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Abstract

The Java security policy is implemented by security
components such as the Java Virtual Machine (JVM),
the API, the verifier, the loader. It is of prime im-
portance to ensure that the implementation of these
components is in accordance with their specifications.
Formal methods can be used to bring the mathemati-
cal proof that the implementation of these components
corresponds to their specification. In this paper, a for-
mal development is performed on the Java Card byte
code verifier using the B method. The whole Java Card
language is taken into account in order to provide real-
istic metrics on formal development. The architecture
and the tricky points of the development are presented.
This formalization leads to an embeddable implementa-
tion of the byte code verifier thanks to automatic code
translation from formal implementation into C code.
We present the formal models, discuss the integration
into the card and the results of such an experiment.

1. Introduction

Smart cards have always had the reputation for be-
ing secured items of information system. These cards
lock and protect their secret (data or applications).
The invulnerability of smart cards comes from their
conception. Everything is gathered in one single block:
memory, CPU, communication, data and applications,
everything holds in 25 square millimeters. Open smart
cards allows to download new applications on card after
its issuance. As there is no reason to believe that the
downloaded code was developed following a methodol-
ogy that guarantees its innocuousness, it is necessary to
provide assurance to the customer that the executions
of these applications are safe. That is, their execution
will not threaten smart card integrity and confidential-
ity. The Java security policy defines the correct behav-
ior of a program and the properties that this program

must hold. For example, it is not possible to forge an
integer into an object reference as Java is a type-safe
language. A key point of this security policy is the
byte code verifier. The aim of a byte code verifier is
to statically check that the flow control and the data
flow do not generate an error. Moreover, in order to
perform these checks, one has to ensure the syntactical
correctness of a file sent to the verifier for verification.

In this article, we describe a prototype of a formally
developed and embedded byte code verifier for Java
Card, a subset of the Java language adapted for smart
card. This verifier relies on the Proof-Carrying Code
techniques to implement a lightweight byte code type
verifier. We then show that it is realistic to embed
a byte code verifier into a smart card and that code
developed using formal techniques and methodologies
such as the B method [1] can fit the smart card con-
straints. This paper presents the results of one case
study of the Matisse1 project. This project aims to
propose methodologies, tools and techniques for using
formal methods in industrial concerns.

The remainder of this paper is organized as follow.
Section 2 focuses on byte code verification principles
and the Java Card context. Then section 3 emphases
the model of the byte code verifier. Integration of
formal development and informal development is dis-
cussed in section 4. Section 5 collects some metrics
about the development and section 6 concludes.

2. Byte code verification

The byte code verification aims to enforce static con-
straints on downloaded byte code. Those constraints
ensure that the byte code can be safely executed by the
virtual machine, and cannot bypass the higher-level se-
curity mechanisms. The byte code verification is infor-
mally described in [8]. It consists in a static analysis
of the downloaded applet ensuring that it conforms to

1European IST Project MATISSE number IST-1999-11435.



the Java Card semantics. For instance, it is checked
that there are no stack overflow or underflow, that each
instruction argument is of the correct type and that
methods calls are performed in accordance with their
visibility attributes (public, protected, etc...).

This analysis is separated in two parts: a structural
verification, and a type verification. The next subsec-
tions will describe more in details the properties en-
sured by those verifications.

2.1. The structural verification

The structural verification consists in ensuring that
the downloaded file is a valid file. That is, it really de-
scribes java classes and byte code, and the information
it contains is consistent. For example, it checks that all
the structures have the appropriate size and that the
required parts exist. Those tests ensure that the down-
loaded file cannot be misinterpreted by the verifier or
the virtual machine.

Apart from the purely structural tests checking the
binary format, other tests more related to the content
of the file are performed. Those tests ensure that there
are no cycles in the inheritance hierarchy, or that no
final methods are overridden.

A CAP file consists of several components that con-
tains specific information from the Java Card package.
For instance, the Method component contains the byte
code of the methods, and the Class component informa-
tion on classes such as references to their super classes
or declared method.

Therefore in the Java Card case, we distinguish in-
ternal structural verifications from external structural
verifications. The internal verifications correspond to
the verifications that can be performed on a compo-
nent basis. For instance, they consist in checking that
the super classes occur first in the class component.
The external verifications correspond to tests ensur-
ing the consistency between components or external
packages. For example, one of those tests consists in
checking that the methods declared in the Class com-
ponent correspond to existing methods in the Method
component.

2.2. The type verification

This verification is performed on a method basis,
and has to be done for each method present in the
package.

The type checking part ensures that no disallowed
type conversions are performed. For example, an inte-
ger cannot be converted into an object reference, down-
casting can only be performed using the checkcast in-

struction, and arguments provided to methods have to
be of compatible types.

As the type of the local variables is not explicitly
stored in the byte code, it is needed to retrieve the type
of those variables by analyzing the byte code. This
part of the verification is the most complicated one,
and is both time and memory expensive. It requires
computing the type of each variable and stack element
for each instruction and each execution path.

In order to make such verification possible the veri-
fication is quite conservative on the programs that are
accepted. Only programs where the type of each ele-
ment in the stack and local variable is the same what-
ever path has been taken to reach an instruction are
accepted. This also requires that the size of the stack
is the same for each instruction for each path that can
reach this instruction.

2.3. Adaptation to embedded devices

Performing the full byte code verification requires
large amount of computing power and memory. So
different systems have been proposed to allow verifi-
cation to be performed on highly constrained devices
such as smart cards. Those systems rely on an exter-
nal pre-treatment of the applet to verify. As the type
verification is the most resource consuming part of the
verification, they aim to simplify the verification algo-
rithm.

Two approaches are usually used: Byte code nor-
malisation and proof carrying code (PCC) or similar
techniques. The next subsection introduces those tech-
niques. The proof carrying code technique will be dis-
cussed more in details, since this is the approach that
has been developed.

2.3.1. Byte code normalization. Byte code nor-
malization is the approach used by Trusted-Logic’s
smart card verifier [7]. It consists in normalizing the
verified applet so that it is simpler to verify. More ex-
actly, the applet is modified so that each variable has
one and only one type, and that the stack is empty at
branch destinations. This greatly reduces the memory
requirements, since the verifier does not have to keep
typing information for each instruction, but only for
each variable in the verified method. The computing
requirements are also reduced, since only a simplified
fixpoint computation has to be performed. However,
as the code is modified, its size and memory require-
ments can theoretically increase.

2.3.2. Lightweight byte code verification. In-
troduced by Necula and Lee [11], proof-carrying code
consists in adding a proof of the program safety to the



program. This proof can be generated by the code pro-
ducer, and the code is transmitted along with its safety
proof. The code receiver can then verify the proof in
order to ensure the program safety. As checking the
proof is simpler than generating it, the verification pro-
cess can be performed by a constrained device.

An adaptation of this technique to Java has been
proposed by Rose [17] and is now used by Sun’s KVM
[9]. In this context, the ”proof” consists in additional
type information corresponding to the content of lo-
cal variables and stack element for the branch targets.
Compared to byte code normalization, lightweight ver-
ification requires removing the jsr and ret instructions
from the byte code, and needs temporary storage in
EEPROM memory for storing the type information.
However, lightweight verification performs the verifica-
tion as a linear pass throughout the code, and leaves
the code unmodified.

2.4. Formal studies on byte code verification

Most of those studies focus on the type verification
part of the algorithms. One of the most complete for-
mal models of the Java virtual machine is given by
Qian [15]. He considers a large subset of the byte code
and aims at proving the runtime correctness from its
static typing. Then, he proposes the proof of a verifier
that can be deducted from the virtual machine specifi-
cation. In a more recent work [5] the authors also pro-
pose a correct implementation of almost all aspects of
the Java byte code verifier. They view the verification
problem as a data flow analysis, and aims to formally
describe the specification to extract the corresponding
code using the Specware tool.

In the Bali project, Push [14] proves a part of the
JVM using the prover Isabelle/HOL [7]. Using Qian
works [15], she gives the verifier specification and then
proves its correctness. She also defines a subset of
Java, (java [13] and aims to prove properties over it.
More precisely, they formalize the type system and the
semantics of this language using the Isabelle theorem
prover. In a more recent work [12], Nipkow introduces
the formal specification of the Java byte code verifier
in Isabelle. Its idea is to come with the generic proof
of the algorithm and then to instantiate it with a par-
ticular JVM.

Roses verification scheme has been proven safe us-
ing the Isabelle theorem prover by Nipkow [6], and a
similar scheme for a Smart Card specific language has
been proved correct using B in [16].

Works prior to the one described in this article have
also been performed using the B method on the for-
malization of a simple verifier [4], and its implementa-

tion [3]. A similar work has been performed by Bertot
[2] using the Coq theorem prover. He proves the cor-
rectness of the verification algorithm and generates an
implementation using the Coq extraction mechanism.
However, we seem to be the first to propose to embed a
formally developed byte code verifier into a smart card.

3. Modeling a byte code verifier in B

In this section, the model of the byte code verifier is
described. It is developed in two parts: The first one
concerns the type verifier and the second one the struc-
tural verifier. The type verifier’s development is made
simpler as it relies on many services provided by the
structural verifier and expressed through an interface.
This latter verifier deals more with data representation
and low level services provided by the card. In fact it
relies on basic blocks such as the memory management,
and file representation within the smart card.

3.1. The Type Verifier Model

The type verifier is entirely modeled in B, from its
specification to its implementation. One proves that
its implementation is consistent with its specification.
The B method allows us to provide a very abstract
specification that is split in several modules. In fact,
we do not use a simple scheme where the specifica-
tion is in the abstract machine which is refined and
implemented. We provide a formal specification which
is made of several modules (abstract machines, refine-
ments and implementation). This formal specification
is then refined in order to obtain an implementation.

3.1.1. The type verifier specification. The for-
mal specification, at a very high level is very simple. It
states that the verifier must return true or false. Us-
ing the refinement process, one clarifies what means
returning true and what means returning false. There-
fore, the specification of the type verifier is not only
the abstract machine but a set of abstract machines,
refinements and implementations that describes what
the type verifier does. The formal specification is based
on several loops for the type verification. The first
loop iterates on methods contained into the CAP file
being verified. Then a second loop is designed iterat-
ing on the different byte codes of the method. One
only states that if a method is correct then all its
byte codes are correct. Therefore, the specification re-
mains simple. When aiming to ensure correctness of
the byte code, a description of each of 184 byte codes
is mandatory. This description remains abstract, spec-
ifying what each byte code does and what it modifies



(the stack, the local variable, etc ...).

3.1.2. The type verifier implementation. The
formal implementation relies on properties and services
defined in the formal specification. It allows to refine
the final implementation. The proof process included
in the development method helps ensuring that what
is implemented is what has been specified. Once the
proof is complete, one can have the mathematical proof
that the implementation corresponds to the specifica-
tion. The implementation is expressed in B0, a subset
of the B language. It can then be translated into C
code as explained in a next section.

When constructing the type verifier model, several
services are necessary. First it is necessary to access
data contained into Class, Method and Descriptor com-
ponents [10]. As we are using the PCC technique, it
is also necessary to access data of an additional com-
ponent, i.e. the Proof component, that contains pre-
computed typing information. Finally, the type verifier
accesses memory and has to rely on a model of memory
management. These services do not need to be related
directly to the type verifier. In fact, they correspond
to low-level data access or to the CAP file description.
An interface has been defined in order to collect the
requirements and the properties on which the type ver-
ifier relies. This interface serves as a basis to construct
the structural verifier described in the next subsection.

3.2. The structural verifier Model

The structural verifier implements the interface of
services produced by the type verifier. It also includes
internal and external tests. Internal tests correspond
to tests related to each component of a CAP file, i.e.
Applet, Class, etc... We refer to tests between compo-
nents as external tests. External tests correspond to
interdependencies between components, like shared in-
formation or references from a component to another.
All the tests aim to ensure the correctness of the CAP
file and consistency of data contained in the CAP file.

3.2.1. Modeling each CAP file component. We
have modelled the structural verifier as a syntactical
analyzer for CAP file. Therefore, each components
constituting a CAP file is independently modeled. It
includes all the components specified in [10]. At these
standards components we add a specific custom com-
ponent, i.e. the Proof Component that is relative to
additional information used by the type verifier based
on the PCC principles. Each component has an associ-
ated model that contains properties on their respective
content and services allowing to access their content.
At the very abstract level, it is not necessary to rep-

resent all the details of a component but to provide a
sufficient description of its properties and its services.

Note that, even if it is really important to have a for-
mal specification of each component, it is not necessary
to have its formal implementation. In fact, as we are
close to the CAP file format, it does not bring much to
formally implement each component. We have decided
to show that is possible to do so by formally implement-
ing nine of the twelve components. But, errors found
in formally implemented components and not formally
implemented components are similar, both in terms of
number and of origins. It mainly concerns errors due
to the translation from informal to formal specification
(wrong offset definition, lack of services). Designing
the abstract machine helps to understand and clarify
the informal specification. However, as one has to deal
with low level implementation, it is hard to model and
to implement efficiently. Moreover, the benefits are not
as high as the cost for a formal development at this
level.

3.2.2. Modeling test between component. The
second part of the structural verifier performs the ex-
ternal tests. It consists in ensuring that information
shared or referenced by several components are consis-
tent. External tests are built on top of each component
and relies on their correctness. Abstract machines rep-
resenting external tests contain properties that must
hold between components. To demonstrate the con-
sistency between components, the model relies on two
points: the properties of each component concerned
by the test and their services to access to data in or-
der to compare them. All external tests are modeled,
refined and implemented in B. Formal specification al-
lows to detect inconsistency between properties in dif-
ferent component and a possible lack of description.

3.2.3. Building interfaces services. The structural
verifier is built in order to implements structural tests
but also to provides services and properties on data
contained in the CAP file. Therefore, the type verifier
can rely on these properties and can use these services
to access to the data. All the properties and the ser-
vices required by the type verifier are collected into an
dedicated interface. This latter interface is then re-
fined and the services and properties are split among
the different models of the CAP file components.

4. Integrating formal development into a
smart card

This section discuss the integration of the formally
developed code into a smart card operating system.



4.1. B0 to C code translator

One of the main advantages of using B method is
automatic code generation. One of the main question
when starting this formal development was about an
efficient code generation. We have chosen to develop
a simple code translator. The idea is to use it as a
prototype to figure out what kind of improvements can
be implemented and what kind of improvements are
necessary.

The translator that we used was developed within
our laboratory. It is a basic translator taking into ac-
count only implementation in B0 of the formal model.
It translates B0 into C code. For an easier translation,
we add types as assertion into the B0 code. It helps
the translator choosing the best C type for the variable
being translated. This allows, in particular, to restrict
the variable memory space. For instance, an integer
requires 4 bytes whereas a boolean can be represented
by a single byte.

To integrate C code into a smart card chip, one can
think about strong optimisation on the C code trans-
lator. In fact, most of optimisations focus on the chip
itself. Therefore, there is not a great need to optimise
the B0 code as it can produce standard code. Then,
depending on the chip target, one can use a translator
especially optimised for that chip. The advantage here
is to provide a B0 code that can be translated to sev-
eral chip targets without the needs to re-develop the
code for each chip. Once, a translator is designed for a
specific chip, it can be used intensively.

4.2. Implementing into the ATMEL AT 90 platform

The implementation we provide is on an ATMEL
AT90 6464 C with 64 kB for software, 64 kB for data
and 3 kB of RAM. On this platform, one aims to embed
the complete verifier. With no specific optimization,
the size of this prototype is to 45 kB. That includes the
structural and the type verifier as well as the memory
and the communication management.

The compilation chain provided by ATMEL, which
has some very efficient tools such as the compiler, al-
lows to gain a lot of space (in code size). Our goal is
to demonstrate the feasibility of embedding a formal
byte code verifier into a smart card. Now that we have
a prototype, we can focus on optimisation.

4.3. Formal and informal development together into
the smart card

The entire smart card is not modeled. Only a part of
it, in our case the byte code verifier is modeled, which

represents more than 90% of the code embedded into
the smart card. A major question could be how far can
we trust this development as not everything is formally
developed. Formal development has to be used to de-
velop complex parts of a system. It helps improving
quality of products and increasing trust.

With new applications, like the verifier, comes new
complexity. The help of mathematics and others tools
is necessary to keep the same level of quality. The
development of the verifier relies on basic blocks such
as the memory management, the loading of the code.
Thus, the formal code is integrated to this pre-existent
and trusted part of the smart card. In order to be able
to interact correctly an abstraction, a kind of interface,
with these basic blocks is provided. It helps the formal
development which needs information and properties
about this blocks. It also helps defining accurately and
with no ambiguity services required by the formal de-
velopment and that have to be implemented by these
blocks. Therefore, one has a gain both in terms of
quality and of re-usability, as basic blocks already ex-
ist. The former benefit is obvious since re-usability is a
gain of time in a development. The latter one is a con-
sequence of the modeling. If a developer spends time
in designing a formal abstraction for his basic blocks,
then he can reason easily about it. Finally, errors can
be discovered as well as lack of specification. All this
leads to more confidence into the implementation.

5. Metrics on the byte code verifier and
its development

In this section, we provide metrics about the formal
development of the byte code verifier. Table 1 synthe-
sizes metrics related to the development. In particular,
one can note that the structural verifier is bigger than
the type verifier. The reason is that the structural ver-
ifier contains a lot of tests, very different, that require
a specification and an implementation for each one.
Meanwhile, the type verifier can be seen as a single
machinery including the typing rules enforced by Java
Card. Moreover, the structural verifier contains ser-
vices on which the type verifier relies. There is another
important result. It concerns the number of generated
Proof Obligations (POs). The results shows that the
type verifier generate much more POs than the struc-
tural verifier. The reason is that there are much more
properties in the type verifier than in the structural
verifier.

Table 2 represents results on the execution of the
byte code verifier on several example applets. The first
three applets are example applets from Sun whereas the
next two ones are more concrete ones and correspond



Table 1. Metrics on the formal development of
the byte code verifier

Verifiers Structural Type Total
Lines of B 35000 20000 55000
Generated POs 11700 18600 30300
Automatic proofs 81 % 72 % 75 %
Lines of C code 7540 4250 11790
Men months 8 4 12

Table 2. Metrics on the execution of the byte
code verifier on some example applets

Applet Size Structural Type
(kb) Verifier Verifier

NullApp 4,2 50 ms 50 ms
HelloWorld 4,4 50 ms 90 ms
Wallet 3,6 100 ms 320 ms
Applet 1 5,2 150 ms 800 ms
Applet 2 8 640 ms 38 000 ms

to industrial applets already deployed in smart cards.
We provide information about the size of the applet
and the time needed to perform the structural and the
typing verification.

The first comment one can extract from these results
is that the execution of the type verifier is much more
time consuming than the execution of the structural
verifier. In fact, the structural verifier is a succession
of tests. Some are easy to perform. Others are more
tricky, but the code is only checked once. At the con-
trary, the type verifier needs to access data and even if
the verification is linear in complexity, it requires much
more time to check that the typing rules are correctly
enforced.

The main result is that the time required for the
verification are not so foolish. The verifier that we
propose is a prototype on which we can make several
optimization concerning either the efficiency and the
memory foot print.

6. Conclusion

Adding an embedded byte code verifier to a Java
Card allows the card to ensure its own security. It is
important when one thinks about deployment architec-
ture. Today, post-issuance on smart card, i.e. down-
loading new code when the card is already on the field,
requires an heavy infrastructure which implies cryp-
tographic protocols and certification center. With an

on-card verifier, the deployment infrastructure is light
as the card ensures its own security.

In this article, we bring the answer on two chal-
lenges: The first challenge is that, few years ago it was
considered as unfeasible to embed a byte code verifier
into a smart card. The second challenge concerns more
methodological issues as a real on-card formally devel-
oped software has never been done before.
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