Next: About this document ...
Up: ALIASC++
Previous: Contents
Contents
 1

Coleman R.
La méthode de weyl pour le calcul simulatané des racines d'un
polynome.
Research Report 881M, IMAG,
4January February March
April May June July August September October
November December Summer 1992.
 2

Collavizza M., F. Deloble, and Rueher M.
Comparing partial consistencies.
Reliable Computing, 5:116, 1999.
 3

Démidovitch B. and Maron I.
Eléments de calcul numérique.
Mir, 1979.
 4

Durand E.
Solution numérique des équations algébriques.
Masson, 1960.
 5

Hansen E.
Global optimization using interval analysis.
Marcel Dekker, 1992.
 6

Jaulin L., Kieffer M., Didrit O., and Walter E.
Applied Interval Analysis.
SpringerVerlag, 2001.
 7

Kearfott R.B. and Manuel N. III.
INTBIS, a portable interval Newton/Bisection package.
ACM Trans. on Mathematical Software, 16(2):152157,
6January February March
April May June July August September October
November December Summer 1990.
 8

Krawczyk R.
Newtonalgorithmen zur bestimmung von Nullstellen mit
Fehlerschranken.
Computing, 4:187201, 1969.
 9

Merlet JP.
A parser for the interval evaluation of analytical functions and its
applications to engineering problems.
J. Symbolic Computation, 31(4):475486, 2001.
 10

Merlet JP.
Solving the forward kinematics of a Goughtype parallel manipulator
with interval analysis.
Int. J. of Robotics Research, 23(3):221236, 2004.
 11

Merlet JP.
Determination of 6D workspaces of Goughtype parallel manipulator
and comparison between different geometries.
Int. J. of Robotics Research, 18(9):902916,
10January February March
April May June July August September October
November December Summer 1999.
 12

Merlet JP. and Daney D.
A formalnumerical approach to determine the presence of singularity
within the workspace of a parallel robot.
In F.C. Park C.C. Iurascu, editor, Computational Kinematics,
pages 167176. EJCK, Seoul,
5January, February, March,
April, May, June, July, August, September, October,
November, December, Summer 2022, 2001.
 13

Mignotte M.
Mathématiques pour le calcul formel.
PUF, 1989.
 14

Mineur H.
Technique de calcul numérique.
Dunod, 1966.
 15

Miranda C.
Un' osservatione su un theorema di Brouwer.
Bulletino Unione Mathematica Italiana, pages 57, 1940.
 16

Moore R.E.
A test for the existence of solution to nonlinear systems.
SIAM J. of Numerical Analysis, 14:611615, 1977.
 17

Moore R.E.
Methods and Applications of Interval Analysis.
SIAM Studies in Applied Mathematics, 1979.
 18

Neumaier A.
Interval methods for systems of equations.
Cambridge University Press, 1990.
 19

Neumaier A.
Introduction to Numerical Analysis.
Cambridge Univ. Press, 2001.
 20

Neumaier A. and Merlet JP.
Solving reallife robotics problems with interval techniques.
In SIAM Workshop on Validated Computing, page 148, Toronto,
5January, February, March,
April, May, June, July, August, September, October,
November, December, Summer 2325, 2002.
 21

Ratscheck H. and Rokne J.
Interval methods.
In Horst R. and Pardalos P.M., editors, Handbook of global
optimization, pages 751819. Kluwer, 1995.
 22

Rex G. and Rohn J.
Sufficient conditions for regularity and singularity of interval
matrices.
SIAM Journal on Matrix Analysis and Applications,
20(2):437445, 1998.
 23

Stiefel E.L.
An introduction to numerical mathematics.
Academic Press, 1963.
 24

Van Hentenryck P., Michel L., and Deville Y.
Numerica: A Modeling Language for Global Optimization.
The MIT Press, 1997.
 25

Yamamura K., Kawata H., and Tokue A.
Interval solution of nonlinear equations using linear programming.
BIT, 38(1):186199, 1998.
 26

Zippel R.
Effective polynomial computation.
Kluwer, 1993.
In the index keywords in typeset font indicate variable that are used
either in the C++ library
(with the exception of
the C++ procedure of BIAS/Profil that are displayed in normal
font)
or in the Maple library. In the later case
if the keyword is, for example, permute the name of the Maple
variable is
`ALIAS/permute`.
JeanPierre Merlet
20121220