
Extending B with Control Flow Breaks

[Published in D. Bert, J.P. Bowen, S. King, and M. Waldén, Eds., ZB 2003:
Formal Specification and Development in Z and B, vol. 2651 of Lecture Notes

in Computer Science, pp. 513-527, Springer-Verlag, 2003.]

Lilian Burdy and Antoine Requet

Gemplus Research Lab
La Vigie, Avenue du Jujubier - ZI Athelia IV

13705 La Ciotat CEDEX - France
{lilian.burdy,antoine.requet}@gemplus.com

Abstract. This paper describes extensions of the B language concerning
control flow breaks in implementations and specification of operations
with exceptional behaviors. It does not claim to define those extensions
in a pure formal and complete way. It is rather a presentation of what
could be done and how it could be done. A syntax is proposed and proof
obligations are defined using a weakest precondition calculus extended
to deal with abrupt termination. Examples emphasizing the advantages
of these extensions are also given.

1 Introduction

The B method [1], as a specification method, notably with its new event based
features, begins to be very well known and used, in academic and research world
but also in industry. Nevertheless one can obviously remark that B, as a devel-
opment method, does not seem to follow the same successful story. Except for
the railway transport industry, which is the historical user domain, it is really
difficult to find industrials that are ready to use it to develop their software from
specification to code.

We do not claim that extending B with control flow breaks is the way to
change this situation, but we consider it as a little step that can bring B to be
more attractive as a development method.

If we focus on the developer point of view, concerning the difficulty to adopt
B, we can often remark that some reservations are expressed. Those reservations
usually concern the B language itself and not the methodology. Some of them
could be rubbed out if B could be presented as a real development language on
which correctness proof can be done. But, for the moment, developers do not
find in B all the classical language features they are used to appreciate. In this
way, introducing return, break, continue and exceptions is a way to bring B0
closer to other development languages such as Ada, Java, CAML, C or C++
and to make it more attractive.

2 Lilian Burdy and Antoine Requet

On the other hand, introducing exceptions and moreover allowing to specify
exceptional behaviors can improve development clarity. This feature really pro-
vides a new way to specify operations, by clearly distinguishing normal behaviors
from exceptional ones.

The remainder of this paper is organized as follows. Section 2 describes a
possible syntax that allows to talk more formally and to give examples of the
introduced features. Section 3 describes more in details the motivations to in-
troduce control flow breaks in B. The semantics, consisting on a new proof
obligations calculus, is described in Section 4. Section 5 gives some examples
and Section 6 concludes.

2 Syntax

Before arguing on their usefulness, the syntax of the new features is introduced.
We do not claim that it is the best one, but we need to define one in order to
define its semantics and to give examples. The syntax is presented distinguishing
two parts, the first one concerns the specification language and the second one
the implementation language (B0). Associating to the syntax, some syntactical
rules are given. Most of them are obvious and all can be checked statically.

2.1 Specifying exceptional behaviors

Exceptional behaviors can be specified in machines and refinements. Exceptions
are declared in machines in a specific EXCEPTIONS clause, this clause behaves the
same as the SETS clause, that is, all declared exceptions seen from a machine,
should have different names.

In operations body, a new clause is introduced. The body of an operation
should follow the rules described in the definition 1.
Definition 1. An operation’s body syntax in machine or refinement

Operation body ::= PRE Predicate THEN Substitution END
| BEGIN Substitution END
| PRE Predicate
THEN Substitution
EXCEPTION Exceptional behavior END
| BEGIN Substitution
EXCEPTION Exceptional behavior END

Exceptional behavior ::= exception WHEN Predicate THEN Substitution
| Exceptional behavior ALSO Exceptional behavior

An operation can describe different exceptional behaviors but thrown exceptions
should be distinct. Moreover all thrown exceptions in an operation should be
declared in a visible EXCEPTIONS clause. There is no way to catch or to throw
exceptions in machine, since this corresponds to implementation and not to
specification matter. This implies that operations defining exceptional behavior
in included or seen machines cannot be called from other machines.

Extending B with Control Flow Breaks 3

2.2 Abrupt termination

The B0 implementation language is extended (see definition 2) to allow abrupt
termination with a RETURN. One can also define labelled blocks and allow to
abruptly exit them with a BREAK. BREAK and CONTINUE can also be used in
labelled loops. Considering exceptions, they can be raised and caught in imple-
mentations.

Definition 2. Substitution syntax extension in implementation

Extended Substitution ::= Substitution
| BREAK [label]
| CONTINUE [label]
| LABEL label THEN Extended Substitution END
| RETURN
| RAISE exception
| BEGIN Extended Substitution
CATCH Catch clause END

Catch clause ::= exception THEN Extended Substitution
| Catch clause WHEN Catch clause

A BREAK corresponds to a jump to the end of the corresponding labelled block
or loop. A CONTINUE corresponds to a return to the beginning of the loop on
the test condition. BREAK and CONTINUE with label should be used in a block
where this label is defined. Labels should be distinct within a method and are
local to methods. Raised and caught exceptions should be declared in a visible
EXCEPTIONS clause. Catched exceptions in a CATCH clause should be distinct.

3 Technical Vision

After having introduced the syntax with some syntactic rules, we describe in
this section the reasons that have guided us to propose those extensions of the B
language. Those reasons are multiple, nevertheless, one can focus on two points.
The first one, coming from our experience in formalizing and developing with B
convinces us that those extension could be useful. The second one, coming from
our experience in proving Java application correctness convinces us that it was
possible to generate proof obligations considering this kind of substitution.

3.1 It could be useful

From our experience developing with B : mainly the Java byte-code verifier [3,
4], other smart card applications [7] and also Meteor for one of the authors, we
consider that those features are a way to ease the use of B. Those features exist in
classical languages : CAML, Ada, Java and C++. They are usually good ways to
reduce code size. Moreover, using exceptions usually provides more readable and

4 Lilian Burdy and Antoine Requet

maintainable code. Other control flow breaks have not this advantage as break
usage for instance often gives less readable code. Nevertheless, as implementation
correction is proved, there is not any reason to reduce B0 capabilities.

On the other hand, we consider that specifying exceptional behaviors can
also be useful. To emphasize this point, we have rewritten the first example
of the B Book concerning seat reservation. Figure 1 shows the specification of
this example using exceptional behaviors. The main part of the specification is
described as the normal behavior: the free seats are decreased from the booked
number. And, in the appropriate clause, the exceptional behavior condition and
action are also described: when the number of free seats is too small, the free seats
number remains unchanged. Moreover, the operation does not need to return a
parameter anymore. In the implementation, the test is done in a classical way

MACHINE
booking

EXCEPTIONS
book failed

ABSTRACT VARIABLES
seat

INVARIANT
seat ∈ N

OPERATIONS

book(nbr) ,
PRE

nbr ∈ NAT
THEN

seat := seat - nbr
EXCEPTION

book failed
WHEN nbr > seat
THEN skip

END
END

IMPLEMENTATION
booking i

REFINES
booking

OPERATIONS

book(nbr) ,
IF nbr ≤ seat
THEN

seat := seat - nbr
ELSE

RAISE book failed
END

END

Fig. 1. Specifying and implementing with exception

and the exception is raised when it fails. Clearly identifying normal behaviors
from exceptional ones can really be another way to obtain clearer and easier to
read specifications.

3.2 It is possible

Working on Java applet correctness [2] have brought us to develop a tool that
applies a weakest precondition calculus to Java statements. This calculus [5, 6]

Extending B with Control Flow Breaks 5

has been firstly used in the LOOP tool [8]. In fact, the classical Hoare logic
is extended to deal with control flow breaks. Regarding this, it is possible to
generate automatically proof obligations for the Java language which contains
exceptions, returns, breaks and continue.

From this point of view, we have considered that it was possible to use
this same calculus within the B method. Since B uses the classical Hoare logic
to generate proof obligations, we have used the extended one to apply it to
extended B substitutions. The next section describes the calculus applied to this
previously defined syntax.

4 Semantics

After defining some notations, this section describes the extended weakest pre-
condition calculus applied to the classical B substitutions and the newly intro-
duced one. In the last part, proof obligations are defined dealing with this new
calculus. The semantics is given in term of proof obligations and not by giving
new definitions for trm and prd, since we consider that it is the more simpler to
understand. For instance, trm(S) and prdx(S) are in effect no more predicates
since S can have different termination.

4.1 Notations

Given the set of formulas F , the set of labels L and the set of exceptions E :

– ϕnorm, with ϕnorm ∈ F corresponds to a formula that must hold in case of
normal termination.

– ϕret, with ϕret ∈ F represents a formula that must hold in case of abrupt
termination on RETURN.

– ϕbrk and ϕcont, where ϕbrk ∈ L 9 F and ϕcont ∈ L 9 F are partial func-
tions mapping labels to formulas that must hold after abrupt termination,
respectively on BREAK and CONTINUE.

– ϕex, with ϕex ∈ E 9 F corresponds to a partial function mapping exceptions
to formulas. It represents the formula that must hold when the corresponding
exception occurs.

We assume the existence of a special label l, the unnamed label, that is different
from all the declared labels in the program. This special label is used for handling
non-labelled BREAK and CONTINUE statements. In the following, ϕbrk

label and
ϕcont

label will be used as shortcuts to ϕbrk(label) and ϕcont(label). In a similar way,
ϕex

e will correspond to ϕex(e) if e ∈ dom(ϕex) and false otherwise.
Using those definitions, [S]i(ϕnorm, ϕret, ϕbrk, ϕcont, ϕex), where S is an ex-

tended substitution, corresponds to the necessary precondition that must hold
to ensure that:

– ϕnorm holds after S if S terminates normally;
– ϕret holds after S if it terminates abruptly on a RETURN;

6 Lilian Burdy and Antoine Requet

– for all label l defined in the context, ϕbrk
l holds after S if it terminates

abruptly on a BREAK l.
– for all label l defined in the context, ϕcont

l holds after S if it terminates
abruptly on a CONTINUE l.

– for all exception e defined in the context, ϕex
e holds after S if it terminates

abruptly on a RAISE e.

In the following, we will use X = (ϕnorm, ϕret, ϕbrk, ϕcont, ϕex) in order to ease
the notation.

4.2 Weakest precondition calculus

This section presents the extended weakest precondition calculus that is used to
generate proof obligations. In order to handle exceptions and control flow breaks,
we have to differentiate the cases where the program terminates normally from
the cases where it terminates abruptly. We define the []i operator (where i means
implementation as opposed to machine) on extended generalized substitutions.

Definition for classical substitutions Definition 3 defines []i for the classical
substitutions. Those definitions are close to the classical ones. The definition for
the sequencing operator is a bit different: it can be explained by the fact that
the result of [S2]iX is relevant only if S1 terminates normally. Otherwise, as S2

will never be executed, S1 should establish the formulas concerning the abrupt
terminations.

Definition 3. Definition of []i for the classical substitutions
[x := E]iX ⇔ [x := E]ϕnorm

[P =⇒ S]iX ⇔ P ⇒ [S]iX
[S1[]S2]iX ⇔ [S1]iX ∧ [S2]iX
[@x.S]iX ⇔ ∀x.([S]iX)
[S1; S2]iX ⇔ [S1]i([S2]iX,ϕret, ϕbrk, ϕcont, ϕex)

Definition for operation calls We consider the operation as defined on Figure
2. When calling such an operation, the cases where the operation terminates
normally must be distinguished from the cases where the operation raises an
exception. This is handled by the definition of []i for operation call given in
definition 4.

Definition 4. Definition of []i for operation calls
[c1, . . . , cn ← op(p1, . . . , pm)]iX

⇔

arg1,
. . . ,
argm

:=
p1,
. . . ,
pm

P∧
(P ∧

∧

1≤i≤p

(¬Wi) ⇒ [[r1, . . . , rn := c1, . . . , cn]S]ϕnorm)∧
∧

1≤i≤p

(
P ∧Wi ⇒ [[r1, . . . , rn := c1, . . . , cn]Ti]ϕex

ei

)

Extending B with Control Flow Breaks 7

r1, . . . , rn ← op(arg1, . . . , argm) ,
PRE

P
THEN

S
EXCEPTION

e1 WHEN W1 THEN T1

. . .
ALSO ep WHEN Wp THEN Tp

END

Fig. 2. Operation specification

Note that the classical definition for [] is used within the definition of oper-
ation calls, since the substitutions allowed for specification do not allow abrupt
termination or raising exceptions. Note, also, that when the called operation does
not declare exceptional behaviors, the definition remains valid (with p equals 0).
Moreover, since the guards associated to exceptions can overlapped, each excep-
tion case leads to an independant proof obligation.

Definition for loops The definition for loops is updated to handle abrupt
termination from the loop as shown on definition 5.

Definition 5. Definition of []i for loops
[WHILE P DO S INVARIANT I VARIANT V END]iX

⇔

I ∧

∀x.(I ∧ P ⇒ [S]i

I,
ϕret,

ϕbrk C−−{l 7→ ϕnorm},
ϕcont C−−{l 7→ I},
ϕex

) ∧

∀x.(I ⇒ V ∈ N) ∧

∀x.(I ∧ P ⇒ [n := V][S]i

V < n,
L × {true},
L × {true},
V < n,
E × {true}

) ∧

∀x.(I ∧ ¬P ⇒ ϕnorm)

The invariance property of the loop ensures that a terminating iteration of
the loop, as well as an abrupt termination on a CONTINUE statement will
establish the loop invariant. The same applies for the variant property, that
must be ensured both by the normal termination and the continuing abrupt
termination.

In the case of an abrupt termination of the iteration leaving the loop (that
is, an operation return, an exception or a BREAK statement), proving the loop

8 Lilian Burdy and Antoine Requet

invariant is not required, but the formula corresponding to the normal behavior
has to. Moreover, the variant property does not need to be proved.

Accordingly, the finalization part of the loop only requires proving the ϕnorm

formula, since it is reached only in the case of a normal termination of the loop.
Finally, the typing of the variant is left unchanged.

Definition for new substitutions The definition of []i for the new substi-
tutions is quite straightforward. In the case of label declaration, the defini-
tion is given in definition 6. This corresponds to adding the label to the set
of known labels, and ensuring that the current ϕnorm holds when the block is
exited abruptly.

Definition 6. Definition of []i for labels

LABEL l
THEN S
END

i

X ⇔ [S]i

ϕnorm,
ϕret,
ϕbrk C−−{l 7→ ϕnorm},
ϕcont,
ϕex

Labeled loops Labels enclosing a loop are treated as special cases since the
execution of the loop can be resumed using the CONTINUE label keyword. The
definition of []i for those loops is given in definition 7. This definition is very
close to the one used for classical loops (Definition 5), except that it uses both
the unnamed label l and the defined label l.

Definition 7. Definition of []i for labeled loops
[LABEL l THEN WHILE P DO S INVARIANT I VARIANT V END END]iX

⇔

I ∧

∀x.(I ∧ P ⇒ [S]i

I,
ϕret,

ϕbrk C−−{l 7→ ϕnorm, l 7→ ϕnorm},
ϕcont C−−{l 7→ I, l 7→ I},
ϕex

) ∧

∀x.(I ⇒ V ∈ N) ∧

∀x.(I ∧ P ⇒ [n := V][S]i

V < n,
L × {true},
L × {true},
V < n,
E × {true}

) ∧

∀x.(I ∧ ¬P ⇒ ϕnorm)

The case definition for control-flow breaks is given by the definition 8. It sim-
ply selects the relevant formula to prove. The definition for the BEGIN CATCH
END substitution corresponds to the precondition of S with the exception han-
dlers added to ϕex.

Extending B with Control Flow Breaks 9

Definition 8. Definition of []i for control-flow breaks
[CONTINUE label]iX ⇔ ϕcont

label

[BREAK label]iX ⇔ ϕbrk
label

[RETURN]iX ⇔ ϕret

[RAISE e]iX ⇔ ϕex
e

BEGIN S
CATCH e1 THEN C1

. . .
WHEN en THEN Cn

END

i

X ⇔ [S]i

ϕnorm,
ϕret,
ϕbrk,
ϕcont,

ϕex C−−
⋃

1≤i≤n

{ei 7→ [Ci]iX}

4.3 Proof obligations

We have defined in the previous section the new operator []i. We are now defin-
ing the new proof obligations calculus in machines, refinements and implemen-
tations.

Machine proof obligations As substitutions with control flow breaks are only
usable in implementation, one can keep the classical B operator [] to generate
machine proof obligations. We only have to extend it with the new introduced
machine substitution that corresponds to an exceptional behavior description
(see definition 9).

Definition 9. Extending [] definition

BEGIN
S

EXCEPTION
e1 WHEN W1 THEN T1

. . .
ALSO

en WHEN Wn THEN Tn

END

P ⇔

∧

1≤i≤n

(Wi ⇒ [Ti]P) ∧
∧

1≤i≤n

(¬Wi) ⇒ [S]P

This definition looks like the definition for a SELECT clause where the normal
substitution S corresponds to the ELSE branch and each exception description to
a WHEN branch. So, a way of understanding it is that if an exception condition Wi

is valid, then the corresponding exceptional behavior will occur, otherwise if no
exception condition is valid, then the normal behavior will occur. Moreover, one
can notice that exceptional conditions do not have to be distinct and obviously
should not cover all the cases. For the other substitutions, the proof obligations
calculus remains unchanged.

10 Lilian Burdy and Antoine Requet

Refinement proof obligations To generate proof obligations for refinement,
one has to take into account exceptional behaviours. Exceptional behaviours can
be refined but an operation that declares exceptions can only be refined by an
operation that declares the same exceptions or fewer exceptions. This means that
one can suppress exceptional behaviours during the refinement but not create
new ones.

BEGIN
S′

EXCEPTION
e1 WHEN W ′

1 THEN T ′1
. . .
ALSO ep WHEN W ′

p THEN T ′p
END

Fig. 3. Operation specification

Definition 10. Exceptional behaviour refinement proof obligations

When an operation with body as described figure 3 refines an operation in a
machine or a refinement that declares exceptional behaviours (see a description
figure 2), the proof obligation is

∧

1≤i≤p

W ′
i ⇒ Wi

∧

1≤i≤p

(¬Wi) ∧
∧

1≤i≤p

(¬W ′
i) ⇒ [S′]¬[S]¬I

∧

1≤i≤p

(Wi ∧W ′
i ⇒ [T ′i]¬[Ti]¬I)

Note that the exceptions that are not refined can be considered as refined with
false as guard. Note also that the guards can get stronger during the refinement.

Implementation proof obligations To generate refinement proof obligations
for implementations, one has to take into account control flow breaks. This
means that the classical refinement proof obligation ([T]¬[S]¬I when T refines
S under invariant I) is no longer valid, since the []i operator should be used.
The definitions 11 and 12 define refinement proof obligations depending on the
refined substitution.

Definition 11. Normal behaviour implementation proof obligations.
When an operation with body T in an implementation refines an operation with
body S that does not declare exceptional behaviours, the proof obligation is

Extending B with Control Flow Breaks 11

[T]i

¬[S]¬I,
¬[S]¬I,
∅,
∅,
∅

If the refined substitution does not declare an exceptional behaviour, then the
implementation has to ensure that it can only terminates normally or on a
RETURN. In those two cases, one has to ensure classical refinement correctness;
all other cases are initialized with the empty set corresponding to the fact that
no formula has to be proved. It will lead to false if such abrupt termination
occurs.

Definition 12. Exceptional behaviour implementation proof obligations

When an operation with body T in an implementation refines an operation that
declares exceptional behaviours (see a description figure 2), the proof obligation
is

[T]i

∧

1≤i≤p

(¬Wi) ∧ ¬[S]¬I,

∧

1≤i≤p

(¬Wi) ∧ ¬[S]¬I,

∅,
∅,⋃

1≤i≤p

{ei 7→ Wi ∧ ¬[Si]¬I}

If the refined substitution declares exceptional behaviours, the implementa-
tion should respect them. This means, that if it terminates normally or abruptly
on a RETURN, one should prove that no exceptional behaviour condition is valid
and that the refinement is correct in the classical sense. One also has to prove
that if the refinement terminates abruptly on an exception, then the condition
of this exception is valid and the refinement refines correctly the exceptional be-
haviour corresponding to this exception. Moreover, abrupt termination on BREAK
or CONTINUE is still not valid for a method.

Proof obligations calculus becomes quite more complex than it was previ-
ously. But our experience generating proof obligations for Java has shown that
after the calculation, generated proof obligations remain with the same complex-
ity.

5 Examples

This section provides little examples that highlight the advantages of having
control flow break substitutions.

12 Lilian Burdy and Antoine Requet

5.1 Loop termination

The example given figure 4 describes two implementations of a loop. This loop
implements the search of an element a in the range of an integer array t with
domain 0..10. On the left side, a classical B operation is shown, the right side
shows an implementation with a return inside the body of the loop.

res ← search(a) ,
BEGIN

res := FALSE;
i := 0;
WHILE i ≤ 10 ∧

res = FALSE DO
IF t(i) = a
THEN

res := TRUE
END;
i := i + 1

INVARIANT
i ∈ 0..11 ∧
res = bool(a ∈ t[0..i-1])

VARIANT
11 - i

END
END

res ← search(a) ,
BEGIN

i = 0;
WHILE i ≤ 10 DO

IF t(i) = a
THEN

res := TRUE;
RETURN

END;
i := i + 1

INVARIANT
i ∈ 0..11 ∧
a /∈ t[0..i-1]

VARIANT
11 - i

END;
res := FALSE

END

Fig. 4. Loop termination

One can consider two improvements when using abrupt exiting from a loop:

– the loop stop condition can be simplified, one does not need to test if the
value has been found anymore. This allows to reduce code size and execution
time.

– the invariant is simplified too, since we can consider that if we are in the loop,
it is only if the searched for value has not been found. While the classical
invariant should deal with the two cases : already found or not, the new
invariant only deals with the second one.

One can consider that those advantages are not so important but in big devel-
opment, it can really save code size, execution time and development time.

5.2 Exceptional behaviors

The examples (figures 5 and 6) show the advantages to have the possibly of
specifying a method with exceptional behaviors. The first example shows the

Extending B with Control Flow Breaks 13

specification of a read operation on a partial function. On the left side, the
classical specification is given, the right side describes the specification with
an exceptional behavior. The second specification can be understood as: the
operation returns the value of the function for this index and exceptionally if
the index does not belong to the function domain, an exception will be raised
and the returned value is not relevant.

The figure 6 describes the use of the previous read method. The implemented
specification is given on top and two implementations are given. The left one
has to test the validity parameter before using the returned value. The right one
implements the test in normal way and in the catch part treats the exceptional
behavior by returning false. Even in this simple example where two values are
read sequentially, it is clear that the code with exception is more readable than
the classical code. If one takes an example with more calls to the read func-
tion, the classical B code would be even harder to follow whereas the code with
exception would not lose its readability.

Moreover, in such cases, tests are performed twice: once by the read function,
in order to initialize the result value, and a second one by the caller of the read
operation, in order to check wether the read operation succeeded. When using
exception treatment, in the normal case, that can be considered as the usual
one, the test has only to be performed in the read function.

It is really obvious to demonstrate that programming with exception provides
clearer code. The new point on which we argue here is that specifying with
exceptional behaviors allows also to obtain clearer specifications.

6 Conclusion

In this paper, an extension of the B language corresponding to the control-flow
breaks in implementation and the specification of operations with exceptional
behavior is presented.

It shows that those extensions could be useful for writing implementations,
but also for differentiating the normal behavior from the exceptional one in
specifications. It can also be a way to obtain more efficient code when translating
B0, even if the introduced features do not exist in all targeted language.

Moreover, a surprising result is that those extensions also allow writing sim-
pler loop invariants and can ease the proof process. This was unexpected, since
control-flow breaks require more complicated handling.

Introducing those features has the side effect that B0 is not a subset of
the languages supported by the converter anymore. More exactly, C does not
have exception, and Ada has more restricted control flow breaks. For those lan-
guages, it could be easily possible to handle those features in the converter: for
example, converting control flow breaks into Ada could use exceptions, and the
setjmp/longjmp feature of C could be used to handle exceptions. However, this
complexifies the converter, so if this complexity increase is an issue, it could also
be possible to add additional B0 checks depending on the target language used.

14 Lilian Burdy and Antoine Requet

is valid, value ← read(i) ,
PRE

i ∈ INT
THEN

IF i ∈ dom(t)
THEN

is valid := TRUE ‖
value := t(i)

ELSE
is valid := FALSE ‖
value :∈ INT

END
END

value ← read(i) ,
PRE

i ∈ INT
THEN

value := t(i)
EXCEPTION

outofdomain
WHEN

i /∈ dom(t)
THEN

value :∈ INT
END

Fig. 5. Exceptional behaviors

res ← test(i,j) ,
PRE

i ∈ INT ∧
j ∈ INT

THEN
res := bool(i ∈ dom(t) ∧

j ∈ dom(t) ∧
t(i) = t(j))

END

res ← test(i,j) ,
BEGIN

res, l1 ← read(i);
IF res = TRUE
THEN

res, l2 ← read(j);
IF res = TRUE
THEN

res := bool(l1 = l2)
END

END
END

res ← test(i,j) ,
BEGIN

l1 ← read(i);
l2 ← read(j);
res := bool(l1 = l2)

CATCH
outofdomain
THEN

res := FALSE
END

Fig. 6. Catching exceptions

Extending B with Control Flow Breaks 15

So B0 using control flow breaks could not be converted to Ada and B0 with
exceptions could not be converted to C.

Finally, although the new event B can reduce the need to directly specify
exceptional behavior at the start, we consider that exceptional behavior and
control-flow breaks are a complementary feature, that would prove useful for
providing the link between event B and the classical B required for implemen-
tation.

References

1. Jean-Raymond Abrial. The B Book, Assigning Programs to Meanings. Cambridge
University Press, 1996.

2. Lilian Burdy and Antoine Requet. Jack : Java Applet Correctness Kit. In GDC
2002, Singapore, November 2002.

3. Ludovic Casset. Development of an Embedded Verifier for Java Card Byte Code
using Formal Methods. In Lars-Henrik Eriksson and Peter Alexander Lindsay, edi-
tors, Formal Methods – Getting IT Right, volume 2391 of Lecture Notes in Computer
Science, pages 290–309. Springer-Verlag, July 22-24 2002.

4. Ludovic Casset, Lilian Burdy, and Antoine Requet. Formal Development of an Em-
bedded Verifier for Java Card Byte Code. In DSN 2002, International Conference
on Dependable Systems & Networks, pages 51–56, Washington, D.C., USA, June
2002.

5. Marieke Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, The Netherlands, 2001.

6. Marieke Huisman and Bart Jacobs. Java Program Verification via a Hoare Logic
with Abrupt Termination. In T. Maibaum, editor, Fundamental Approaches to
Software Engineering (FASE), volume 1783, pages 284–303. Springer-Verlag, 2000.

7. Pierre Lartigue and Denis Sabatier. The use of the B formal method for the design
and the validation of the transaction mechanism for smart card applications. In
Formal Methods in System Design, Special Issue on FM’99, November 1999.

8. Joachim van den Berg and Bart Jacobs. The LOOP Compiler for Java and JML.
Lecture Notes in Computer Science, 2031:299–312, 2001.

