The problem we want to solve has been presented in section 2.3.5.2,15.1.1.
The IntervalGradient procedure is:
INTERVAL_MATRIX IntervalGradient (int l1,int l2,INTERVAL_VECTOR & in) { INTERVAL_MATRIX Grad(3,3); INTERVAL x,y,teta; x=in(1);y=in(2);teta=in(3); if(l1==1) { if(l2==1){Grad(1,1)=2*x;return Grad;} if(l2==2){Grad(1,2)=2*y;return Grad;} if(l2==3){Grad(1,3)=0;return Grad;} } if(l1==2) { if(l2==1){Grad(2,1)=2.0*x-20.0+8.0*Cos(teta);return Grad;} if(l2==2){Grad(2,2)=2.0*y+8.0*Sin(teta);return Grad;} if(l2==3){Grad(2,3)=-8.0*x*Sin(teta)+80.0*Sin(teta)+8.0*y*Cos(teta); return Grad;} } if(l1==3) { if(l2==1){Grad(3,1)=2.0*x-6.0+4.0*Cos(teta)-4.0*Sin(teta); return Grad;} if(l2==2){Grad(3,2)=2.0*y-20.0+4.0*Sin(teta)+4.0*Cos(teta);return Grad;} if(l2==3){ Grad(3,3)=52.0*Sin(teta)-28.0*Cos(teta)+(4.0*Cos(teta)- 4.0*Sin(teta))*y+(-4.0*Sin(teta)-4.0*Cos(teta))*x; return Grad; } } }We may use the same main program as in the previous example (the name of this program is
Let's assume that we set epsilonf to 0 and epsilon to 0.01 while looking at all the solutions (Stop=0), using the maximum equation ordering and setting Dist to 0.1. The algorithm provide the following solutions after using 55 boxes:
If we use the maximum middle-point equation ordering the algorithm provide the same solution intervals.
With epsilonf=0.001, epsilon=0
the algorithm still find exactly the root
with 55 boxes and a computation time of
7010ms. Here Moore test may have failed as the
solution in is 0, which correspond exactly to split point in
the bisection process: it may be useful to break the symmetry
in the test domain.
Using the single bisection mode and setting the flag Single_Bisection to 2 enable to reduce the number of boxes to 33 and the computation time to 3580ms for epsilonf=0.00001.
Note that we may improve the efficiency of the procedure by using
simplification procedures such as the 2B (section 2.17)
and the 3B method. In that case for
epsilonf=1e-6, epsilon=1e-6 the number of boxes will have been
reduced to 7. Note that the solution [5,5,0] is still not guaranteed.
But using a search space of for
allow the
Moore test to guarantee both solutions.