentional trade-offs of unsoundness with other properties of the checker,
such as frequency of false alarms (incompleteness) and efficiency. Such unsoundness is introduced
from different sources: unsound loop checking, unsound verification of behavioral subtyping, etc.
As far as the tool gives adequate results to the user and allows him to discover many other bugs
in the program, giving up soundness is a good price to pay. However, for bytecode logic this is not
desirable. A potential application of a bytecode logic are mobile code scenarios where the client
system may rely on such a logic and thus, the soundness of the logic is necessary.

Moreover, we consider that a bytecode logic must be designed directly over the bytecode. In
particular, applying transformations over the bytecode programs may turn the proof of soundness
in a difficult task. The proof for soundness presented here would seem large w.r.t. the proof of
soundness of Spec# presented in [14]. Spec# relies on several transformations over the bytecode.
First, a transformation of the potentially irreducible control flow graph to a reducible one is done.
The second step is converting the reducible control flow graph into an acyclic graph by removing the
loop back-edges. The third step consists in translating programs into a single-assignment form. The
fourth step is converting the program into a guarded command language and finally, the fifth and
last step is passifying the guarded command language program which means changing assignments
to assume statements. The proof presented in [14] is done for programs written in passified guarded
command language. But what is the formal guarantee that the initial bytecode program is also
correct? A proof of soundness for Spec# which takes into account all the transformation stages
can be already complex.

94 Correctness of the verification condition generator

Chapter 7

Equivalence between Java source

and bytecode proof obligations

In this chapter, we will look at the relationship between the verification conditions generated for a
Java like source programming language and the verification conditions generated for the bytecode
language as defined in Chapter 5. More particularly, we argue that they are syntactically equivalent
if the compiler is nonoptmizing and satisfies certain conditions.

As we have already discussed in the introductory part of the thesis, the traditional PCC frame-
work and the certifying compiler are limited to decidable properties like well-typedness of the code
or safe access to the memory. This is due to the fact that traditional PCC relies on a complete
automation.

The relation of the verification conditions over bytecode and source code can be used for building
an alternative PCC architecture which can deal with complex security policies. Note that in case
of a non-trivial security policy neither an automatic inference of the specification, nor an automatic
generation of the proof will be possible. In those cases, such an equivalence can be exploited by
the code producer to generate the certificate interactively over the source code. Because of the
equivalence between the proof obligations over source and bytecode programs (modulo names and
types), their proof certificates are also the same and thus, the certificate generated interactively
over the source code can be sent along with the code.

In the following, Section 7.1 presents a simple non optimizing compiler from the source language
presented in Chapter 2, Section 2.1 to the bytecode language presented in Chapter 3, Section
3.8. In the section, we will also discuss certain properties of the compiler that we define which
are conditions sufficient for establishing the equivalence between the verification conditions over
source programs produced by the calculus presented in Chapter 2, Section 2.4 and the verification
conditions over the source compilation into bytecode produced by the calculus presented in Chapter
5. Finally, Section 7.3 presents an overview of existing work in the field.

7.1 Compiler

We now turn to specify a simple compiler from the source language presented in the previous
section into the bytecode language discussed in Chapter 3. The function which transforms source
constructs in the body of method m into bytecode instructions is denoted with pqm and its signature
is:

pqm : nat ∗ (S ∪ E) −→ list I ∗ nat

The compiler function takes two arguments: a natural number s from which the labeling of the
compilation starts, the statement S or expression E to be compiled and returns a pair which
contains a list of bytecode instructions which is the compilation of the source construct and a
natural number which is the greatest label in the compilation. In the following, we will allow us
to use instead the notation ps,S , eqm = [is . . . ie] to refer to the list of instructions which is the
first component in the pair resulting from the compilation of statement S starting with index s
ps,Sqm = ([is . . . ie], e).

96 Equivalence between Java source and bytecode proof obligations

Although the compiler is realistic, we do not compile variable, class and method names but
rather use the same names on bytecode and source code. Taking into account these facts is not
difficult but we have made this choice for the sake of simplicity.

The produced bytecode targets a stack based virtual machine1. Thus, a basic principle of the
compiler is that expressions are compiled into a sequence of instructions whose execution (if it
terminates normally) will leave the virtual machine in a state where the value of the expression is
on the top of the operand stack.

Of course, the compiler must preserve the intended semantics of source control structures. For
instance, the compilation of a compositional statement S 1;S 2 should be such that the bytecode
resulting from the compilation of statement S 2 is always executed after the compilation of statement
S1 if the latter terminates normally. For cases like compositional, loop and conditional statements,
the compiler will use only bytecode instructions in order to preserve their intended meaning.
However, this is more complicated for try catch statements. In particular, for every method m

the virtual machine relies on the method exception handler table m.excHndlS(see Section 3.2) and
on a search function in it findExcHandler(see Section 3.5) in order to decide where to transfer
the control in case of a thrown exception. Thus, in order to generate method exception handler
table, we define a function addExcHandler which adds elements in m.excHndlS whenever the compiler
function pqm reaches a try catch statement. The function has the following signature:

addExcHandler : Method ∗ nat ∗ nat ∗ nat ∗Classexc

The meaning of the new element is that every exception of type Exc thrown in between the
instructions start . . . end can be handled by the code starting at index h. The formal definition of
the procedure is the following:

addExcHandler(m, start, end, h, Exc) =
m.excHndlS := {(start, end, h, Exc), m.excHndlS}

We can remark that when the procedure addExcHandler adds a new element in the exception
handler table the new element is added at the beginning of the exception handler table m.excHndlS.
This means that the more inner is a try catch statement over a statement the smaller index it will
have in the exception handler table. This is an important detail which explains why the virtual
machine transfers control to the proper exception handler table. This is because in our formalization
of the virtual machine, the function findExcHandler (see Section 3.5, page 33) returns the first such
index in the exception handler table excHndlS starting the search from its beginning.

What we have been describing up to now corresponds to the design of a standard Java compiler.
However, for the aims of the current section, we have to take into account the specification of
source statements. In particular, we have seen in the chapter 2 where the source language was
presented, that the syntax for loop statements explicitly mentions the loop invariant and the
modified locations in a loop iteration. In order to preserve the loop specification in the bytecode,
we provide the compiler with a function addLoopSpec which adds loop specification elements in the
loop specification table (the latter has been introduced in Chapter 5.1 page 62, Section 5.2 page
64). The function has the following signature:

addLoopSpec : Method ∗ nat ∗ P ∗ list E

It takes as arguments a method m, an index in the array of bytecode instructions i of m, a predicate
INV, a list of modified expressions modif and adds a new element in the table of loop invariants
m.loopSpecS of method m. Or more formally :

addLoopSpec(m, i, INV, modif) =
m.loopSpecS := {(i, INV, modif), m.loopSpecS}

In the next subsection 7.1.1, we proceed with the definition of the compiler function pqm for
expressions and statements. In subsection 7.1.2, we discuss the properties of the bytecode produced
by the compiler.

1We have already described the the JVM in Chapter 3 which is stack based

7.1 Compiler 97

7.1.1 Compiling source program constructs in bytecode instructions

The compiler is defined inductively over the structure of the source constructs. In the following,
we shall focus only on the compiler cases which we consider interesting or particular and we will
assume that the rest of the cases are evident from the compiler definition.

Fig. 7.1 shows the compilation scheme for expressions. Let us look in more detail the com-
pilation of the instance creation expression new Class(E). This case is not trivial because of
the way the new instance is initialized. The first instruction in the compilation is the instruction
s : new Class which creates a new reference in the heap and pushes it on the stack top (see for
the operational semantics of the instruction in Section 3.8). Once the new instance is created the
instructor must be invoked in order to initialize its (instance) fields. This is done by first dupli-
cating the reference (instruction dup) and then invoking the constructor constr(Class) of Class
by passing it as argument the duplicated reference. This has as effect that after the invokation of
the constructor the stack top contains the reference to the newly created instance which is now
initialized. Note that this compilation follows closely the JVM specification (see [75, §7.8]) which
mandates how standard Java compilers must compile instance creation expressions.

ps, IntConst , sqm = s : push IntConst

ps,null, sqm = s : push null

ps, this, sqm = s : load this

ps,E .f, eqm =
ps, E , e − 1qm;
e : getfield f

ps,E .m(), eqm =
ps, E , e − 1qm;
e : invoke m

ps,Var , sqm = s : load Var

ps,E1 op E2, eqm =
ps, E1, e′

qm;
pe′ + 1,E2, e − 1qm;
e : arith op

ps, (Class) E , eqm =
ps, E , e − 1qm;
e : checkcast Class;

ps,new Class(), s + 2qm =
s : new Class;
s + 1 : dup;
s + 2 : invoke constr(Class);

Figure 7.1: Definition of the compiler for expressions

Fig. 7.2 presents the definition of the compiler function for statements which does not affect
the exception handler table neither affect the specification tables. Let us explain in more detail
the rule for conditional statement. First the conditional expression is compiled. Its compilation
comprises instructions from index s to e′′ +1 where the latter is the conditional branch instruction
e′′ + 1 : if cond e′′′ + 2. Remind that the if cond instruction will compare the two stack top
elements (w.r.t. some condition) and if they fulfill the condition in question, the control will be
transfered to instruction at index e′′′ + 2, otherwise the next instruction at index e′′ + 2 will be
executed. Note that at index e′′′ +2 starts the compilation of the then branch pe′′′ +2,S1, eqm and
at index e′′ + 2 starts the compilation of the else branch pe′′ + 2,S2), e

′′′
qm. After the compilation

of the else branch follows a e′′ + 1 : goto e + 1 instruction which jumps at the first instruction
outside the compilation of the branch statement.

Fig. 7.3 shows the compiler definition for statements whose compilation will change the the
exception handler of the current method. The first such statement is the try catch statement.

98 Equivalence between Java source and bytecode proof obligations

ps,S1;S2, eqm =
ps,S1, e′

qm
pe′ + 1,S2, eqm

ps, if (E1condE2) then {S1} else {S2}, eqm =

ps,E1, e′
qm;

pe′ + 1,E2, e′′
qm;

e′′ + 1 : if cond e′′′ + 2;
pe′′ + 2, S2, e′′′

qm
e′′′ + 1 : goto e;
pe′′′ + 2,S1, e − 1qm;
e : nop

ps,Var = E , eqm =
ps,E , e − 1qm
e : store Var

ps,E1.f = E2, eqm =
ps,E1, e′

qm;
pe′ + 1,E2, e − 1qm;
e : putfield f

ps, athrow E , eqm =
ps,E , e − 1qm;
e : athrow;

ps, return E , eqm =
ps,E , e − 1qm;
e : return

Figure 7.2: Definition of the compiler for statements

The compiler compiles the normal statement S 1 and the exception handler S 2. Note that in the
exception handler table of the bytecode representation of method m, a new line is added which states
that the if one of bytecode instructions from index s to index e′ throw a not handled exception of
type ExcType control will be transfered to the instruction at index ExcType.

Fig 7.3 contains also the compilation scheme for a try finally statement. Remind that the
semantics of the statement is that however the try statement terminates execution the finally
statement must be executed after it and the whole statement terminates execution as the try
terminated execution. Thus, the compilation of statement S 1 is followed by the compilation of
statement S 2. This should assure that after the normal execution of S 1 S2 will be executed.
However, we have also to guarantee that S 2 will execute after S1 if the latter terminates on
exception. For this, we create an exception handler which protects S 1 from any exception thrown.
The exception handler stores the reference to the thrown object in variable l then executes the
compiled finally statement S 2, then loads the exception reference on the stack and re-throws it.

This compilation differs from the compilation scheme in the JVM specification for finally state-
ments, which requires that the subroutines must be compiled using jsr and ret instructions.
However, the semantics of the programs produced by the compiler presented here and a compiler
which follows closely the JVM specification is equivalent. In the following, we discuss informally
why this is true. The semantics of a jsr k instruction is to jump to the first instruction of the
compiled subroutine which starts at index k and pushes on the operand stack the index of the next
instruction of the jsr that caused the execution of the subroutine. The first instruction of the
compilation of the subroutine stores the stack top element in the local variable at index k (i.e.
stores in the local variable at index k the index of the instruction following the jsr instruction).
Thus, after the code of the subroutine is executed, the ret k instruction jumps to the instruction
following the corresponding jsr. This behavior can be actually simulated by programs without
jsr and ret but which inline the subroutine code at the places where a jsr to the subroutine
is done. We assume that the local variable l is not used in the compilation of the statement S 2,
which guarantees that after any execution which terminates normally of pe′′ + 3,S2, e − 2qm the
local variable l will still hold the thrown object. We also assume that the statement S 1 does not
contain a return instruction.

We have put separately in Fig.7.4 the compiler definition for loop statements as its compilation
is particular because it is the unique case where the specification tables of the current method

7.1 Compiler 99

ps, try {S1} catch (ExcType Var){S2}, eqm =
ps, S1, e′

qm;
e′ + 1 : goto e;
pe′ + 2,S2, e − 1qm;
e : nop
addExcHandler(m, s, e′, e′ + 2, ExcType)

ps, try {S1} finally {S2}, eqm =
ps, S1, e′

qm;
pe′ + 1,S2, e′′

qm;
e′′ + 1 : goto e;

{ default exception handler}
e′′ + 2 : store l;
pe′′ + 3,S2, e − 3qm;
e − 2 : load l;
e − 1 : athrow;
e : nop
addExcHandler(m, s, e′, e′′ + 2, Exception)

Figure 7.3: Definition of the compiler for statements that change the exception
handler table

are affected. Particularly, the compiler adds a new element in the table of loop invariants of the
method m. This new element relates the index e′ + 1 with the loop invariant INV and the list of
modified expressions modif. In the following, the index of the first instruction of the compilation
of the loop test (in the figure this is the index e′ + 1) will be frequently referred to. Thus, we
introduce the notation loopEntryS to refer to the first instruction in the compilation of the test
of the loop statement S . Actually, in the control flow graph this instruction represents a loop entry
instruction following Def. 3.9.1, Section 3.9.

ps, while (E1 cond E2)[INV, modif] {S}, eqm =
s : goto e′ + 1;
ps + 1,S , e′

qm;
pe′ + 1,E1, e′′

qm;
pe′′ + 1,E2, e − 1qm;
e : if cond s + 1;

addLoopSpec(m, e′ + 1, INV, modif)

Figure 7.4: Definition of the compiler for the loop statement

For an illustration, we show in Fig. 7.5 the source of method square which calculates the the
square of the parameter i . First, the absolute value of i is stored in the variable v. Then the
while statement calculates the sum of the impair positive numbers whose whole division by 2 is
smaller than v which is the square of i . The example is also provided with specification written
in JML. The specification states that the method returns the square of its parameter and that the
loop invariant is (0 <= s) && (s <= v) && sqr == s∗s. In Fig. 7.6, we then show the respective
compilation of method square. The example shows the correspondence between the bytecode (left)
resulting from the compilation described above and the source lines(right) of method square from
Fig. 7.5.

We can see in the figure how the branch statement is compiled (bytecode instructions from 4
to 12). It also shows us the somewhat unusual way into which the while statement is compiled.
More particularly, the compilation of the test of the while is after its body while semantically the
test must be executed at every iteration before the loop body. The compilation is actually correct
because the instruction 15 goto 28 jumps to the compilation of the line while(s<v) and thus, the
execution proceeds in the expected way. We have also marked the instructions which correspond

100 Equivalence between Java source and bytecode proof obligations

� �

1 //@ ensures \ result == i ∗ i ;
2 public int square (int i) {
3 int sqr = 0 ;
4 int v = 0 ;
5 i f (i < 0)
6 then {
7 v = − i ;}
8 else {
9 v = i ;}

10 int s = 0 ;
11 /∗@ loop modifies s , sqr ;
12 @ loop invariant (0 <= s) && (s <= v) && sqr == s ∗ s ;
13 @∗/
14 while (s < v) {
15 sqr = sqr + 2∗ s + 1 ;
16 s = s +1;}
17 return sqr ;}

� �

Figure 7.5: method square written in our source language

to the loop entry and loop end which are the instructions at index 28 and 27.
Note that the bytecode has been generated by a standard Java compiler. We have modified

the compilation of s = s+1; to match the definition of our compiler2 and introduced the nop

instructions. Note also that we keep the same names on bytecode and source. This is done for the
sake of simplicity and in this chapter, we shall use always this convention.

7.1.2 Properties of the compiler function

In this subsection, we will focus on the properties of the bytecode produced by the compiler pre-
sented above. These properties although a straightforward consequence of the compiler definition
are actually important for establishing formally the equivalence between source and bytecode proof
obligations. Note that a standard non-optimizing Java compiler generates code which respects them
and thus, we do not restrict at all the compilation process. We outline the categories of properties
that we shall consider:

• compilation of a statement (expressions) may contain instructions which either target in-
structions inside the compilation of a statement or the first instruction of the next statement,
if there is next statement (Such property is given in Lemma 7.1.2.1).

• expressions are compiled into a sequence of instructions which does not contains jumps
(treated in Lemma 7.1.2.2).

• a compilation of a source statement contains cycles only if the source statement contains
cycles (treated in Lemma 7.1.2.3).

• exception handler preservation (Lemmas 7.1.2.4, 7.1.2.5 treat those cases).

In the following, we use the notation SE when we refer both to statements S and expressions
E . Let us take a closer look at the properties in question.

The first property that we observe is that the last instruction e in the compilation ps,S , eqm of
a statement S is always in execution relation (see Fig. 3.10 for the definition of execution relation
between instructions) with the instruction e+ 1.

In order to get a precise idea of what we mean, the reader may take a look at the example
in Fig. 7.6. There, we can remark that the last instruction of the compilation of the statement
int sqr = 0; is the instruction 1 store sqr and that it is in execution relation with the instruction

2the Java compiler will tend to compile incrementation into iinc

7.1 Compiler 101

int square(int i)
0 const 0 int sqr = 0;
1 store sqr

2 const 0 int v = 0;
3 store v

4 load i if (i >= 0)
5 ifge 10

6 load i else{v =−i;}
7 neg
8 store v

9 goto 12

10 load i then{v = i;}
11 store v

12 nop

13 const 0 int s = 0;
14 store s

15 goto 28

16 load sqr sqr = sqr + 2∗s + 1;
17 const 2
18 load s
19 mul
20 add
21 const 1
22 add
23 store sqr

24 load s s = s+1;
25 const 1
26 add
27 store s LOOP END

28 load s LOOP ENTRY while(s < v)
29 load v
30 if icmplt 16

31 load sqr return sqr;
32 return

Figure 7.6: relation between bytecode and source code of method square from Fig.
7.5

at index 2. The same holds also for the compilation of the if statement where the last instruction
in its compilation is 12 nop and is in execution relation with 13 const 0. Actually, the compilation
of every statement or expression in the example has this property.

Lemma 7.1.2.1 (Compilation of statements and expressions). For any statement or expres-
sion SE which does not terminate on returnor athrow, start label s and end label e, the compiler
will produce a list of bytecode instruction ps,SE , eqm such that instruction e+ 1 may execute after
e, i.e. e −→ e+ 1

Next, we give a definition for a set of instructions such that they execute sequentially which
will be used for establishing afterwords the properties of the bytecode instructions resulting in
expression compilation.

102 Equivalence between Java source and bytecode proof obligations

Definition 7.1.2.1 (Block of instructions). We say that the list of instructions l = [i1 . . . in]
is a block of instructions in the compilation of method m if

• none of the instructions is a target of an instruction ij which does not belong to l except for
i1

• none of the instructions in the set is a jump instruction, a return or an athrow instruction
i.e. ∀j, i1 ≤ j < in, (j −→ j + 1)

• none of the instructions except for the first one can be a loop entry in the sense of Def. 3.10
∀j, i1 ≤ j < in,¬ (j −→l j + 1)

We denote such a list of instructions with i1; ...; in

The next lemma states that the compilation of an expression E results in a block of bytecode
instructions. For instance, consider the compilation of the expression sqr + 2∗s + 1; in Fig. 7.6
which comprised between instructions 16-22. Instructions 16-22 satisfy the three points from the
above definition.

Lemma 7.1.2.2 (Compilation of expressions). For any expression E, starting label s and end
label e, the compilation ps,E , eqm is a block of bytecode instruction in the sense of Def. 7.1.2.1

The following statement concerns loops. In particular, it says that a cycle appears in the
compilation of a statement S only if S contains a loop. Moreover, cycles in the bytecode produced
by the compiler have exactly one entry. For instance, we can see in Fig. 7.6 that the unique cycle in
the bytecode corresponds to the source loop and that the instruction marked with LOOP END and
the instruction marked with LOOP ENTRY correspond respectively to the end instruction in the
compilation of the source loop body and to start instruction in the compilation of the compilation
of the while test. Stated formally, we get the following property.

Lemma 7.1.2.3 (Cycles in the control flow graph). The compilation ps,S , eqm of a statement
S may contain an instruction k and j which are respectively a loop entry and a loop end in the
sense of Def.3.9.1 (i.e. there exists j such that j −→l k) if and only if S contains a substatement
S ′ which is a loop statement:

j = loopEntryS ′ − 1 ∧ k = loopEntryS ′

In the following, we will need the notion of substatement relation. For denoting that SE ′ is a
substatement of SE (i.e. SE ′ is contained in SE) we shall use the notation SE [SE ′]. We also use
the notion of a direct substatement(subexpression) which means the following:

Definition 7.1.2.2 (Direct substatement(subexpression)). The statement (expression) SE ′

is a direct substatement (subexpression) of SE if SE ′ is contained in SE and there does not exist
SE ′′ such that SE ′′ is contained in SE and SE ′ is contained in SE ′′. For denoting that SE ′ is a
direct substatement of SE we use the notation SE [[SE ′]].

Direct substatements are also substatements. But the contrary does not always hold. For,
instance if we have S = try{S 1;S2}catch(Exc e){S 3}, the statement S1;S 2 is a direct substate-
ment of S and is also its substatement. However, S 2 is a substatement of S but is not a direct
substatement of S .

The following property states that the exceptions thrown by a statement which is not a try catch
and the exceptions thrown by its direct substatement will be handled by the same exception handler,
i.e. the result of the function findExcHandler will be the same if we pass as an argument their
respective last instructions. Note that we can establish this property only for direct substatement
because substatements could be contained in try catch substatements and thus, they break the
property. Next, we shall focus on properties which concern the compilation of exception handlers.
As we saw in the previous section, the compiler keeps track of the exception handlers by adding
them in the exception handler table.

We illustrate this by the example in Fig. 7.7 which shows both the bytecode (on the left)
and source code(on the right) of the method abs. The method abs gets as parameter n an object

7.1 Compiler 103

int abs(Number n) int abs(Number n)
0 const 0 int abs = 0;
1 store abs

try {
2 load n if (n.value >= 0)
3 getfield Number.value
4 iflt 9

5 load n then {abs = n.value;}
6 getfield Number.value
7 store abs

8 goto 21

9 load n else {abs = −n.value;}
18 getfield Number.value
19 neg
20 store abs
21 nop

22 goto 26
}
catch(NullPointerExc e) {

23 store e abs = −1
24 const −1
25 store abs

}
26 nop

27 load abs return abs
28 return

abs.ExcHandler=
startPc = 2
endPc = 21
handlerPc = 22
exc = NullExc

Figure 7.7: relation between bytecode and source code of method abs

reference of class type Number. The class Number models a integer numbers where the value of the
integer represented by an instance of the class is stored in field value. Thus, method abs returns
the absolute value of the integer field n.value of the parameter n. The absolute value is stored
in the method local variable abs. This is implemented by the if statement. However, in the test
of the if statement, we dereference the parameter n ignoring whether it is null or not. That is
why the if statement may throw a NullExc and thus, it is wrapped in a try catch block. The
exception handler (the statement following the catch keyword) stores −1 in the local variable abs
which stands for that the the object n is null. Finally the method returns the value of the local
variable abs.

Consider in Fig. 7.7 the bytecode version of the program. The last instruction in the com-
pilation of the if statement is the instruction at index 21 and the last instruction in the compi-
lation of the else branch is 7. For any exception type Exc, the application findExcHandler(Exc
,21,abs.ExcHandler) returns the same value as findExcHandler (Exc ,7,abs.ExcHandler).

Lemma 7.1.2.4 (Exception handler property for statements). Assume that we have a
statement S which is not a try catch neither a try finally statement in method m. Assume that
statement S ′ is its direct substatement, i.e. S [[S ′]]. Let their respective compilations be ps,S , eqm

104 Equivalence between Java source and bytecode proof obligations

and ps′,S ′, e′qm, then the exception handlers for the instruction points e and e′ are the same:

∀Exc,findExcHandler (Exc, e, m.excHndlS) = findExcHandler (Exc, e′, m.excHndlS)

A similar property can be established for expressions. This time however, the property holds
for every instruction in the compilation of an expression.

Lemma 7.1.2.5 (Exception handler property for expressions). For every expression E, for
every instruction i inside the compilation ps,E , eqm, any exception type Exc thrown by i will be
handled by the same exception handler as in the case where Exc is thrown by the last instruction e
in the compilation, i.e.

∀Exc, ∀ i, s ≤ i < e,findExcHandler(Exc, e, m.excHndlS) = findExcHandler (Exc, i, m.excHndlS)

The next property states that a try catch statement try {S 1} catch (ExcType Var) {S 2} is
such that any exception E which is a subtype of ExcType and thrown by the last instruction in the
compilation of the try statement S 1 is handled by the compilation of the exception handler S 2.
Moreover, an an exception E’ which is not a subtype of ExcType thrown by the last instruction in
the compilation of S1 or the last instruction in the compilation of S 2 will be handled by the same
exception handler.

For instance, the last instruction in the compilation of the try catch statement in Fig. 7.7 is
the instruction at index 26 and the last instruction in the compilation of the try statement is the
instruction at index 21. From the exception handler, we can see that any exception except NullExc
which might be thrown from these instructions will be handled in the same way.

Lemma 7.1.2.6 (Exception handlers and try catch statements). For every try catch state-
ment try {S 1} catch (ExcType Var){S 2} whose compilation results in ps,S 1, e

′
qm; e′ +1 : goto e;

pe′ + 2,S2, e − 1qm; e : nop and modifies the exception handler table addExcHandler(m, s, e′, e′ +
2, ExcType) is such that the following holds

∀Exc,¬(Exc <: ExcType) ⇒

(

findExcHandler (Exc, e′, m.excHndlS) =
findExcHandler (Exc, e, m.excHndlS)

)

∧
findExcHandler (ExcType, e′, m.excHndlS) = e′ + 2

7.2 Establishing the equivalence between verification condi-

tions on source and bytecode level

In the following, we proceed with establishing the equivalence between source and bytecode proof
obligations. As we have already seen, the source programming language supports expressions and
statements. Because statements and expressions play different roles in a source program language
they need a different treatment here in this proof. Let us remind briefly about the semantics of
these constructs and their compilation. Expressions evaluate to a value and thus, their compilation
affects the operand stack on execution time. As we have discussed previously, because we compile
for a stack based virtual machine, an expression compilation results in a sequence of instructions
whose execution must leave on the stack top the expression value. Statements have a different role
in the language. They do not have values, but they control the control flow in the program.

We focus now on the relation between the wp predicate transformer functions for expressions on
bytecode and source level. But before entering into technical details, we illustrate this relation by
an example given in Fig.7.8. The figure contains three parts. The first part shows the compilation
of a source expression sqr + 2∗s in a method m starting at index i. There we show the steps that
the compiler will take for the compilation of the expression: compile the access of the variable sqr,
the multiplication 2∗s and compile their addition.

The second part calculates the preconditions of the instructions resulting from the expression
compilation against a postcondition that the stack top element is equal to 5 (st(cntr) = 5).
Actually, this postcondition requires that the evaluation of the expression must be equal to 5. This
is because as we said in the beginning of the section the compiler translates source expressions to

7.2 Establishing the equivalence between verification conditions on source and
bytecode level 105

a sequence of bytecode instructions such that their execution must leave the expression value on
the stack top. Note that every instruction is followed by its postcondition and is preceded by its
weakest precondition. This means that the weakest predicate of an instruction is the postcondition
of the predecessor instruction. This is because compilation of expressions may not contain loop
entries (see previous Section 7.1.2.2, page 102).

The third part shows how the precondition of the source expression is calculated w.r.t. the
postcondition v = 5 where v is the special logical variable which stands for the value of the expres-
sion sqr + 2∗s. Thus, the bytecode postcondition st(cntr) = 5 and the source postcondition
v = 5 express the same condition respectively on source and bytecode. Note that substituting the
abstract variable v with the stack top in the source postcondition v = 5[v\st(cntr)] results in the
bytecode postcondition.

Let us focus on the intermediate stages in the calculation of the precondition of the whole
expression. We may remark that the resulting postcondition of the source expression 2∗s is vsqr +
v2∗s = 5 and that the postcondition at line 1.9 for the last instruction of its compilation (instruction
i+3: mul) is st(cntr − 1) + st(cntr) = 5. Substituting in the source postcondition the abstract
variable v2∗s with st(cntr) and vsqr with st(cntr-1) results in the bytecode postcondition

(1) (vsqr + v2∗s = 5)[v2∗s\st(cntr)][vsqr\st(cntr − 1)] ≡ st(cntr − 1) + st(cntr) = 5

We can remark that the precondition of the first instruction (i+1: const 2) of the compilation of
the expression 2∗s is st(cntr) + 2 ∗ s = 5. We may remark that the precondition of the source
expression 2∗s in the third part of the figure is equivalent to vsqr + 2 ∗ s = 5. Substituting in the
source precondition the abstract variable vsqr with st(cntr) results in a formula which is equivalent
to the bytecode precondition

(2) (vsqr + 2∗s = 5)[vsqr\st(cntr)] ≡ st(cntr) + 2∗s = 5

Equivalences (1) and (2) give the intuition of how the predicate transformers work over source
expressions and their bytecode compilation. The predicate transformer over the instructions rep-
resenting an expression substitutes the stack top element expression st(cntr) with the value of
the expression and the stack counter is decremented. The predicate transformer over a source
expression calculates a predicate where the abstract variable representing its value is substituted
with the expression value. More formally, this is expressed in the next lemma.

Theorem 7.2.1. For every expression E and its compilation ps,E , eqm let have a formula ψ and
expressions w1 . . . wk, k ≥ 0 such that

ψ[v\st(cntr)][wi\st(cntr − i)]i=1...k = inter(e, e+ 1, m)∧
∀Exc, excPost(Exc) = m.excPostIns(Exc, e)

then the following holds

wpsrc(E , ψ, excPost, m)v [wi\st(cntr − i+ 1)]i=1...k = wp(s, m)

Proof: the proof is by structural induction over the expression structure. We sketch the cases
for field access and arithmetic expressions.

field access From the compiler definition we have

ps,E .f, eqm =
ps,E , e− 1qm;
e : getfield f

(7.2.1.1)

By initial hypothesis we have that we have a formula ψ over the source language such that if
the abstract variables wi which stand for expression values are substituted with stack expres-
sions the formula will be the same as the formula inter(e, e+ 1, m). Or formally, for some k
such that k ≥ 0 we have the following equality:

ψ[v\st(cntr)][wi\st(cntr − i)]i=1...k = inter(e, e+ 1, m) (7.2.1.2)

106 Equivalence between Java source and bytecode proof obligations

pi, sqr + 2∗s, i + 4qm =
pi, sqr, iqm
pi + 1, 2∗s, i + 3qm
i+4: add

where
pi, sqr, iqm = i : load sqr

pi + 1, 2∗s, i + 3qm =
i+1: const 2
i+2: load s
i+3: mul

1.1 sqr + 2 ∗ s = 5
1.2 i : load sqr
1.3 st(cntr) + 2 ∗ s = 5
1.4 i+1: const 2
1.5 st(cntr − 1) + st(cntr) ∗ s = 5
1.6 i+2: load s
1.7 st(cntr − 2) + st(cntr − 1) ∗ st(cntr) = 5
1.8 i+3: mul
1.9 st(cntr − 1) + st(cntr) = 5
1.10 i+4: add
1.11 st(cntr) = 5

2.1 wpsrc(sqr + 2∗s, v = 5, excPost, m)v =
2.2 wpsrc(sqr,wpsrc(2∗s, (v = 5)[v\vsqr + v2∗s], excPost, m)v2∗s

, excPost, m)vsqr =
2.3 wpsrc(sqr,wpsrc(2,wpsrc(s, (vsqr + v2∗s = 5)[v2∗s\v2 ∗ vs], excPost, m)vs , excPost, m)v2 , excPost, m)vsqr =
2.4 wpsrc(sqr,wpsrc(2, (vsqr + v2 ∗ vs = 5)[vs\s], excPost, m)v2 , excPost, m)vsqr =
2.5 wpsrc(sqr, (vsqr + v2 ∗ s = 5)[v2\2], excPost, m)vsqr =
2.6 (vsqr + 2 ∗ s = 5)[vsqr\sqr] =
2.7 sqr + 2 ∗ s = 5

Figure 7.8: Expression, its compilation and their respective preconditions

From the definition of the wp for source field access expressions, we have also

wpsrc(E .f, ψ, excPost, m)v = wpsrc(E , ψ′, excPost, m)v1

where

ψ′ =
v1 6= null ⇒ ψ[v\v1.f]
∧
v1 = null ⇒ excPost(NullExc)

(7.2.1.3)

Because the execution relation between e and e+ 1 is not a loop backedge by Lemma 7.1.2.2
which establishes that compilation of expressions does not contain loop entries and from the
Def. 5.3.1.1 of the function inter : (5) inter(e− 1, e, m) = wp(e, m)

definition of the wp function for getfield

wp(e, m) =
st(cntr) 6= null ⇒ inter(e, e+ 1, m)[st(cntr)\st(cntr).f]
∧
st(cntr) = null ⇒ m.excPostIns(NullExc, e)

From (7.2.1.1), (7.2.1.2) and (7.2.1.3) and the above facts for the wp function over bytecode
and source respectively, we conclude:

ψ′[v1\st(cntr)][wi\st(cntr − i)]i=1...k = inter(e− 1, e, m) (7.2.1.4)

For the exceptional postcondition functions on source and bytecode we get from Lemma
7.1.2.5 and the initial hypothesis that

∀Exc, excPost(Exc) = m.excPostIns(Exc, e− 1) (7.2.1.5)

We apply the induction hypothesis over (7.2.1.4) and (7.2.1.5) and obtain

wpsrc(E , ψ′, excPost, m)v1 [wi\st(cntr − i+ 1)]i=1...k = wp(s , m)

Finally, (7.2.1.3) and the last equality allows us to conclude that this case holds

7.2 Establishing the equivalence between verification conditions on source and
bytecode level 107

arithmetic expression From the compiler definition we have

(1) ps,E1 op E 2, eqm =
ps,E1, e

′
qm;

pe′ + 1,E2, e− 1qm;
e : op

As in the previous case, we can conclude that there exists a formula ψ over source expressions
with the following property

ψ[v\st(cntr)][wi\st(cntr − i)]i=1...k = inter(e, e+ 1, m) (7.2.1.6)

We also remind the formulation of the wp function for source arithmetic expressions

wpsrc(E 1 op E 2, ψ, excPostsrc, m)v = wpsrc(E 1,wpsrc(E 2, ψ
′, excPostsrc, m)v2 , excPostsrc, m)v1

with ψ′ = ψ[v\v1opv2]

It follows from Lemma 7.1.2.2 about expressions that the compilation of an expression results
in a list of instructions which does not contain loop entries. Thus, from the Def.5.3.1.1 of the
function inter we get

inter(e− 1, e, m) = wp(e, m)

It follows from the wp for an arithmetic instruction

wp(e, m) = inter(e, e+ 1, m)[cntr\cntr − 1][st(cntr − 1)\st(cntr − 1) op st(cntr)]

which because of (7.2.1.6) is equal to

ψ[v\st(cntr)][wi\st(cntr − i)]i=1...k[cntr\cntr − 1][st(cntr − 1)\st(cntr − 1) op st(cntr)]

Because the formula ψ refers to source expressions and does not contain stack expressions we
can conclude by applying substitutions

ψ[v\st(cntr − 1)opst(cntr)][wi\st(cntr − i+ 1)]i=1...k

which is equal to

ψ′[v2\st(cntr)][v1\st(cntr − 1)][wi\st(cntr − i+ 1)]i=1...k

From the last equalities we can apply the induction hypothesis over E 2 and ψ′ and get

wpsrc(E 2, ψ
′, excPostsrc, m)v2 [v1\st(cntr)][wi\st(cntr−i+1)]i=1...k = wp(e′+1, m) (7.2.1.7)

As it follows from Lemma 7.1.2.2 we have that inter(e′, e′+1, m) = wp(e′+1, m) and because
of the last result (7.2.1.7), we can apply the induction hypothesis over E 1, we conclude that
this case holds.

Qed.

The next lemma states the same property but this time for the compilation of statements.

Theorem 7.2.2. Let us have the statement S, its compilation ps,S , eqm in method m, the formula
ψ and the exceptional function excPost : ExcType→ P such that

1. if e+ 1 exists then ψ = inter(e, e+ 1, m)

2. if e+ 1 does not exist and e = return then ψ = m.normalPost

108 Equivalence between Java source and bytecode proof obligations

3. ∀Exc, excPost(Exc) = m.excPostIns(Exc, e)

then the following holds:

wpsrc(S , ψ, excPost, m) = wp(s , m)

Proof : the proof is by structural induction on statements and uses the properties of the compiler
shown before. We give here the proof for the cases of compositional statement, while and try catch
statement. The rest of the cases proceed in a similar way.

compositional statement

wpsrc(S1;S2, ψ, excPost, m) = wpsrc(S 1,wpsrc(S 2, ψ, excPostsrc, m), excPostsrc, m)

From the compiler definition we get

ps,S1;S 2, eqm = ps,S1, e
′
qm; pe′ + 1,S2, eqm

It follows from the induction hypothesis over S 2 and the initial hypothesis about the post-
condition

wpsrc(S 2, ψ, excPost, m) = wp(e′ + 1 , m) (7.2.2.1)

Lemma B.1 states that e and e+ 1 are in execution relation Lemma 7.1.2.3 states that loop
edges (−→l) appear only on loop statement compilation and thus, the edge between e′ and
e′ + 1 is not a loop edge. In that case from Def. 5.3.1.1 of the function inter we get

inter(e′, e′ + 1, m) = wp(e′ + 1 , m) (7.2.2.2)

The statement S 1 is a strict substatement of S 1;S 2 and thus, from Property 7.1.2.4 follows

∀Exc, m.findExcHandler (Exc, e, m.excHndlS) = m.findExcHandler (Exc, e′, m.excHndlS)

From the above conclusion and the Def. 5.3.2.1 of function excPostIns

∀Exc, m.excPostIns(Exc, e) = m.excPostIns(Exc, e′) (7.2.2.3)

From (7.2.2.1), (7.2.2.2) and (7.2.2.3) we get that

wpsrc(S 1,wpsrc(S 2, ψ, excPost, m), excPost, m) = wp(s , m)

From this last equality we conclude that this case holds.

while statement Let us remind the definition of the wp for while statements

wpsrc(while (E 1 cond E 2) [INV, modif] {S}, nPostsrc, excPostsrc, m) =
INV ∧
∀ m,m ∈ modif,
INV ⇒ wpsrc(E 1,wpsrc(E 2,P, excPostsrc, m)v2 , excPostsrc, m)v1

where
P = (v1condv2) ⇒ wpsrc(S , INV, excPostsrc, m)
∧
¬(v1condv2) ⇒ nPostsrc

We remind that the compilation of the while statement results as follows

ps, while (E 1 cond E 2)[INV, modif] {S}, eqm =
s : goto e′ + 1;
ps+ 1,S , e′qm;
pe′ + 1,E 1, e

′′
qm;

pe′′ + 1,E 2, e− 1qm;
e : if cond s+ 1;

addLoopSpec(m, e′ + 1, INV, modif)

7.2 Establishing the equivalence between verification conditions on source and
bytecode level 109

From Lemma 7.1.2.3 we know that the execution relation between e′ and e′ + 1 is a loop
execution relation. From Def. 5.3.1.1, 68 of the function inter we conclude that

inter(e′, e′ + 1, m) = INV (7.2.2.4)

From Lemma 7.1.2.4 we get that the exception handlers for the last index e′ in the compilation
of S and the index e are the same. Thus, from the initial hypothesis for the exception handler
function, we conclude that

∀Exc, excPost(Exc) = m.excPostIns(Exc, e′) (7.2.2.5)

We can apply the induction hypothesis over (7.2.2.4) and (7.2.2.5) and statement S and we
get

wpsrc(S , INV, excPostsrc, m) = wp(s+ 1 , m) (7.2.2.6)

From Lemma 7.1.2.3 we get that the execution relation between e and s + 1 is not a loop
execution relation. From def. 5.3.1.1, we conclude that wp(s + 1 , m) = inter(e, s + 1, m).
Thus, from (7.2.2.6) and the definition of the wp function for if cond , we conclude that the
wp of the instruction at index e is equivalent to

wp(e , m) =
st(cntr) cond st(cntr − 1) ⇒ wpsrc(S , INV, excPostsrc, m)
∧
¬(st(cntr) cond st(cntr − 1)) ⇒ inter(e, e+ 1, m)

Using the latter, the previous Lemma 7.2.1 for expressions is applied twice over E 1 and E 2

and thus, we obtain

wpsrc(E 1,wpsrc(E 2,
(v1condv2) ⇒ wpsrc(S , INV, excPostsrc, m)
∧
¬(v1condv2) ⇒ nPostsrc

, excPostsrc, m)v2 , excPostsrc, m)v1 =

wp(e′ + 1 , m)

From Lemma 7.1.2.3, we get that e′ + 1 is a loop entry instruction. From Def. 5.3.1.1 of the
function inter , we get that

wp(s , m) = inter(s, e′ + 1, m) =
INV ∧ ∀ m,m ∈ modif, (INV ⇒ wp(e′ + 1 , m))

From the last results, we obtain that this case holds.

try catch statement Let us remind the definition of the weakest precondition predicate trans-
former for try catch statement

wpsrc(try {S1}catch (ExcType Var){S 2}, ψ, excPost, m) =
wpsrc(S 1, ψ, excPost(⊕ExcType→ wpsrc(S 2, ψ, excPost, m)), m)

(7.2.2.7)

Also, by definition of the compiler function, we have that the compilation of try catch state-
ment results in the following list of instructions

ps, try {S 1} catch (ExcType Var){S 2}, eqm =
ps,S1, e

′
qm; e′ + 1 : goto e; pe′ + 2,S 2, e− 1qm; e : nop

addExcHandler(m, s, e′, e′ + 2, ExcType)

We apply the induction hypothesis over S 2 and the initial hypothesis

wpsrc(S 2, ψ, excPost, m) = wp(e′ + 2, m)

110 Equivalence between Java source and bytecode proof obligations

From Lemma 7.1.2.6, we know that the indexes e and e′ has the same exception handlers

∀Exc,¬(Exc <: ExcType) ⇒
(findExcHandler (Exc, e′, m.excHndlS) = findExcHandler (Exc, e, m.excHndlS))∧
findExcHandler (ExcType, e′, m.excHndlS) = e′ + 2

From the definition of excPostIns and the initial hypothesis about the exceptional postcondi-
tion functions for indexes e and e′

∀Exc, excPost(⊕ExcType→ wp(e′ + 2, m))(Exc) = m.excPostIns(Exc, e′) (7.2.2.8)

Lemma 7.1.2.3 tells us that there are no loop edges between e′ and e′ + 1, e′ + 1 and e, e and
e+ 1. Thus, we can conclude from the definition of the function inter that

inter(e′, e′ + 1, m) = inter(e′ + 1, e, m) = inter(e, e+ 1, m)

We apply induction hypothesis over the last conclusion and (7.2.2.7), (7.2.2.8), we get that
this case holds.

Qed.

As a conclusion of the current chapter, we would like to make several remarks. Such an
equivalence between proof obligations on source and bytecode and the fact that we have proof for
the soundness of the bytecode verification condition generator gives us the soundness of the source
weakest precondition calculus:

Theorem 7.2.3 (Soundness of bytecode wp implies soundness of source wp). If the weakest
precondition over bytecode programs is sound then the weakest precondition over source programs
is sound.

Another point is that here we ignore the difference between names and types on source and
bytecode level. In this chapter, we have considered that the compiler does not change variable,
class and method names. This is not true for Java compilers, as these names are basically compiled
into indexes in the constant pool table. The second point in the formalization presented here is
that the compilers compiles boolean types into integer types. This neither holds for real Java
compiler. However, this difference is a minor detail and this means that the equivalence between
source and bytecode verification conditions in Java can be established modulo names.

7.3 Related work

Several works dealing with the relation between the verification conditions over source and its
compilation into a low level programming language exist.

Barthe, Rezk and Saabas in [21] also argue that verification conditions produced over source
code and bytecode produced by a nonoptimizing compiler are equivalent. The verification con-
dition generators over source and bytecode are such that verification conditions are discharged
immediately when they are generated. This is different from our approach where the verification
condition generator are propagated by the verification condition generator up to the entry point of
a method body. However, the first technique requires much stronger annotations than the latter.
The source language which they use supports method invokation, exception throwing and han-
dling. The evaluation of expressions do not throw exceptions which simplifies the reasoning over
expressions.

In [99], Saabas and Uustalu present a goto language provided with a compositional structure
called SGoto. They give a Hoare logic rules for the SGoto language and compiler from the source
language into SGoto. They show that if a source program has a Hoare logic derivation against a
pre and postcondition then its compilation in SGoto will also have a Hoare logic derivation in the
aforementioned Hoare logic rules for the SGoto language. A limitation of such an approach is that
the bytecode logic is defined over structured pieces of code. In particular, in a PCC framework

7.3 Related work 111

this could be problematic. The first reason is that the code producer must supply along with
the bytecode and the certificate the structure of the unstructured code that the client has used
to generate the certificate. The second reason is that the certificate can be potentially large as
it consists of a Hoare logic derivation and thus, contains annotation for every instruction in the
bytecode. In a PCC scenario, this could slow down the downloading time of the certificate if it
comes via a network or could be problematic if it must be stored on a device where it will be
checked especially if the device has limited resources.

In [12], F.Bannwart and P.Muller show how to transform a Hoare style logic derivation on
source Java like program into a Hoare style logic derivation of a Java bytecode like program. This
solution however has similar shortcoming as the previously cited work.

We would like to make a final remark concerning the ability to use such a scheme. In order that
a verification framework be able to exploit the equivalence between source and bytecode verification
conditions it must be provided with both verification on source and bytecode. For instance, the
Spec# [15] programming system being not provided with a mechanism for source verification may
not benefit from this fact.

112 Equivalence between Java source and bytecode proof obligations

Chapter 8

Constrained memory consumption

policies using verification

condition generator

Memory consumption policies provide a means to control resource usage on constrained devices,
and play an important role in ensuring the overall quality of software systems, and in particular
resistance against resource exhaustion attacks. Such memory consumption policies have been
previously enforced through static analysis, which yield automatic bounds at the cost of precision,
or run-time analysis, which incur an overhead that is not acceptable for constrained devices.

Several approaches have been suggested to date to enforce memory consumption policies for
programs; all approaches are automatic, but none of them is ideally suited for TPDs(short for
Trusted Personal Devices), either for their lack of precision, or for the runtime penalty they impose
on programs:

• Static analysis and abstract interpretations: in such an approach, one performs an abstract
execution of an approximation of the program. The approximation is chosen to be coarse
enough to be computable, as a result of which it yields automatically bounds on memory
consumption, but at the cost of precision. Such methods are not very accurate for recursive
methods and loops, and often fail to provide bounds for programs that contain dynamic
object creation within a loop or a recursive method;

• Proof-carrying code: here the program comes equipped with a specification of its memory
consumption, in the form of statements expressed in an appropriate program logic, and a
certificate that establishes that the program verifies the memory consumption specification
attached to it. The approach potentially allows for precise specifications. However, existing
works on proof carrying code for resource usage sacrifice the possibility of enforcing accu-
rate policies in favor of the possibility of generating automatically the specification and the
certificate, in line with earlier work on certifying compilation;

• Run-time monitoring: here the program also comes equipped with a specification of its
memory consumption, but the verification is performed at run-time, and interrupted if the
memory consumption policy is violated.

Such an approach is both precise and automatic, but incurs a runtime overhead which makes
it unsuitable for TPDs.

In this chapter, we study the use of logical methods to specify and verify statically precise memory
consumption policies for Java bytecode programs. In particular, we describe a methodology how
to specify precise memory consumption policies for (sequential) Java.

Our broad conclusion is that logical methods can provide a suitable means to specify and verify
expressive memory consumption policies, with a minimal runtime overhead.

The remainder of the chapter is organized as follows. Section 8.1 gives several motivating
examples. In section 8.2, we begin by describing the principles of the methodology for writing

114 Constrained memory consumption policies using verification condition generator

specifications for guaranteeing constrained memory consumption. Section 8.3 illustrates the ap-
proach with several examples on recursive methods, exception, inheritance. Finally, section 8.4
presents an overview of related approaches.

8.1 Motivating example

In order to illustrate the principles of our approach, let us consider the following program:
� �

public void m(A a){
i f (a == null) {

a = new A() ;
}
a . b = new B() ;

}
� �

For modeling the memory consumption of this program, we introduce a ghost variable MemUsed
that accounts for memory consumption; more precisely, the value of MemUsed at any given pro-
gram point is meant to provide an upper bound to the amount of memory consumed so far. To
keep track of the memory consumption, we perform immediately after every bytecode that allo-
cates memory an increment of MemUsed by the amount of memory consumed by the allocation.
Thus, if the programmer specifies that ka and kb is the memory consumed by the allocation of an
instance of class A and B respectively, the program must be annotated as:

� �

public void m(A a) {
i f (a == null) {

a = new A() ;
//@ s e t MemUsed = MemUsed + ka ;

}
a . b = new B() ;
//@ s e t MemUsed = MemUsed + kb ;}

� �

Such annotations allow to compute at run-time the memory consumption of the program. How-
ever, we are interested in static prediction of memory consumption, and resort to preconditions and
postconditions to this end. Even for a simple example as above, one can express the specification
at different levels of granularity. For example, fixing the amount of memory that the the program
may use Max one can specify that the method will use at most ka + kb memory units and will
not overpass the authorized limit to use Max with the following specification:

� �

//@ requires MemUsed + ka + kb <= Max
//@ ensures MemUsed <= \old (MemUsed) + ka + kb
public void m(A a) {

i f (a == null) {
a = new A() ;
//@ s e t MemUsed = MemUsed+ ka ;

}
a . b = new B() ;
//@ s e t MemUsed = MemUsed + kb ;

}
� �

Or try to be more precise and relate memory consumption to inputs with the following specification:
� �

//@ requires a == null ==> MemUsed + ka + kb <= Max &&
! (a == null) ==> MemUsed + kb <= Max

//@ ensures \old (a) == null ==>
MemUsed <= \old (MemUsed) + ka + kb &&
! (\ old (a) == null) ==> MemUsed <= \old (MemUsed) + kb

public void m(A a) {
i f (a == null) {

8.2 Principles 115

a = new A() ;
}
a . b = new B() ;

}
� �

More complex specifications are also possible. For example, one can take into account whether
the program will throw an exception or not. using (possibly several) exceptional postconditions
stating that kE memory units are allocated in case the method exits on exception E.

8.2 Principles

Let us begin with a very simple memory consumption policy which aims at enforcing that programs
do not consume more than some fixed amount of memory Max. To enforce this policy, we first
introduce a ghost variable MemUsed that represents at any given point of the program the memory
used so far. Then, we annotate the program both with the policy and with additional statements
that will be used to check that the application respects the policy.

The precondition of the method m should ensure that there must be enough free memory for
the method execution. Suppose that we know an upper bound of the allocations done by method
m in any execution. We will denote this upper bound by methodConsumption(m). Thus there
must be at least methodConsumption(m) free memory units from the allowed Max when method
m starts execution. Thus the precondition for the method m is:

requires MemUsed+ methodConsumption(m) ≤ Max.

The precondition of the program entry point (i.e., the method from which an application may
start its execution) should state that the program has not allocated any memory, i.e. require that
variable MemUsed is 0:

requires MemUsed == 0.

The normal postcondition of the method m must guarantee that the memory allocated
during a normal execution of m is not more than some fixed number methodConsumption(m)
of memory units. Thus for the method m the postcondition is:

ensures MemUsed ≤ old(MemUsed) + methodConsumption(m).

The exceptional postcondition of the method m must say that the memory allocated dur-
ing an execution of m that terminates by throwing an exception Exception is not more than
methodConsumption(m) units. Thus for the method m the exceptional postcondition is:

exsuresException MemUsed ≤ old(MemUsed) + methodConsumption(m).

Loops must also be annotated with appropriate invariants. Let us assume that loop l iterates no
more than iter(l) and let loopConsumption(l) be an upper bound of the memory allocated per
iteration in l. Below we give a general form of loop specification w.r.t. the property for constraint
memory consumption. The loop invariant of a loop l states that at every iteration the loop body
is not going to allocate more than loopConsumption(l) memory units and that the iterations are
no more than iter(l). We also declare an expression which guarantees loop termination, i.e. a
variant (here an integer expression whose values decrease at every iteration and is always bigger
or equal to 0).

modifies i, MemUsed
INV : MemUsed ≤ MemUsedBeforel + i ∗ loopConsumption(l)

∧
i ≤ iter(l)

variant : iter(l) − i

116 Constrained memory consumption policies using verification condition generator

A special variable appears in the invariant, MemUsedBeforel . It denotes the value of the consumed
memory just before entering for the first time the loop l. At every iteration the consumed memory
must not go beyond the upper bound given for the body of loop.

For every instruction that allocates memory the ghost variable MemUsed must also be
updated accordingly. For the purpose of this paper, we only consider dynamic object creation with
the bytecode new; arrays are left for future work and briefly discussed in the conclusion.

The function allocInstance : Class → int gives an estimation of the memory used by an
instance of a class. Note that the memory allocated for a class instance is specific to the imple-
mentation of the virtual machine. At every program point where a bytecode new A is found, the
ghost variable MemUsed must be incremented by allocInstance(A). This is achieved by inserting
a ghost assignment immediately after any new instruction, as shown below:

new A

//set MemUsed = MemUsed+allocInstance(A).

8.3 Examples

We illustrate hereafter our approach by several examples.

8.3.1 Inheritance and overridden methods

Overriding methods are treated as follows: whenever a call is performed to a method m , we
require that there is enough free memory space for the maximal consumption by all the methods
that override or are overridden by m . In Fig. 8.1 we show a class A and its extending class B, where
B overrides the method m from class A. Method m is invoked by n. Given that the dynamic
type of the parameter passed to n is not known, we cannot know which of the two methods will be
invoked. This is the reason for requiring enough memory space for the execution of any of these
methods.

� �

Sp e c i f i c a t i o n o f method
m in class A:

requires MemUsed + k <= Max
modifies MemUsed
ensures MemUsed <= \old (MemUsed) + k

� �
� �

Sp e c i f i c a t i o n for method m in class B:

requires MemUsed + l <= Max
modifies MemUsed
ensures MemUsed <= \old (MemUsed) + l

� �
� �

void method n(A a)
. . .
//{ prove MemUsed <= MemUsed +max(l , k) }
i n vok ev i r t ua l m A
//{ assume MemUsed <= \old{MemUsed} + max(l , k)}
. . .

� �

Figure 8.1: Example of overridden methods

8.4 Related work 117

8.3.2 Recursive Methods

In Fig. 8.2 the bytecode of the recursive method m and its specification is shown. We show a
simplified version of the bytecode; we assume that the constructors for the class A and C do not
allocate memory. Besides the precondition and the postcondition, the specification also includes
information about the termination of the method: variant reg(1), meaning that the local variable
reg(1) decreases on every recursive call down to and no more than 0, guaranteeing that the
execution of the method will terminate.

We explain first the precondition. If the condition of line 1 is not true, the execution continues
at line 2.

In the sequential execution up to line 7, the program allocates at most allocInstance(A)
memory units and decrements by 1 the value of reg(1). The instruction at line 8 is a recursive call
to m, which either will take the same branch if reg(1) > 0 or will jump to line 12 otherwise, where
it allocates at most allocInstance(A)+allocInstance(C) memory units. On returning from the
recursive call one more allocation will be performed at line 9. Thus m will execute, reg(1) times,
the instructions from lines 4 to 35, and it finally will execute all the instructions from lines 12 to 16.
The postcondition states that the method will perform no more than old(reg(1)) recursive calls
(i.e., the value of the register variable in the pre-state of the method) and that on every recursive
call it allocates no more than two instances of class A and that it will finally allocate one instance
of class A and another of class C.

8.3.3 More precise specification

We can be more precise in specifying the precondition of a method by considering what are the field
values of an instance, for example. Suppose that we have the method m as shown in Fig. 8.3. We
assume that in the constructor of the class A no allocations are done. The first line of the method
m initializes one of the fields of field b. Since nothing guarantees that field b is not null, the
execution may terminate with NullPointerException. Depending on the values of the parameters
passed to m , the memory allocated will be different. The precondition establishes what is the
expected space of free resources depending on if the field b is nullor not. In particular we do not
require anything for the free memory space in the case when b is null. In the normal postcondition
we state that the method has allocated an object of class A. The exceptional postcondition states
that no allocation is performed if NullpointerException causes the execution termination.

8.4 Related work

The use of type systems has been a useful tool for guaranteeing that well typed programs run
within stated space-bounds. Previous work along these lines defined typed assembly languages,
inspired on [80] while others emphasized the use of type systems for functional languages [8, 54, 56].

For instance in [7] the authors present a first-order linearly typed assembly language which
allows the safe reuse of heap space for elements of different types. The idea is to design a family of
assembly languages which have high-level typing features (e.g. the use of a special diamond resource
type) which are used to express resource bound constraints. Closely related to the previous-
mentioned paper, [105] describes a type theory for certified code, in which type safety guarantees
cooperation with a mechanism to limit the CPU usage of untrusted code. Another recent work is
[5] where the resource bounds problem is studied in a simple stack machine. The authors show
how to perform type, size and termination verifications at the level of the byte-code.

An automatic heap space usage static analysis for first-order functional programs is given in
[55]. The analysis both determines the amount of free cells necessary before execution as well as
a safe (under)-estimate of the size of a free-list after successful execution of a function. These
numbers are obtained as solutions to a set of linear programming (LP) constraints derived from
the program text. Automatic inference is obtained by using standard polynomial-time algorithms
for solving LP constraints. The correctness of the analysis is proved with respect to an operational
semantics that explicitly keeps track of the memory structure and the number of free cells.

A logic for reasoning about resource consumption certificates of higher-order functions is defined
in [34]. The certificate of a function provides an over-approximation of the execution time of a

118 Constrained memory consumption policies using verification condition generator

� �

requires MemUsed +
reg (1)∗2∗ a l l o c I n s t a n c e (A) +
a l l o c I n s t a n c e (A) +
a l l o c I n s t a n c e (C) <= Max

variant reg (1)

ensures reg (1) >= 0
&&
MemUsed <= old (MemUsed)+
\old (reg (1))∗2∗ a l l o c I n s t a n c e (A)+
a l l o c I n s t a n c e (A) +
a l l o c I n s t a n c e (C)

public void m()
// l o c a l v a r i ab l e loaded on
// the operand stack o f method m
0 load 1

// i f \reg (1) <= 0 go to 12
1 i f l e 12}
2 new A

// here reg (1) > 0
//@ se t MemUsed = MemUsed + a l l o c I n s t a n c e (A)
3 invokespecial A. i n i t
4 aload 0
5 i l o ad 1
6 i c on s t 1

// reg (1) decremented with 1
7 i sub

// r e c u r s i v e c a l l with the new
// va lue o f reg (1)
8 i nvok ev i r t ua l D.m
9 new A

// s e t MemUsed = MemUsed + a l l o c I n s t a n c e (A)
10 invokespecial A. i n i t
11 goto 16
t a r g e t o f the jump at 1
12 new A

// s e t MemUsed = MemUsed + a l l o c I n s t a n c e (A)
13 invokespecial A. i n i t
14 new C

// s e t MemUsed = MemUsed + a l l o c I n s t a n c e (C)
15 invokespecial C. i n i t
16 return

� �
� �

public class D {
public void m(int i) {

i f (i > 0) {
new A() ;
m(i − 1) ;
new A() ;

} else {
new C() ;
new A() ;

}
}

}
� �

Figure 8.2: Example of a recursive method

8.4 Related work 119

call to the function. The logic only defines what is a correct deduction of a certificate and has no
inference algorithm associated with it. Although the logic is about computation time the authors
claim it could be extended to measure memory consumption.

Another mechanical verification of a byte code language is [29], where a constraint-based al-
gorithm is presented to check the existence of new instructions inside intra- and inter-procedural
loops. It is completely formalized in Coq and a certified analyzer is obtained using Cog’s extraction
mechanism. The time complexity of such analysis performs quite good but the auxiliary memory
used does not allow it to be on-card. Their analysis is less precise than ours, since they work
on an abstraction of the execution traces not considering the number of times a cycle is iterated
(there are no annotations). Along these lines, a similar approach has been followed by [100]; no
mechanical proof nor implementation is provided in such work.

Other related research direction concerns runtime memory analysis. The work [49] presents a
method for analyzing, monitoring and controlling dynamic memory allocation, using pointer and
scope analysis. By instrumenting the source code they control memory allocation at run-time.
In order to guarantee the desired memory allocation property, in [47] is implemented a runtime
monitor to control the execution of a Java Card applet. The applet code is instrumented: a call
to a monitor method is added before a new instruction. Such monitor method has as parameter
the size of the allocation request and it halts the execution of the applet if a predefined allocation
bound is exceeded.

A similar results are presented in [31]. The verifier is based on a variant of Dijkstra’s weak-
est precondition calculus using ”generalized predicates”, which keeps track of the resource units
available. Besides adding loop invariants, pre- and post-conditions, the programmer must insert
”acquires” annotations to reserve the resource units to be consumed. Our approach has the ad-
vantage of treating recursive methods and exceptions, not taken into account in [31]. Another
difference with our work is that we operate on the bytecode instead of on the source code.

� �

requires reg (1) != null ==> MemUsed + a l l o c I n s t a n c e (A) <= Max
modifies MemUsed
ensures MemUsed <= \old (MemUsed) + \ a l l o c I n s t a n c e (A) \\
exsures NullPointerExc MemUsed == old (MemUsed)

0 load 0
1 getf ie ld C. b
2 load 2
3 putfield B. i
4 new A

// s e t MemUsed = MemUsed + a l l o c I n s t a n c e (A)
5 dup
6 invokespecial A. i n i t
7 store 1
8 return

� �
� �

public class C{
B b ;
public void m(A a , int i){

b . i = i ;
a = new A() ;

}
}

� �

Figure 8.3: Example of a method with possible exceptional termination

120 Constrained memory consumption policies using verification condition generator

Chapter 9

A low-footprint Java-to-native

compilation scheme using BML

In this chapter, we will focus on the use of our verification scheme in Java native compiler optimiza-
tions. Let us first see what is the context and motivations for applying formal program verification
in compiler optimization.

Enabling Java on embedded and restrained systems is an important challenge for today’s indus-
try and research groups [81]. Java brings features like execution safety and low-footprint program
code that make this technology appealing for embedded devices which have obvious memory restric-
tions, as the success of Java Card witnesses. However, the memory footprint and safety features of
Java come at the price of a slower program execution, which can be a problem when the host device
already has a limited processing power. As of today, the interest of Java for smart cards is still
growing, with next generation operating systems for smart cards that are closer to standard Java
systems [64, 52], but runtime performance is still an issue. To improve the runtime performances
of Java systems, a common practice is to translate some parts of the program bytecode into native
code.

Doing so removes the interpretation layer and improves the execution speed, but also greatly
increases the memory footprint of the program: it is expected that native code is about three to
four times the size of its Java counterpart, depending on the target architecture. This is explained
by the less-compact form of native instructions, but also by the fact that many safety-checks that
are implemented by the virtual machine must be reproduced in the native code. For instance,
before dereferencing a pointer, the virtual machine checks whether it is null and, if it is, throws
a NullExc. Every time a bytecode that implements such safety-behaviors is compiled into native
code, these behaviors must be reproduced as well, leading to an explosion of the code size. Indeed,
a large part of the Java bytecode implement these safety mechanisms.

Although the runtime checks are necessary to the safety of the Java virtual machine, they are
most of the time used as a protection mechanism against programming errors or malicious code:
A runtime exception should be the result of an exceptional, unexpected program behavior and is
rarely thrown when executing sane code - doing so is considered poor programming practice. The
safety checks are therefore without effect most of the time, and, in the case of native code, uselessly
enlarge the code size.

Several studies proposed to factorize these checks or in some case to eliminate them, but none
proposed a complete elimination without hazarding the system security. In the following, we use
formal proofs to ensure that run-time checks can never be true in a program, which allows us to
completely and safely eliminate them from the generated native code. The programs to optimize
are JML-annotated against runtime exceptions and verified by the JACK. We have been able to
remove almost all of the runtime checks on tested programs, and obtained native ARM thumb code
which size was comparable to the original bytecode.

The remainder of this paper is organized as follows. In section 9.1, we overview the methods
used for compiling Java bytecode into native code, and evaluate the previous work aiming at
optimizing runtime exceptions in the native code. Section 9.2 is a brief presentation of the runtime

122 A low-footprint Java-to-native compilation scheme using BML

exceptions in Java. Then, section 9.3 describes our method for removing runtime exceptions on
the basis of formal proofs. We experimentally evaluate this method in section 9.4 and discuss its
limitations in 9.5.

9.1 Ahead-of-time & just-in-time compilation

Compiling Java into native code common on embedded devices. This section gives an overview
of the different compilation techniques of Java programs, and points out the issue of runtime
exceptions.

Ahead-of-Time (AOT) compilation is a common way to improve the efficiency of Java programs.
It is related to Just-in-Time (JIT) compilation by the fact that both processes take Java bytecode
as input and produce native code that the architecture running the virtual machine can directly
execute. AOT and JIT compilation differ by the time at which the compilation occurs. JIT
compilation is done, as its name states, just-in-time by the virtual machine, and must therefore
be performed within a short period of time which leaves little room for optimizations. The output
of JIT compilation is machine-language. On the contrary, AOT compilation compiles the Java
bytecode way before the program is run, and links the native code with the virtual machine. In
other words, it translates non-native methods into native methods (usually C code) prior to the
whole system execution. AOT compilers either compile the Java program entirely, resulting in a
100% native program without a Java interpreter, or can just compile a few important methods. In
the latter case, the native code is usually linked with the virtual machine. AOT compilation have
no or few time constraints, and can generate optimized code. Moreover, the generated code can
take advantage of the C compiler’s own optimizations.

JIT compilation in interesting by several points. For instance, there is no prior choice about
which methods must be compiled: the virtual machine compiles a method when it appears that
doing so is beneficial, e.g. because the method is called often. However, JIT compilation requires
embedding a compiler within the virtual machine, which needs resources to work and writable
memory to store the compiled methods. Moreover, the compiled methods are present twice in
memory: once in bytecode form, and another time in compiled form. While this scheme is efficient
for decently-powerful embedded devices such as PDAs, it is inapplicable to very restrained devices
like smartcards or sensors. For them, ahead-of-time compilation is usually preferred because it
does not require a particular support from the embedded virtual machine outside of the ability to
run native methods, and avoids method duplication. AOT compilation has some constraints, too:
the compiled methods must be known in advance, and dynamically-loading new native methods is
forbidden, or at least very unsafe.

Both JIT and AOT compilers must produce code that exactly mimics the behavior of the
Java virtual machine. In particular, the safety checks performed on some bytecode must also be
performed in the generated code.

9.2 Java runtime exceptions

The JVM [74] specifies a safe execution environment for Java programs. Contrary to native ex-
ecution, which does not automatically control the safety of the program’s operations, the Java
virtual machine ensures that every instruction operates safely. The Java environment may throw
predefined runtime exceptions at runtime, like the following ones:

NullPointerException This exception is thrown when the program tries to dereference a null

pointer. Among the instructions that may throw this exceptions are: getfield, putfield,
invokevirtual, invokespecial, the set of typeastore instructions1 may throw such an
exception.

ArrayIndexOutOfBoundsException If an array is accessed out of its bounds, this exception is
thrown to prevent the program from accessing an illegal memory location. According to

1the JVM instructions are parametrized, thus we denote by type astore the set of array store instructions, which
includes iastore, sastore, lastore, ...

9.3 Optimizing ahead-of-time compiled Java code 123

the Java Virtual Machine specification, the instructions of the family typeastore and
typeaload may throw such an exception.

ArithmeticException This exception is thrown when exceptional arithmetic conditions are met.
Actually, there is only one such case that may occur during runtime, namely the division of
an integer by zero, which may be done by idiv, irem, ldiv and lrem.

NegativeArraySizeException Thrown when trying to allocate an array of negative size. newarray,
anewarray and multianewarray may throw such an exception.

ArrayStoreException Thrown when an object is attempted to be stored into an array of incom-
patible type. This exception may be thrown by the aastore instruction.

ClassCastException Thrown when attempting to cast an object to an incompatible type. The
checkcast instruction may throw such an exception.

IllegalMonitorStateException Thrown when the current thread is not the owner of a released
monitor, typically by monitorexit.

If the JVM detects that executing the next instruction will result in an inconsistency or an
illegal memory access, it throws a runtime exception, that may be caught by the current method
or by other methods on the current stack. If the exception is not caught, the virtual machine exits.
This safe execution mode implies that many checks are made during runtime to detect potential
inconsistencies. For instance, the aastore bytecode, which stores an object reference into an array,
may throw three different exceptions:

• NullPointerException, if the reference to the array is null,

• ArrayIndexOutOfBoundsException, if the index in which to store the object is not within
the bounds of the array,

• ArrayStoreException, if the object to store is not assignment-compatible with the array
(for instance, storing an Integer into an array of Boolean).

Of the 202 bytecodes defined by the Java virtual machine specification, we noticed that 43
require at least one runtime exception check before being executed. While these checks are im-
plicitly performed by the bytecode interpreter in the case of interpreted code, they must explicitly
be issued every time such a bytecode is compiled into native code, which leads to a code size
explosion. Ishizaki et al. measured that bytecodes requiring runtime checks are frequent in Java
programs: for instance, the natively-compiled version of the SPECjvm98 compress benchmark has
2964 exception check sites for a size of 23598 bytes. As for the mpegaudio benchmark, it weights
38204 bytes and includes 6838 exception sites [59]. The exception check sites therefore make a
non-neglectable part of the compiled code.

Figure 9.1 shows an example of Java bytecode that requires a runtime check to be issued when
being compiled into native code.

It is, however, possible to eliminate these checks from the native code if the execution context
of the bytecode shows that the exceptional case never happens. In the program of figure 9.1, the
lines 2 and 3 could have been omitted if we were sure that for all possible program paths, j can
never be equal to zero at this point. This allows to generate less code and thus to save memory.
Removing exception check sites is a topic that has largely been studied in the domain of JIT and
AOT compilation.

9.3 Optimizing ahead-of-time compiled Java code

For verifying the bytecode that will be compiled into native code, we use the JACK verification
framework. In particular, we use the compiler from JML to BML and the bytecode verification
condition generator.

Verifying that a bytecode program does not throw Runtime exceptions using JACK involves
several stages:

124 A low-footprint Java-to-native compilation scheme using BML

Java version:

i l o ad i
i l o ad j
i d i v
i r e t u rn

C version:

1 int i , j ;
2 i f (j == 0)
3 THROW(ArithmeticExcept ion) ;
4 RETURN INT(i / j) ;

Figure 9.1: A Java bytecode program and its (simplified) C-compiled version. The
behavior of the division operator in Java must be entirely reproduced by the C
program, which leads to the generation of a runtime exception check site

1. writing the JML specification at the source level of the application, which expresses that no
runtime exceptions are thrown.

2. compiling the Java sources into bytecode

3. compiler the JML specification into BML specification and add it in the class file

4. generating the verification conditions over the bytecode and its BML specification, and prov-
ing the verification conditions 9.3.2. During the calculation process of the verification condi-
tions, they are indexed with the index of the instruction in the bytecode array they refer to
and the type of specification they prove (e.g. that the proof obligation refers to the excep-
tional postcondition in case an exception of type Exc is thrown when executing the instruction
at index i in the array of bytecode instructions of a given method). Once the verifications
are proved, information about which instructions can be compiled without runtime checks is
inserted in user defined attributes of the class file.

5. using these class file attributes in order to optimize the generated native code. When a
bytecode that has one or more runtime checks in its semantics is being compiled, the bytecode
attribute is checked in order to make sure that the checks are necessary. It indicates that
the exceptional condition has been proved to never happen, then the runtime check is not
generated.

Our approach benefits from the accurateness of the JML specification and from the bytecode
verification condition generator. Performing the verification over the bytecode allows to easily
establish a relationship between the proof obligations generated over the bytecode and the bytecode
instructions to optimized.

In the rest of this section, we explain in detail all the stages of the optimization procedure.

9.3.1 Methodology for writing specification against runtime exception

We now illustrate with an example what are the JML annotations needed for verifying that a
method does not throw a runtime exception. Figure 9.22 shows a Java method annotated with a
JML specification. The method clear declared in class Code_Table receives an integer parameter
size and assigns 0 to all the elements in the array field tab whose indexes are smaller than the value
of the parameter size. The specification of the method guarantees that if every caller respects
the method precondition and if every execution of the method guarantees its postcondition then
the method clear never throws an exception of type or subtype java.lang.Exception3. This
is expressed by the class and method specification contracts. First, a class invariant is declared
which states that once an instance of type Code_Table is created, its array field tab is not null.
The class invariant guarantees that no method will throw a NullExc when dereferencing (directly
or indirectly) tab.

2although the analysis that we describe is on bytecode level, for the sake of readability, the examples are also
given on source level

3Note that every Java runtime exception is a subclass of java.lang.Exception

9.3 Optimizing ahead-of-time compiled Java code 125

� �

f ina l c lass Code Table {
private/∗@spec publ i c ∗/short tab [] ;

//@invariant tab != null ;

. . .

// @requi res s i z e <= tab . l ength ;
//@ensures true ;
//@exsures (Exception) fa l se ;
public void c l e a r (int s i z e) {
1 int code ;
2 // @loop modi f i e s code , tab [∗] ;
3 // @loop invar i an t code <= s i z e && code >= 0 ;
4 for (code = 0 ; code < s i z e ; code++) {
5 tab [code] = 0 ;

}
}

}
� �

Figure 9.2: A JML-annotated method

The method precondition requires the size parameter to be smaller than the length of tab.
The normal postcondition, introduced by the keyword ensures, basically says that the method will
always terminate normally, by declaring that the set of final states in case of normal termination in-
cludes all the possible final states, i.e. that the predicate true holds after the method’s normal exe-
cution4. On the other hand, the exceptional postcondition for the exception java.lang.Exception

says that the method will not throw any exception of type java.lang.Exception (which in-
cludes all runtime exceptions). This is done by declaring that the set of final states in the ex-
ceptional termination case is empty, i.e. the predicate false holds if an exception caused the
termination of the method. The loop invariant says that the array accesses are between index
0 and index size - 1 of the array tab, which guarantees that no loop iteration will cause a
ArrayIndexOutOfBoundsException since the precondition requires that size <= tab.length.

9.3.2 From program proofs to program optimizations

In this phase, the bytecode instructions that can safely be executed without runtime checks are
identified. Depending on the complexity of the verification conditions, Jack can discharge them
to the fully automatic prover Simplify, or to the Coq and AtelierB interactive theorem prover
assistants.

There are several conditions to be met for a bytecode instruction to be optimized safely – the
precondition of the method the instruction belongs to must hold every time the method is invoked,
and the verification condition related to the exceptional termination must also hold. In order to
give a flavor of the verification conditions we deal with, figure 9.3 shows part of the verification
condition related to the possible ArrayIndexOutOfBounds exceptional termination of instruction
11 sastore in figure 4, which is actually provable.

Once identified, proved instructions can be marked in user-defined attributes of the class file so
that the compiler can find them.

4Actually, after terminating execution the method guarantees that the first size elements of the array tab will
be equal to 0, but as this information is not relevant to proving that the method will not throw runtime exceptions
we omit it

126 A low-footprint Java-to-native compilation scheme using BML

. . .
length(tab(reg(0)) ≤ reg(2)15 ∨ reg(2)15 < 0
∧
reg(2)15 ≥ 0
∧
reg(2)15 < reg(1)
∧
reg(1) ≤ length(tab(reg(0)))

⇒ false

Figure 9.3: The verification condition for the ArrayIndexOutOfBoundException check
related to the sastore instruction of figure 4

9.4 Experimental results

This section presents an application and evaluation of our method on various Java programs.

9.4.1 Methodology

We have measured the efficiency of our method on two kinds of programs, that implement features
commonly met in restrained and embedded devices. crypt and banking are two smartcard-
range applications. crypt is a cryptography benchmark from the Java Grande benchmarks suite,
and banking is a little banking application with full JML annotations used in [28]. scheduler
and tcpip are two embeddable system components written in Java, which are actually used in
the JITS [1] platform. scheduler implements a threads scheduling mechanism, where scheduling
policies are Java classes. tcpip is a TCP/IP stack entirely written in Java, that implements the
TCP, UDP, IP, SLIP and ICMP protocols. These two components are written with low-footprint in
mind ; however, the overall system performance would greatly benefit from having them available
in native form, provided the memory footprint cost is not too important.

For every program, we have followed the methodology described in section 9.3 in order to prove
that runtime exceptions are not thrown in these programs. We look at both the number of runtime
exception check sites that we are able to remove from the native code, and the impact on the
memory footprint of the natively-compiled methods with respect to the unoptimized native version
and the original bytecode. The memory footprint measurements were obtained by compiling the
C source file generated by the JITS AOT compiler using GCC 4.0.0 with optimization option -Os,
for the ARM platform in thumb mode. The native methods sizes are obtained by inspecting the
.o file with nm, and getting the size for the symbol corresponding to the native method.

Regarding the number of eliminated exception check sites, we also compare our results with
the ones obtained using the JC virtual machine mentioned in 9.6, version 1.4.6. The results were
obtained by running the jcgen program on the benchmark classes, and counting the number of
explicit exception check sites in the generated C code. We are not comparing the memory footprints
obtained with the JITS and JC AOT compilers, for this result would not be pertinent. Indeed, JC
and JITS have very different ways to generate native code. JITS targets low memory footprint,
and JC runtime performance. As a consequence, a runtime exception check site in JC is heavier
than one in JITS, which would falsify the experiments. Suffices to say that our approach could be
applied on any AOT compiler, and that the most relevant measurement is the number of runtime
exception check sites that remains in the final binary - our measurements on the native code
memory footprint are just here to evaluate the size impact of exception check sites.

9.4.2 Results

Table 9.1 shows the results obtained on the four tested programs. The three first columns indicate
the number of check sites present in the bytecode, the number of explicit check sites emitted by JC,
and the number of check sites that we were unable to prove useless and that must be present in our

9.4 Experimental results 127

Table 9.1: Number of exception check sites and memory footprints when compiled for ARM thumb

Program
of exception check sites Memory footprint (bytes)

Bytecode JC Proven AOT Bytecode Naive AOT Proven AOT
crypt 190 79 1 1256 5330 1592
banking 170 12 0 2320 5634 3582
scheduler 215 25 0 2208 5416 2504
tcpip 1893 288 0 15497 41540 18064

Table 9.2: Human work on the tested programs

Program
Source code size (bytes) Proved lemmas

Code JML Automatically Manually
crypt 4113 1882 227 77
banking 11845 15775 379 159
scheduler 12539 3399 226 49
tcpip 83017 15379 2233 2191

optimized AOT code. The last columns give the memory footprints of the bytecode, unoptimized
native code, and native code from which all proved exception check sites are removed.

On all the tested programs, we were able to prove that all but one exception check site could
be removed. The only site that we were unable to prove from crypt is linked to a division, which
divisor is a computed value that we were unable to prove not equal to zero. JC has to retain 16%
of all the exception check sites, with a particular mention for crypt, which is mainly made of array
accessed and had more remaining check sites.

The memory footprints obtained clearly show the heavy overhead induced by exception check
sites. Despite of the fact that the exception throwing convention has deliberately been simplified
for our experiments, optimized native code is less than half the size of the non-optimized native
code. The native code of crypt, which heavily uses arrays, is actually made of exception checking
code at 70%.

Comparing the size of the optimized native versions with the bytecode reveals that proved
native code is just slightly bigger than bytecode. The native code of crypt is 27% bigger than
its bytecode version. Native scheduler only weights 13.5% more that its bytecode, tcpip 16.5%,
while banking is 54% heavier. This last result is explained by the fact that, being an application
and not a system componant, banking includes many native-to-java method invokations for calling
system services. The native-to-java calling convention is costly in JITS, which artificially increases
the result.

Finally, table 9.2 details the human work required to obtain the proofs on the benchmark
programs, by comparing the amount of JML code with respect to the comments-free source code
of the programs. It also details how many lemmas had to be manually proved.

On the three programs that are annotated for the unique purpose of our study, the JML
overhead is about 30% of the code size. The banking program was annotated in order to prove
other properties, and because of this is made of more JML annotations than actual code. Most of
the lemmas could be proved by Simplify, but a non-neglectable part needed human-assistance with
Coq. The most demanding application was the TCP/IP stack. Because of its complexity, nearly
half of the lemmas could not be proved automatically.

The gain in terms of memory footprint obtained using our approach is therefore real. One
may also wonder whether the runtime performance of such optimized methods would be increased.
We did the measurements, and only noticed a very slight, almost undetectable, improvement of
the execution speed of the programs. This is explained by the fact that the exception check
sites conditions are always false when evaluated, and therefore the amount of supplementary code
executed is very low. The bodies of the proved runtime exception check sites are, actually, dead

128 A low-footprint Java-to-native compilation scheme using BML

code that is never executed.

9.5 Limitations

Our approach suffers from some limitations and usage restrictions, regarding its application on
multi-threaded programs and in combination with dynamic code loading.

9.5.1 Multi-threaded programs

As we said in section 9.3, JACK only supports the sequential subset of Java. Because of this,
we are unable to prove check sites related to monitor state checking, that typically throws an
IllegalMonitorStateException. However, they can be simplified if it is known that the system
will never run more than one thread simultaneously. It should be noted, that Java Card does not
make use of multi-threading and thus doesn’t suffer from this limitation.

9.5.2 Dynamic code loading

Our removal of runtime exception check sites is based on the assumption that a method’s precondi-
tions are always respected at all its call sites. For closed systems, it is easy to verify this property,
but in the case of open systems which may load and execute any kind of code, the property could
not always be ensured. In the case where the set of applications that will run on the system is not
statically known, our approach could not be safely applied on public methods since dynamically-
loaded code may call them without respecting their preconditions. However, a solution is to verify
the methods of every dynamically loaded class before it is loaded w.r.t. the specification of the
classes already installed classes and their methods.

9.6 Related work

Toba [92] is a Java-to-C compiler that transforms a whole Java program into a native one.
Harissa [82] is a Java environment that includes a Java-to-C compiler as well as a virtual machine,
and therefore supports mixed execution. While both environments implement some optimizations,
they are not able to detect and remove unused runtime checks during ahead-of-time compilation.
The JC Virtual Machine [2] is a Java virtual machine implementations that converts class files
into C code using the Soot [104] framework, and runs their compiled version. It supports redun-
dant exceptions checks removal, and is tuned for runtime performance, by using operating system
signals in order to detect exceptional conditions like null pointer dereferencing. This allows to
automatically remove most of the NullPointerException-related checks.

In [58] and [10], Hummel et al. use a Java compiler that annotates bytecodes with higher-level
information known during compile-time in order to improve the efficiency of generated native code.
[59] proposes methods for optimizing exceptions handling in the case of JIT compiled native code.
These works rely on knowledge that can be statically inferred either by the Java compiler or by
the JIT compiler. In doing so, they manage to efficiently factorize runtime checks, or in some cases
to remove them. However, they are still limited to the context of the compiled method, and do
not take the whole program into account. Indeed, knowing properties about a the parameters of a
method can help removing further checks.

We propose to go further than these approaches, by giving more precise directives as to how the
program behaves in the form of JML annotations. These annotations are then used to get formal
behavioral proofs of the program, which guarantee that runtime checks can safely be eliminated
for ahead-of-time compilation.

Chapter 10

Conclusion

10.1 Results

We have presented an infrastructure for verification of Java bytecode programs which allows to
reason about potentially sophisticated functional and security properties and which benefits from
verification over Java source programs. We have also introduced the bytecode specification language
BML tailored to Java bytecode, a compiler from the Java source specification language JML to
BML and a verification condition generator for Java bytecode programs. We have shown that the
verification procedure is correct w.r.t. a big step operational semantics of Java bytecode programs
for a particular subset of BML. We also show that the verification procedure for Java like programs
and Java like bytecode are syntactically equivalent (modulo names and types).

Currently, from Fig.1.5 presented in the introductory Chapter 1.2, we have developed the
following components

• prototype of a verification condition generator based on the weakest precondition calculus
presented in this thesis.

• a compiler from the corresponding subset of JML to BML and an encoding of BML in the
class file format

These two components have been integrated in the JACK [28] verification framework developed
and supported by our research team Everest at INRIA Sophia Antipolis which has been initially
designed for the verification of Java source programs annotated with JML specification.

We would like to give a brief description of the implementation of the verification condition
generator. The bytecode verification condition generator works as follows. For the verification of
a class file containing BML specification, it will generate verification conditions for every method
of this class including the constructors. For generating the verification conditions concerning a
method implementation, first the control flow graph corresponding to the bytecode instruction
is built. The latter is transformed into an acyclic control flow graph where the back-edges are
removed. Then the verification procedure proceeds by generating over every execution path in the
control flow graph its corresponding verification conditions. For every path which terminates by
throwing an uncaught exception, the postcondition is the specified exceptional postcondition for
this case. For the paths which terminate normally, the normal postcondition is taken. For every
path which terminates with an instruction which is dominated by a loop entry and whose direct
successor is the same loop entry, the postcondition is the corresponding loop invariant.

The bytecode verification in Jack uses the intermediate language for the verification conditions
and thus, bytecode verification conditions can be translated to several different theorem provers
- Simplify [37] which is an automatic decision procedure, the Atelier B and the Coq interactive
theorem prover assistants.

The bytecode verification condition generator benefits also from the original user friendly in-
terface of the JACK tool. In particular, the user can see the verification conditions in his favorite
language - Java, Simplify, Coq or B. The lemmas are classified to what part of the annotation
they refer to, as for instance, a lemma which refers to the establishment of the postcondition, or

130 Conclusion

the preservation of the loop invariant. The hypothesis in the lemma also hold the index of the
instruction from which they originate. We have used the prototype of the bytecode verification
condition generator for the case studies presented in Chapter 9.

10.2 Future work

In the following, we identify the directions for extending the work presented in this thesis

10.2.1 Verification condition generator

A first direction for future work concerning the verification condition generator is its extension.
Currently, it works only for the sequential fragment of Java. But realistic applications rely often on
multi - threading which is difficult to verify against a functional specifications or security policies.
One of the important aspects of the correctness of multi - threaded programs is the absence
of deadlocks, and race conditions. Such properties can be ensured by type systems [42, 43] or
static verification based on program logic [44]. The earliest works in the field of parallel program
verification are the Owicki and Gries approach [89] and the rely - guarantee approach. However,
the first approach is not modular and requires a large amount of verification conditions while for
the second, the annotation procedure can not be automatized.

Extending our verification scheme for bytecode will certainly be based on a more recent work
where one of the basic concerns is to establish method atomicity [46]. The notion of a statement
atomicity states that however a statement is interleaved with other parallel programs, the result
of its execution will not change. The atomicity can be detected via static checking [46] using
type systems. Thus, the program verification process is separated in two parts - first checking for
program atomicity [46] are done and then verifying the functional correctness using methodologies
for sequential programs as Hoare style reasoning. In this last approach in the case of Java, the basic
concern is to establish the atomicity of method bodies, i.e. method execution does not depend on
the possible interleaving with threads. Recently, E.Rodriguez and al. in [97] proposed an extension
for JML for multi threaded programs. Their proposal introduces new specification keywords which
allow to express that a variable is locked or that a method is atomic.

Next point which can be interesting is to provide a machine checked proof for the soundness
result. This can be especially interesting for a PCC where such a proof will be necessary for
the client site. Currently, the soundness statement is expressed in terms of method contracts.
Moreover, here we have assumed the soundness of the frame conditions. But an extension of the
soundness theorem w.r.t. to assertions which must hold at particular program points may be useful
for expressing for instance, safety policies which concern intermediate program states.

10.2.2 Property coverage for the specification language

Another direction which may be pursued as a future work of the thesis is the extension of the
expressiveness of the specification language BML. So far, BML supports method contracts - method
pre and post conditions, frame conditions, intermediate annotations as for instance loop invariants,
class specifications as well as special specification operators. These are very useful aspects which
allow for dealing with complex properties and gives a semantics on bytecode level to a relatively
small subset of the high specification language JML which corresponds to JML Level 0 1. But it is
certainly of interest to support more features of JML in BML as this will turn the latter language
richer. However, the meaning of JML constructs (at least from our experience up to now) is the
same as the meaning of their corresponding part in BML.

An important example is the JML construct for pure methods which has been identified as
a challenge in the position paper [65]. These methods does not modify the program state and
thus, pure methods can be used in specifications (only side effect free expressions may occur in
expressions). This gives more expressive specifications as with them, for instance, specification
can talk about the result of method invocation or use pure methods as a predicate relating their
initial and final state. Moreover, a methodology which allows for using methods that may have

1http://www.cs.iastate.edu/ leavens/JML/jmlrefman/jmlrefman 2.html#SEC19

10.2 Future work 131

unobservable side effects is also of interest [84]. Formalizing and establishing the meaning of pure
methods is difficult and a literature exists for this problem [35]. As we said above, the treatment
of pure methods is the same on source and bytecode.

Also, support for specification constructions for alias control is certainly useful especially be-
cause it allows for a modular verification of class invariants and frame conditions. The alias control
is guaranteed through ownership type systems which check that only an owner of a reference can
modify its contents. This can considerably improve the current implementation for the verification
of object invariants [38]. In particular, our way of proving object invariants is non modular -
at every method call the invariants of all visible objects must be valid and they are assumed to
hold when the call is terminated; similarly, when a method body is verified in its precondition the
invariants of all visible objects are assumed to hold and at the end of the method body all these
invariants must be established. In practice, it is very difficult to verify that all the invariants for
all visible objects in a method hold. In order to keep the number of the verification conditions
reasonable, we check the invariants only for the current object this and the objects received as
parameters which is not sound.

10.2.3 Preservation of verification conditions

So far, we have shown that non-optimizing Java compilation preserves the form of the verification
conditions on source and bytecode. We identify two basic directions for future work:

Source and non optimized bytecode verification conditions equivalent modulo We have
experimented with the verification conditions on source and bytecode in JACK and saw that
in practice they are almost equivalent syntactically. From one part, there are the difference
in the types supported on bytecode and source level. For instance, the JVM does not provide
support for boolean type values which are basically encoded as integer values. The same is
true for byte and short values. Another difference is the identifiers for variables and fields.
For instance, in Java names for fields, method local variables and parameters are their iden-
tifiers which are given by the program developer. On bytecode method local variables and
parameters are encoded as elements of the method register table and field names are encoded
as numbers of the constant pool table of the class. A simple but useful extension to the
prototype for bytecode verification is a compiler from source proof obligations to bytecode
proof obligations which overcomes those differences. This can be considered also as a step
towards the building a PCC architecture where the certificate generation benefits from the
source level verification and thus allows for treating sophisticated security policies.

Relation between verification conditions on Java source and optimized Java bytecode
The equivalence between verification conditions on source and the corresponding non opti-
mized bytecode is important as it allows that bytecode programs benefit from source verifi-
cation. In particular, it makes feasible Proof Carrying Code for sophisticated client require-
ments. However, a step further in this direction is to investigate the relation between source
programs and their bytecode counterpart produced by an optimizing compiler. This is inter-
esting for the following reasons. It is a fact that interpretation of bytecode on the JVM is
slower than execution by its corresponding assembly code. In order to speed up the execution
time for a Java bytecode program, one might use a just-in-time (JIT for short) compilation
which translates on the fly the bytecode into the machine specific language. However, JIT
compilation can potentially slow the execution exactly because it does compilation on the
fly. Another possibility is to perform optimizations on the bytecode. Currently, most of the
Java compilers do not support much optimizations. However, there do already exist Java
optimizing compilers, for instance the Soot optimization framework2 and most probably the
number of the Java optimizing compilers will increase with the evolution of the Java language.
This also means that verification of optimized programs will also become an issue. A first
step in this direction is the work of C. Kunz et al.[17] who give an algorithm for translating
certificates and annotations over a non optimized program into a certificate and annotation
for its optimized version. Their work addresses optimizations like constant propagation, loop
induction and dead register elimination for a simple language.

2http://www.sable.mcgill.ca/soot/

132 Conclusion

10.2.4 Towards a PCC architecture

The bytecode verification condition generator and the BML compiler is the first step towards a
PCC framework. The missing part is the certificate format which comes along with the bytecode
and which is the evidence for that the bytecode respects the client requirements. Defining an
encoding of the certificate should take into account several factors:

• certificate size must be reasonably small. This is important, for instance, if the certified
program comes over a network with a limited bandwidth

• certificates must be easily checked. This means that the certificate checker is small and simple.
Of course, the code consumer might not want to spend all of its computation resources for
checking that the certificate guarantees the program conformance to its policies.

Note that the certificate size and its checking complexity are dual: the bigger the certificate is
more manageable is the checking process and vice versa. The problem becomes even more difficult
if the certificate must be checked on the device because of the computational and space constraints.

Another perspective in this direction is the encoding of type systems into the bytecode logic.
Type systems provide a high level of automation. Their encoding in the logic can be useful as the
certificate can be generated automatically and thus, avoids the user interaction. However, type
systems are conservative in the sense that they tend to reject a large amount of correct programs.
A possible solution to this problem are hybrid certificates which combine both type systems and
program logic. In this approach, the unknown code comes supplied with a derivation in the logic
generated potentially with the help of user interaction for the parts of the code which can not
be inferred by the type system. The client side then applies a type inference procedure over the
unknown code and once it gets to the place in the parts of the code where the type inference does
not work but for which there is a derivation in the certificate, he will type check that derivation.
This is actually an approach which will be adopted in the Mobius project.

The objective of this thesis was to build a bytecode verification framework for dealing with
potentially sophisticated security and functional policies. A further objective, pursued in the Eu-
ropean project Mobius (short for Ubiquity, Mobility and Security) is to build basis for guaranteeing
security and trust in program application in the presence of mobile and ubiquitous computing. We
hope that we have convinced the reader for the importance of such techniques and in particular of
the evolution from source verification to low level verification and the necessity of an interactive
verification process for building evidence for the security of unknown applications.

Appendix A

Encoding of BML in the class file

format

A.1 Class annotation

The following attributes can be added (if needed) only to the array of attributes of the class info

structure.

A.1.1 Ghost variables

Ghost Field attribute {

u2 attribute name index;
u4 attribute length;
u2 fields count;
{ u2 access flags;

u2 name index;
u2 descriptor index;

} fields[fields count];
}

attribute name index
The value of the attribute name index item must be a valid index into the constant pool table.
The constant pool entry at that index must be a CONSTANT Utf8 info structure represent-
ing the string ”Ghost Field”.

attribute length
the length of the attribute in bytes = 2 + 6*fields count.

access flags
The value of the access flags item is a mask of modifiers used to describe access permission to and
properties of a field.

name index
The value of the name index item must be a valid index into the constant pool table. The
constant pool entry at that index must be a CONSTANT Utf8 info structure which must
represent a valid Java field name stored as a simple (not fully qualified) name, that is, as a Java
identifier.

descriptor index
The value of the descriptor index item must be a valid index into the constant pool table. The

134 Encoding of BML in the class file format

constant pool entry at that index must be a CONSTANT Utf8 structure which must represent
a valid Java field descriptor.

A.1.2 Class invariant

JMLClassInvariant attribute {
u2 attribute name index;
u4 attribute length;
formula attribute formula;

}

attribute name index
The value of the attribute name index item must be a valid index into the constant pool table.
The constant pool entry at that index must be a CONSTANT Utf8 info structure represent-
ing the string ”ClassInvariant”.

attribute length
the length of the attribute in bytes - 6.

attribute formula
code of the formula that represents the invariant

A.1.3 History Constraints

JMLHistoryConstraints attribute {
u2 attribute name index;
u4 attribute length;
formula attribute formula;

}

attribute name index
The value of the attribute name index item must be a valid index into the constant pool table.
The constant pool entry at that index must be a CONSTANT Utf8 info structure represent-
ing the string ”Constraint”.

attribute length
the length of the attribute in bytes - 6.

attribute formula
code of the formula that is a predicate of the form Pstate, old(state) that establishes relation
between the prestate and the postate of a method execution.

A.2 Method annotation

A.2.1 Method specification

The JML keywords requires, ensures, exsures will be defined in a newly attribute in Java VM
bytecode that can be inserted into the structure method info as elements of the array attributes.

JMLMethod attribute {
u2 attribute name index;
u4 attribute length;
formula requires formula;
u2 spec count;
{ formula spec requires formula;

A.2 Method annotation 135

u2 modifies count;
formula modifies[modifies count];
formula ensures formula;
u2 exsures count;
{ u2 exception index;

formula exsures formula;
} exsures[exsures count];

} spec[spec count];
}

attribute name index
The value of the attribute name index item must be a valid index into the constant pool table.
The constant pool entry at that index must be a CONSTANT Utf8 info structure represent-
ing the string ”MethodSpecification”.

attribute length
The length of the attribute in bytes.

requires formula
The formula that represents the precondition

spec count
The number of specification case.

spec[]
Each entry in the spec array represents a case specification. Each entry must contain the following
items:

spec requires formula
The formula that represents the precondition

modifies count
The number of modified variable.

modifies[]
The array of modified formula.

ensures formula
The formula that represents the postcondition

exsures count
The number of exsures clause.

exsures[]
Each entry in the exsures array represents an exsures clause. Each entry must contain the following
items:

exception index
The index must be a valid index into the constant pool table. The constant pool entry at
this index must be a CONSTANT Class info structure representing a class type that this clause is
declared to catch.

exsures formula
The formula that represents the exceptional postcondition

136 Encoding of BML in the class file format

A.2.2 Set

These are particular assertions that assign to ghost fields.

Set attribute {
u2 attribute name index;
u4 attribute length;
u2 set count;
{ u2 index;

expression e1;
expression e2;

} set[set count];
}

attribute name index
The value of the attribute name index item must be a valid index into the constant pool table.
The constant pool entry at that index must be a CONSTANT Utf8 info structure represent-
ing the string ”Set”.

attribute length
The length of the attribute in bytes.

set count
The number of set statement.

set[]
Each entry in the set array represents a set statement. Each entry must contain the following items:

index
The index in the bytecode where the assignment to the ghost field is done.

e1
the expression to which is assigned a value. It must be a JML expression, i.e. a JML field, or a
dereferencing a field of JML reference object an assignment expression

e2
the expression that is assigned as value to the JML expression

A.2.3 Assert

Assert attribute {
u2 attribute name index;
u4 attribute length;
u2 assert count;
{ u2 index;

formula predicate;
} assert[assert count];

}

attribute name index
The value of the attribute name index item must be a valid index into the constant pool table.
The constant pool entry at that index must be aCONSTANT Utf8 info structure represent-
ing the string ”Assert”.

attribute length
The length of the attribute in bytes.

A.2 Method annotation 137

assert count
The number of assert statement.

assert[]
Each entry in the assert array represents an assert statement. Each entry must contain the follow-
ing items:

index
The index in the bytecode where the predicate must hold

predicate
the predicate that must hold at index index in the bytecode

A.2.4 Loop specification

JMLLoop specification attribute {
u2 attribute name index;
u4 attribute length;
u2 loop count;
{ u2 index;

u2 modifies count;
formula modifies[modifies count];
formula invariant;
expression decreases;

} loop[loop count];
}

attribute name index
The value of the attribute name index item must be a valid index into the constant pool table.
The constant pool entry at that index must be a CONSTANT Utf8 info structure represent-
ing the string ”Loop Specification”.

attribute length
The length of the attribute in bytes

loop count
The length of the array of loop specifications

index
The index of the instruction in the bytecode array that corresponds to the entry of the loop

modifies count
The number of modified variable.

modifies[]
The array of modified expressions.

invariant
The predicate that is the loop invariant. It is a formula written in the grammar specified in the
section Formula

decreases
The expression whose decreasing after every loop execution will guarantee loop termination

138 Encoding of BML in the class file format

A.3 Codes for BML expressions and formulas

Formulas P
Code Symbol Grammar

0x00 true
0x01 false
0x02 ∧ P P
0x03 ∨ P P
0x04 ⇒ P P
0x05 ¬ P
0x06 ∀ bv P
0x07 ∃ bv P
0x10 = E E
0x11 > E E
0x12 < E E
0x13 ≤ E E
0x14 ≥ E E
0x16 <: type(ident) type(ident)
0x17 6= E E

Expressions E
Code Symbol Grammar

0x20 + E E
0x21 − E E
0x22 ∗ E E
0x23 / E E
0x24 % E E
0x25 − E
0x40 int constant i
0x50 type ident
0x51 elemtype E
0x52 result
0x53 typeof E
0x54 TYPE
0x55 old
0x61 arrAccess(,) E E
0x63 . E E
0x70 this
0x80 null
0x90 FieldConstRef ident
0xA0 Reg digits
0xD0 EXC
0xE0 bv intLiteral

Modifies modLocation

Code Symbol Grammar

0xD2 nothing
0xD3 everything
0xD4 arrayModAt(,) E specIndex
0xD5 . E FieldConstRef
0xD6 Reg ident

Index of modified array elements specIndex

Code Symbol Grammar

0xE1 all
0xE2 . . . E E
0xE3 E

Appendix B

Proofs of properties from Section

7.1.2

Lemma 7.1.2.1. For any statement or expression SE which does not terminate on return or
athrow, start label s and end label e, the compiler will produce a list of bytecode instruction
ps,SE , eqm such that instruction e+ 1 may execute after e, i.e. e −→ e+ 1

Proof: The proof is by structural induction over the compiled statement. We sketch the case for
compositional statement, the other cases being similar. Remind that by compiler definition, we get
that the compilation of S1;S 2 starting at index s is ps,S1;S2, eqm = ps,S1, e

′
qm; pe′ + 1,S2, eqm.

By induction hypothesis, we get that the lemma holds for pe′+1,S2, eqm and we get that e −→ e+1
which means that this case holds. Qed.

In the next, we will need several auxiliary lemmas that will allow us to prove the statements
from Section 7.1.2. The next lemma states that all the jump instructions in the compilation of a
statement target instruction which are also in the compilation of the statement. For illustration,
we may return back to the example Fig. 7.6 on page 101 and focus on the compilation of the
if statement if (i >= 0) then {v = i} else {v = −i} which comprises instructions from 4 to
12. Note that sequential instructions have as successor the next instruction. Thus, sequential
instructions respect this condition. Only jump instructions may cause control transfer outside the
if compilation. We notice that the compilation contains two jump instructions. The first is the
instruction 5 ifge 10 which jumps inside the compilation of the if statement and the instruction
9 goto 12 which jumps also inside. Thus, the compilation of the if statement respects the property.

Lemma B.1 (Jumps in statement compilation target instructions inside the statement
compilation). For any statement or expression SE , the compiler will produce a list of bytecode in-
struction ps,SE , eqm such that every jump instruction(goto or if cond) which is in the compilation
does not transfer the control outside the region of the compilation ps,SE , eqm.

Proof: The proof is done by contradiction and uses structural induction. We sketch the proof
for the compilation of the if statement, the rest of the cases being similar.
Suppose that this is not true. Recall that the compilation of a conditional statement starting at
index s (Fig. 7.2 on page 98) is of the form:

ps, if (E1condE2) then {S1} else {S2}, eqm =

ps, E1, e′
qm

pe′ + 1,E2, e′′
qm

e′′ + 1 : if cond e′′′ + 2;
pe′′ + 2,S2, e′′′

qm
e′′′ + 1 : goto e
pe′′′ + 2,S1, e − 1qm;
e : nop

Because by induction hypothesis every jump in pe′′′ + 2,S1, eqm targets instructions inside
pe′′′ + 2,S1, eqm, it is not possible that there be a jump inside pe′′′ + 2,S1, eqm which targets
outside the compilation of the conditional statement. Similarly, we conclude that such a jump
cannot be contained in pe′′′ + 2,S1, e− 1qm, ps,E 1, e

′
qm nor pe′ + 1,E2, e

′′
qm The only cases that

140 Proofs of properties from Section 7.1.2

remain possible are the jumps e′′+1 : if cond e′′′+2 and e′′′+1 : goto e. But for both instructions
that is not true. Thus, the lemma holds for this case.

Qed.

The next property of the compiler is that any statement or expression is compiled in a list of
bytecode instructions such that instructions inside the compilation of a statement or expression
cannot be targeted by instructions which are outside the statement compilation except for the first
instruction in the compilation. For instance, the instructions 15-30 in the compilation of the while
statement in Fig. 7.6 on page 101 can be reached from outside of the statement compilation only
by passing through the instruction at index 15.

Lemma B.2 (Compilation of statements and expressions cannot be jumped from out-
side inside). For all statements and expressions SE ′ and SE , such that SE ′ is a substatement of SE
(SE [SE ′]) and their compilations are ps,SE , eqm and ps′,SE ′, e′qm. Let us have instruction at index
j in the compilation of SE (j ∈ ps,SE , eqm) but which is not in the compilation of ps′,SE ′, e′qm
(¬(j ∈ ps′,SE ′, e′qm)). Let us also have instruction k in the compilation ps′,SE ′, e′qm. Suppose
that j may execute after k (j −→ k). It then follows that k is the first instruction in the compilation
of SE ′

Proof:The proof is by induction over the structure of statements and expressions. We sketch
here the case for compositional statement, the other cases are similar and use previous Lemma B.1
and Lemma 7.1.2.1 The compositional statement S 1;S2 has the compilation ps,S1;S2, eqm which
by the compiler definition is ps,S1, e

′
qmpe′ + 1,S2, eqm. By induction hypothesis the lemma holds

both for ps,S1, e
′
qm and pe′ + 1,S2, eqm. It is also necessary to show that there are no jumps

from the compilation of S1 into the compilation of S2 and vice versa. Both directions follow from
Lemma B.1 that all jumps in a statement compilation are inside the statement. Moreover, from
Lemma 7.1.2.1 we have that e′ −→ e′ + 1 which conforms to the statement. Thus, the case for
compositional statement holds.

Qed.

Lemma 7.1.2.2 (Compilation of expressions). For any expression E, starting label s and end
label e, the compilation ps,E , eqm is a block of bytecode instruction in the sense of Def. 7.1.2.1

Proof:
Following the Def. 7.1.2.1 of block of bytecode instructions, we have to see if the compilation of

an expression respects three conditions. The first condition of Def.7.1.2.1 states that none of the
instructions is a target of an instruction outside of the compilation of the expression except from
the first instruction. This follows from lemma B.2. The second condition in Def. 7.1.2.1 requires
that there are no control transfer instructions (jumps, returnand athrow) in the list of instructions
representing the compilation of an expression, i.e. that every instruction in the compilation of an
expression is in execution relation with the next instruction. This is established by induction over
the structure of the expression. The third condition in Def. 7.1.2.1 states that the compilation
ps,E , eqm is such that no instruction except possibly for the first instruction in the expression com-
pilation is in a loop execution relation with its predecessor in the sense of Def. 3.9.1 in Chapter 5,
Section 3, page 25. Assume that this is not the case. This would mean that there exist i, s < i ≤ e
such that between it and its predecessor there is a loop edge i − 1 −→l i. Following Def. 3.9.1
this would mean that every execution path reaching instruction i − 1 must pass before through
instruction i. As all the instructions in the compilation of an expression are sequential in order
that the latter be true there should be a jump to instruction i from outside the compilation of the
expression. But this contradicts the first condition. Thus, it follows that our hypothesis is false
and we can conclude that the third condition of Def. 7.1.2.1 holds for compilation of expressions.
Qed.

We shall now proceed to the lemma which establishes that there are loops in the bytecode
control flow graph corresponding to the compilation of a statement only if the statement contains
loops.

141

Lemma 7.1.2.3. The compilation ps,S , eqm of a statement S may contain an instruction k and
j which are respectively a loop entry and a loop end in the sense of Def. 3.9.1, page 43 (i.e. there
exists j such that j −→l k) if and only if S contains a substatement S ′ which is a loop statement:

j = loopEntryS ′ − 1 ∧ k = loopEntryS ′

Proof: By structural induction over the compiled statement. The direction when statement
contains a loop statement is trivial. We will show the other direction for compositional statements
and if statement.

Compositional statement Let us have the statement S 1;S 2 and its compilation ps,S1;S2, eqm.
From the compiler definition, we have that

ps, S1; S2, eqm = ps, S1, e
′
qmpe

′ + 1, S2, sqm

By induction hypothesis, the lemma holds for the compilations of S 1 and S 2 which are
ps,S1, e

′
qm and pe′ + 1,S2, sqm. Let us see which are the other possible execution edges in

the compilation.

Lemma 7.1.2.1 and Lemma B.2 is e′ −→ e′ + 1. We will show by contradiction that the
execution relation between e′ and e′ + 1 is not a loop execution relation. Assume that the
execution is a loop execution relation, i.e. e′ −→l e′ + 1. Following Def. 3.9.1, this means
that every path P in the control flow graph from the program entry point instruction which
reaches e′ has a subpath subP which does not pass through e′ and which passes through
e′ + 1. This is possible in two cases:

• if there is a jump from outside ps,S 1;S 2, eqm to the instruction e′ +1. Two possibilities
exist. S 1;S 2 is a substatement of statement S 3, i.e. S 3[S 1;S 2] and an instruction from
the compilation ps′′,S 3, e

′′
qm of S3 but which does not belong to ps,S 1;S 2, eqm jumps

to e′ + 1. This is not possible following Lemma B.2. The other possibility is that S 3

precedes or follows S 1;S 2, i.e. S 3;S 1;S2 or S 1;S 2;S3. But it is not possible that such
a jump exists from Lemma B.1

• there is a jump instruction in ps,S1, e
′
qm to e′ + 1 which is not the instruction e′ but

this is not possible following Lemma B.1

Conditional statement By definition, its compilation results in

ps, if (E1condE2) then {S1} else {S2}, eqm =

ps,E1, e′
qm

pe′ + 1,E2, e′′
qm

e′′ + 1 : if cond e′′′ + 2
pe′′ + 2,S2, e′′′

qm
e′′′ + 1 : goto e
pe′′′ + 2, S1, e − 1qm
e : nop

By induction hypothesis, we get that the lemma holds for the substatement compilations.
The possible loop execution edges are :

• e′ −→l e′ + 1 This would mean that every execution path reaching e′ passes before
through e′ + 1. Let us see how e′ + 1 can be reached from the program entry point.
From Lemma B.2 we know that there could be no jumps from outside the statement
compilation inside it except for the first instruction. Thus, every control flow path
P reaching e′ + 1 has a subpath subPs which first reaches the instruction at index s
and does not pass through any instruction from the conditional statement. Because
all the instructions in ps,E 1, e

′
qm are sequential (Lemma 7.1.2.2), every path from the

program entry point reaching e′+1 passes through e′. Thus the assumption is false. We
may apply similar reasoning to establish that it is not true that e′′ −→l e′′ + 1 neither
e′′ + 1 −→l e′′ + 2, e′′ + 1 −→l e′′′ + 2

• e′′′ −→l e′′′ + 1 This is not possible because e′′′ can be reached from the program entry
point by a path P which has a subpath subPs which reaches s and which does not pass
through any instruction from the conditional statement. From the instruction s, the

142 Proofs of properties from Section 7.1.2

control flow path passes through s . . . e′, e′ + 1 . . . e′′, e′′ + 1, e′′ + 2 . . . e′′′. Thus there is
a path from the program entry point to e′′′ which does not pass through e′′′ + 1 and
thus, it is not true that e′′′ −→l e′′′ +1 In the same way, we can show that it is not true
that e′′′ + 1 −→l e, neither e− 1 −→l e

Qed.

For establishing Property 7.1.2.4, we will need several auxiliary lemmas. First, we have to show
that the regions described in the exception handler table elements correspond to statements which
are declared in the try clause of try catch or try finally statements. For instance, we can return back
to the example in Fig. 7.7 on page 103 and see that the exception handler table abs.ExcHandler
contains one element which describes the unique exception handler in the method. In particular,
it states that the region between 2 and 20 is protected from NullExc by the bytecode starting at
index 22. We may remark that the region between 2 and 20 corresponds to the compilation of the
if statement.

Lemma B.3 (Exception handler element corresponds to a statement). Every element
(s, e, eH,Exc) in the exception handler table m.excHndlS resulting from the compilation of method
m is such that exist statements S 1, S2 and S such that ps,S1, eqm and statement S is either a try
catch statement of the form S = try{S 1}catch(Exc){S2} or a try finally statement of the form
S = try{S1}finally{S2}

Proof : The proof is done by contradiction and follows directly from the definition of the com-
piler. Particularly, from the compiler definition, we get that elements are added in m.excHndlS only
in the cases of try catch and try finally statement compilation and that the guarded region in the
the newly added element correspond to the try statement.
Qed.
In the following when we refer to the fact that a statement S is either a try catch or a try finally
statement with a try substatement S ′ and we are not interested in the catch or finally part we
denote this with S = tryS ′ . . .

From the compiler definition, we can also see that the indexes of the instructions corresponding
to the compilation ps,SE , eqm of SE are all comprised in between s and e.

Lemma B.4 (Indexes of the compilation of expressions and statements). The compilation
ps,SE , eqm of SE is such that

• s ≤ e

• every instruction in ps,SE , eqm has an index in between s and e

The latter follows directly from the compiler definition function.
We establish now several properties concerning substatement relation which has been introduced

in Section 7.1.2, page 7.1.2. The next lemma establishes that the substatement relation between
statements is preserved by the compiler. In particular, we establish that if a statement is a
substatement of another then all of its instructions are contained in the compilation of the other
one. Also, if two statements are not in a substatement relation neither their compilations are.

Lemma B.5 (Substatement relation preserved by the compiler). For all statements S 1

and S2, with respective compilations ps1,S1, e1qm and ps2,S 2, e2qm the following holds

• if S2 is a substatement of S1 (S 1[S 2]) then s1 ≤ s2 and e2 ≤ e1

• if S 2 is not substatement of S1 (¬S 1[S 2]), neither S1 is a substatement of S 2 (¬S 2[S 1]) then
e1 < s2 or e2 < s1

This also follows from the compiler function.
The next lemma states that if an instruction is part of the compilation of two source statements

then we have that these statements are in a substatement relation.

143

Lemma B.6 (Common instructions in the compilation of statements). For all statements
S1 and S 2, with respective compilations ps1,S 1, e1qm and ps2,S 2, e2qm if it is true that s1 ≤ k ≤ e1
and s2 ≤ k ≤ e2 then S1[S 2] or S 2[S 1]

Proof : by contradiction.
The case when S1 and S 2 are the same is trivial. Let S1 and S 2 are different. Assume that
the above is not true, i.e. (1) ps1,S 1, e1qm, (2) ps2,S2, e2qm, (3) s1 ≤ k ≤ e1 ∧ s2 ≤ k ≤ e2,
(4) ¬S 1[S 2] ∧ ¬S 2[S 1]. From (4) and previous Lemma B.5, case 2 we obtain e1 < s2 or e2 < s1
But this is in contradiction with (3) and thus the lemma holds also in this case.

Qed.

Lemma 7.1.2.4 (Exception handler property). Let us have a statement S which is not a try
catch statement neither a try finally statement in method m. Assume that statement S ′ is its direct
substatement, i.e. S [[S ′]]. Let their respective compilations be ps,S , eqm and ps′,S ′, e′qm, then the
exception handlers for the instruction points e and e′ are the same:

∀Exc,findExcHandler (Exc, e, m.excHndlS) = findExcHandler(Exc, e′, m.excHndlS)

Proof : by contradiction
Assume the following:
(1) S [[S ′]], S ′ is a strict substatement of S
(2) ps,S , eqm, the compilation of S is in between s and e
(3) ps′,S ′, e′qm, the compilation of S ′ is in between s′ and e′

(4) ∃s1, e1, eH1, s2, e2, eH2,Exc such that
(s1, e1, eH1,Exc) is in the exception handler table m.excHndlS

(s2, e2, eH2,Exc) is in the exception handler table m.excHndlS

findExcHandler(Exc, e, m.excHndlS) = eH1

findExcHandler(Exc, e′, m.excHndlS) = eH2

eH1 6= eH2

From definition of the function findExcHandler in Section 3.5, page 33, we get that if findExcHandler
returns an exception handler for an index this means that the index is in the region protected by
the exception handler:
(5) s1 ≤ e ≤ e1
(6) s2 ≤ e′ ≤ e2
From Lemma B.3 we know that protected regions in the exception handler table correspond to
source statements:
(7) ∃S 1, stmt

try
1 such that ps1,S1, e1qm and stmttry

1 = try{S1} . . .
(8) ∃S 2, stmt

try
2 such that ps2,S2, e2qm and stmttry

2 = try{S2} . . .
From Lemma B.5 we know that the compiler preserves the substatement relation and thus, from
(1) we conclude that the first and last indexes in the compilation of S ′ are in the region determined
by the first s and last index e of the compilation of statement S :
(9) s ≤ s′ ∧ e′ ≤ e
From Lemma B.4 for instructions in a source statement compilation:
(10) s ≤ e ∧ s′ ≤ e′

We conclude from (9) and (10) that:
(11)s ≤ e′ ≤ e
From (11), (6) and Lemma B.6 for common instructions in the compilation we get that either S 2

is a substatement of S or vice versa
(12) S [S2] ∨ S 2[S]
Similarly, from (6) and (3) we get:
(13) S ′[S 2] ∨ S 2[S

′]
From (12) and (13) we have 4 cases:

S ′[S2] We show first that the cases when S 2 is a direct substatement of S ′, i.e. S ′[S2] is not
possible. Because from (8), we get that S 2 is a direct substatement of S try

2 we conclude that

144 Proofs of properties from Section 7.1.2

S try
2 is a substatement of S ′, i.e. S ′[S try

2]. But from Lemma B.5 and the way try catch and
try finally statements are compiled we get that e2 < e′. From the last inequality and (6) we
get a contradiction

S2[S
′] ∧ S [S 2] This is in contradiction with (1) which states that S ′ is a direct substatement of S

S2[S
′] ∧ S2[S] From this, by Lemma B.5 for compiler substatement preservation we get that (14)
s2 ≤ e ≤ e2 and s2 ≤ e′ ≤ e2. Using (7), we also get by a similar reasoning as in the
first case that it is not possible that the statement S 1 is a substatement of S , i.e. we have
that (15) ¬S [S 1]. From (2) and (5) by Lemma B.5, we get that (16) S [S 1] ∨ S1[S] holds.
From (15) and (16) we get (17) S 1[S] which also implies that (18) S1[S

′] as S ′ is a (direct)
substatement of S . From (17) and (18) and Lemma B.5, we conclude that (19) s1 ≤ e ≤
e1 and s1 ≤ e′ ≤ e1. From (14) and (19) and definition of the function findExcHandler
Section 3.5, page 33 we conclude that either findExcHandler (Exc, e, m.excHndlS) = e1 and
findExcHandler (Exc, e′, m.excHndlS) = e1 or that
findExcHandler (Exc, e, m.excHndlS) = e2 and findExcHandler (Exc, e′, m.excHndlS) = e2. But
this means findExcHandler (Exc, e, m.excHndlS) =
findExcHandler (Exc, e′, m.excHndlS) which is contradiction with (4).

Qed.

Bibliography

[1] Java In The Small. http://www.lifl.fr/RD2P/JITS/.

[2] JC Virtual Machine. http://jcvm.sourceforge.net/.

[3] Essential .NET, volume Volume 1: The Common Language Runtime. Addison-Wesley, 2002.

[4] S. Alagić and M. Royer. Next generation of virtual platforms. Article in odbms.org, 2005.
Available from http://odbms.org/about contributors alagic.html.

[5] R.M. Amadio, S. Coupet-Grimal, S. Dal Zilio, and L. Jakubiec. A Functional Scenario for
Bytecode Verification of Resource Bounds. Research report 17-2004, LIF, Marseille, France,
2004.

[6] D. Aspinall, L. Beringer, M. Hofmann, H. Loidl, and A. Momigliano. A program logic for
resource verification. In Proceedings of the 17th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs2004), 2004.

[7] D. Aspinall and A. Compagnoni. Heap-bounded assembly language. Journal of Automated
Reasoning, 31(3-4):261–302, 2003.

[8] D. Aspinall and M. Hofmann. Another type system for in-place update. In ESOP, volume
2305 of LNCS, pages 36–52, 2002.

[9] AV, Sethi R, and Ullman JD. Compilers-Principles, Techniques and Tools. Addison-Wesley:
Reading, 1986.

[10] Ana Azevedo, Alex Nicolau, and Joe Hummel. Java annotation-aware just-in-time (ajit)
complilation system. In JAVA ’99: Proceedings of the ACM 1999 conference on Java Grande,
pages 142–151, New York, NY, USA, 1999. ACM Press.

[11] F. Y. Bannwart and P. Müller. A logic for bytecode. In F. Spoto, editor, Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE), volume 141 of Electronic Notes
in Theoretical Computer Science, pages 255–273. Elsevier, 2005.

[12] Fabian Bannwart. A logic for bytecode and the translation of proofs from sequential java.
Technical report, ETHZ, 2004.

[13] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K.R.M. Leino. Boogie: A modu-
lar reusable verifier for object-oriented programs. In Formal Methods for Components and
Objects (FMCO ’05), LNCS. springer, 2005.

[14] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs.
SIGSOFT Softw. Eng. Notes, 31(1):82–87, 2006.

[15] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming sys-
tem: An overview. In ”G.Barthe, L.Burdy, M.Huisman, J.Lanet, and T.Muntean”, editors,
CASSIS workshop proceedings, LNCS, pages 49–69. Springer, 2004.

146 BIBLIOGRAPHY

[16] G. Barthe, L. Burdy, J. Charles, B. Gregoire, M. Huisman, J.-L. Lanet, M. Pavlova, and
A. Requet. JACK: a tool for validation of security and behaviour of Java applications. In
Proceedings of 5th International Symposium on Formal Methods for Components and Objects,
Lecture Notes in Computer Science. Springer-Verlag, 200x. To appear.

[17] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for optimizing com-
pilers. In Proceedings of the 13th International Static Analysis Symposium (SAS), LNCS,
Seoul, Korea, August 2006. Springer-Verlag.

[18] Gilles Barthe, Guillaume Dufay, Line Jakubiec, and Simao Melo de Sousa. A formal cor-
respondence between offensive and defensive javacard virtual machines. In VMCAI, pages
32–45, 2002.

[19] Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard Serpette, and Simão Melo de Sousa.
A formal executable semantics of the JavaCard platform. Lecture Notes in Computer Science,
2028:302+, 2001.

[20] Gilles Barthe, Mariela Pavlova, and Gerardo Schneider. Precise analysis of memory con-
sumption using program logics. In SEFM ’05: Proceedings of the Third IEEE International
Conference on Software Engineering and Formal Methods, pages 86–95, Washington, DC,
USA, 2005. IEEE Computer Society.

[21] Gilles Barthe, Tamara Rezk, and Ando Saabas. Proof obligations preserving compilation. In
Formal Aspects in Security and Trust, pages 112–126, 2005.

[22] Nick Benton. A typed logic for stack and jumps. DRAFT, 2004.

[23] B.Meyer. Object-Oriented Software Construction. Prentice Hall, second revised edition edi-
tion, 1997.

[24] Egon Borger and Wolfram Schulte. Defining the java virtual machine as platform for provably
correct java compilation. In Mathematical Foundations of Computer Science, pages 17–35,
1998.

[25] C. Breunesse, N. Cataño, M. Huisman, and B. Jacobs. Formal methods for smart cards: an
experience report. Science of Computer Programming, 2004. To appear.

[26] L. Burdy. A treatment of partiality: Its application to the b method. 1998.

[27] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino, and E. Poll.
An overview of JML tools and applications. In T. Arts and W. Fokkink, editors, Formal
Methods for Industrial Critical Systems (FMICS 2003), volume 80 of ENTCS. Elsevier, 2003.

[28] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A developer-oriented ap-
proach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME 2003: Formal Methods:
International Symposium of Formal Methods Europe, volume 2805 of LNCS, pages 422–439.
Springer, 2003.

[29] David Cachera, Thomas Jensen, David Pichardie, and Gerardo Schneider. Certified memory
usage analysis. In Proc. of 13th International Symposium on Formal Methods (FM’05),
volume 3582 of Lecture Notes in Computer Science, pages 91–106. Springer-Verlag, 2005.

[30] Cristiano Calcagno, Peter O’Hearn, and Richard Bornat. Program logic and equivalence in
the presence of garbage collection. Theoretical Computer Science, 298(3):557–581, 2003.

[31] A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula. JVer: A Java Verifier. In
Proceedings of the Conference on Computer Aided Verification (CAV’05), 2005.

[32] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for the Java modeling
language. In Software Engineering Research and Practice (SERP’02), CSREA Press, pages
322–328, June 2002.

BIBLIOGRAPHY 147

[33] A. Courbot, M. Pavlova, G. Grimaud, and J.J. Vandewalle. A low-footprint Java-to-native
compilation scheme using formal methods. In proceedings of CARDIS, pages 329–344, 2006.

[34] K. Crary and S. Weirich. Resource bound certification. In Proceedings of the 27th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 184–198.
ACM Press, 2000.

[35] Á. Darvas and P. Müller. Reasoning About Method Calls in Interface Specifications. Journal
of Object Technology (JOT), 5(5):59–85, June 2006.

[36] Marc Daumas, Laurence Rideau, and Laurent Théry. A generic library for floating-point
numbers and its application to exact computing. page 169, New York, NY, USA, 2003.
Springer-Verlag New York, Inc.

[37] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

[38] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object
Technology (JOT), 4(8):5–32, October 2005.

[39] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics.
Springer, 1990.

[40] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically dis-
covering likely program invariants to support program evolution. In International Conference
on Software Engineering, pages 213–224, 1999.

[41] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE Trans. Softw.
Eng., 27(2):99–123, 2001.

[42] Cormac Flanagan and Martin Abadi. Types for safe locking. In ESOP ’99: Proceedings of the
8th European Symposium on Programming Languages and Systems, pages 91–108, London,
UK, 1999. Springer-Verlag.

[43] Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java. ACM SIG-
PLAN Notices, 35(5):219–232, 2000.

[44] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for java. In PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language design and implementation, pages
234–245, New York, NY, USA, 2002. ACM Press.

[45] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification. In
POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 191–202, New York, NY, USA, 2002. ACM Press.

[46] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 338–349, New York, NY, USA, 2003. ACM Press.

[47] L.-A. Fredlund. Guaranteeing correctness properties of a java card applet. In RV’04, ENTCS,
2004.

[48] Stephen N. Freund and John C. Mitchell. A formal framework for the java bytecode language
and verifier. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 147–166, New York, NY,
USA, 1999. ACM Press.

[49] D. Garbervetsky, C. Nakhli, S. Yovine, and H. Zorgati. Program instrumentation and run-
time analysis of scoped memory in java. In RV’04, ENCS, 2004.

148 BIBLIOGRAPHY

[50] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third Edition.
Sun Microsystems, Inc., 2005.

[51] David Gries and Fred B. Schneider. Avoiding the undefined by underspecification. In Jan
van Leeuwen, editor, Computer Science Today: Recent Trends and Developments, number
1000, pages 366–373. Springer-Verlag, New York, N.Y., 1995.

[52] G. Grimaud and J.-J. Vandewalle. Introducing research issues for next generation Java-based
smart card platforms. In Proc. Smart Objects Conference (sOc’2003), Grenoble, France, 2003.

[53] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969.

[54] M. Hofmann. A type system for bounded space and functional in-place update. Nordic
Journal of Computing, 7(4):258–289, 2000.

[55] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional
programs. In Proc. of 30th ACM Symp. on Principles of Programming Languages (POPL’03),
pages 185–197. ACM Press, 2003.

[56] J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space: Towards
embedded ML programming. In International Conference on Functional Programming, pages
70–81, 1999.

[57] M. Huisman, B. Jacobs, and J. van den Berg. A Case Study in Class Library Verification:
Java’s Vector Class. Software Tools for Technology Transfer, 3/3:332–352, 2001.

[58] Joseph Hummel, Ana Azevedo, David Kolson, and Alexandru Nicolau. Annotating the Java
bytecodes in support of optimization. Concurrency: Practice and Experience, 9(11):1003–
1016, 1997.

[59] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Mikio Takeuchi, Takeshi Ogasawara,
Toshio Suganuma, Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani. Design, im-
plementation, and evaluation of optimizations in a just-in-time compiler. In JAVA ’99:
Proceedings of the ACM 1999 conference on Java Grande, pages 119–128, New York, NY,
USA, 1999. ACM Press.

[60] B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspective.
Technical Report NIII-R0318, Nijmegen Institute of Computing and Information Sciences,
Sept 2003.

[61] Bart Jacobs. Weakest pre-condition reasoning for Java programs with JML annotations.
Journal of Logic and Algebraic Programing, 58(1-2):61–88, 2004.

[62] Bart Jacobs, Claude Marché, and Nicole Rauch. Formal verification of a commercial smart
card applet with multiple tools. In Algebraic Methodology and Software Technology, volume
3116 of Lecture Notes in Computer Science, Stirling, UK, July 2004. Springer-Verlag.

[63] Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual
machine and compiler. Technical Report 0400001T.1, National ICT Australia, Sydney, March
2004.

[64] Laurent Lagosanto. Next-generation embedded java operating system for smart cards. In
4th Gemplus Developer Conference, 2002.

[65] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification challenges for
sequential object-oriented programs. Formal Aspects of Computing, 2006. to appear.

[66] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of jml: a behavioral
interface specification language for java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

BIBLIOGRAPHY 149

[67] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,
and J. Kiniry. JML reference manual. http://www.cs.iastate.edu/~leavens

/JML/jmlrefman/jmlrefman toc.html, 2005.

[68] K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–288, 2005.

[69] K. Rustan M. Leino and Peter Müller. Modular verification of static class invariants. In
Proceedings, Formal Methods, volume 3582 of LNCS, pages 26–42, 2005.

[70] ”K. Rustan M. Leino, Greg Nelson, , and James B. Saxe ”. Esc/java user’s manual.

[71] K. Rustan M. Leino and Jan L. A. van de Snepscheut. Semantics of exceptions. In PRO-
COMET ’94: Proceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference on
Programming Concepts, Methods and Calculi, pages 447–466. North-Holland, 1994.

[72] R.K. Leino, G. Nelson, and J. B. Saxe. Esc/java user manual. Technical report, Compaq
SRC, Oct 2000. 2000-002.

[73] Xavier Leroy. Java bytecode verification: Algorithms and formalizations. Journal of Auto-
mated Reasoning, 30(3-4):235–269, 2003.

[74] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley Long-
man Publishing Co., Inc., 1999.

[75] Tim Lindholm and Frank Yellin. Java virtual machine specification. Technical report, Java
Software, Sun Microsystems, Inc., 2004.

[76] C. Marche, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification of Java/-
JavaCard programs annotated in JML. Journal of Logic and Algebraic Programming, 2003.

[77] Claude Marché and Christine Paulin-Mohring. Reasoning about Java programs with aliasing
and frame conditions. In J. Hurd and T. Melham, editors, 18th International Conference
on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science. Springer-
Verlag, August 2005.

[78] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd rev. edition, 1997.

[79] J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers. In
TACAS ’00: Proceedings of the 6th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 63–77, London, UK, 2000. Springer-Verlag.

[80] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly language.
ACM Trans. Program. Lang. Syst., 21(3):527–568, 1999.

[81] Deepak Mulchandani. Java for embedded systems. Internet Computing, IEEE, 2(3):30 – 39,
1998.

[82] Gilles Muller, Barbara Moura, Fabrice Bellard, and Charles Consel. Harissa: a flexible and
efficient java environment mixing bytecode and compiled code. In Third USENIX Conference
on Object-Oriented Technologies (COOTS). USENIX, Portland, Oregon, June 1997.

[83] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered
object structures. Science of Computer Programming, 62(3):253–286, October 2006.

[84] David A. Naumann. Observational purity and encapsulation. In Fundamental Aspects of
Software Engineering (FASE), pages 190–204, 2005.

[85] David A. Naumann. On assertion-based encapsulation for object invariants and simulations.
Formal Aspects of Computing, 2006. Special issue: Applicable Research on Formal Verifica-
tion and Development, to appear.

150 BIBLIOGRAPHY

[86] G. C. Necula and P. Lee. The design and implementation of a certifying compiler. In
Proceedings of the 1998 ACM SIGPLAN Conference on Prgramming Language Design and
Implementation (PLDI), pages 333–344, 1998.

[87] Jeremy W. Nimmer and Michael D. Ernst. Static verification of dynamically detected pro-
gram invariants: Integrating Daikon and ESC/Java. In Proceedings of RV’01, First Workshop
on Runtime Verification, Paris, France, July 23, 2001.

[88] Tobias Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and R. Steinbrüggen,
editors, Proof and System-Reliability, pages 341–367. Kluwer, 2002.

[89] Tobias Nipkow and Leonor Prensa Nieto. Owicki/gries in isabelle/HOL. In Fundamental
Approaches to Software Engineering, pages 188–203, 1999.

[90] Cornelis Pierik. Validation Techniques for Object-Oriented Proof Outlines. PhD thesis, Proef-
schrift Universiteit Utrecht, 2003.

[91] Arnd Poetzsch-Heffter and Peter Muller. Logical foundations for typed object-oriented lan-
guages. In PROCOMET ’98: Proceedings of the IFIP TC2/WG2.2,2.3 International Con-
ference on Programming Concepts and Methods, pages 404–423, London, UK, UK, 1998.
Chapman & Hall, Ltd.

[92] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim Newsham,
and Scott A. Watterson. Toba: Java for applications: A way ahead of time (wat) compiler.
In Third USENIX Conference on Object-Oriented Technologies (COOTS), Portland, Oregon,
June 1997. University of Arizona.

[93] Cornelia Pusch. Proving the soundness of a java bytecode verifier specification in isabelle/hol.
In TACAS ’99: Proceedings of the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 89–103, London, UK, 1999. Springer-Verlag.

[94] Zhenyu Qian. A formal specification of java virtual machine instructions for objects, methods
and subrountines. In Formal Syntax and Semantics of Java, pages 271–312, 1999.

[95] C.L. Quigley. A programming logic for Java bytecode programs. In Proceedings of the 16th
International Conference on Theorem Proving in Higher Order Logics, volume 2758 of Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[96] A.D. Raghavan and G.T. Leavens. Desugaring JML method specification. Report 00-03d,
Iowa State University, Department of Computer Science, 2003.

[97] Edwin Rodŕıguez, Matthew B. Dwyer, Cormac Flanagan, John Hatcliff, Gary T. Leavens,
and Robby. Extending JML for modular specification and verification of multi-threaded
programs. In ECOOP, pages 551–576, 2005.

[98] R.W.Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, volume 19 of Pro-
ceedings of Symposia in Applied Mathematics, pages 19–32, 1967.

[99] Ando Saabas and Tarmo Uustalu. A compositional natural semantics and Hoare logic for
low-level languages. In Conf. version in P. D Mosses, I. Ulidowski, eds., Proc. of 2nd Wksh.
on Structured Operational Semantics, SOS’05 (Lisbon, July 2005), pages 151–168, 2005.

[100] G. Schneider. A constraint-based algorithm for analysing memory usage on java cards.
Technical Report RR-5440, INRIA, December 2004.

[101] I. Siveroni. Operational semantics of the java card virtual machine. Journal of Logic and
Algebraic Programming, 58:3–25, 2004.

[102] Raymie Stata and Mart́ın Abadi. A type system for Java bytecode subroutines. In Confer-
ence Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, California, pages 149–160, New York, NY, 1998.

BIBLIOGRAPHY 151

[103] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array bound checker. In POPL
’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages, pages 132–143, New York, NY, USA, 1977. ACM Press.

[104] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, and
Phong Co. Soot - a java optimization framework. In Proceedings of CASCON 1999, pages
125–135, 1999.

[105] J. C. Vanderwaart and K. Crary. Foundational typed assembly language for grid computing.
Technical Report CMU-CS-04-104, CMU, February 2004.

[106] Martin Wildmoser and Tobias Nipkow. Asserting bytecode safety. In Mooly Sagiv, editor,
Proceedings of the 14th European Symposium on Programming (ESOP 2005), volume 3444
of LNCS, pages 326–341. Springer Verlag, 2005.

