next up previous contents
Next: General comments Up: Examples and Troubleshooting Previous: Example 3   Contents


Example 4

In this example (see section 15.1.3) we deal with a complex problem of three equations in three unknowns $\psi,\theta,\phi$. We are looking for a solution in the domain:

\begin{displaymath}[4.537856054,4.886921908], [1.570796327,1.745329252], [0.6981317008,
0.8726646262]
\end{displaymath}

The system has a solution which is approximately:

\begin{displaymath}
4.6616603883, 1.70089818026, 0.86938888189
\end{displaymath}

This problem is extremely ill conditioned as for the TestDomain the functions intervals are:

\begin{displaymath}[-1.45096e+08,1.32527e+08]; [-38293.3,29151.5] ; [-36389.1,27705.7]
\end{displaymath}

This program is implemented under the name Test_Solve_General. With espsilonf=0 and epsilon=0.001 and if we stop at the first solution we find with the maximum equation ordering:

\begin{displaymath}
\psi=[4.664665,4.665347]~~~~
\theta=[1.7034,1.703741]~~~~
\phi=[0.8706193,0.8709602]
\end{displaymath}

with 531 boxes. We may also mention the following remarks: With the maximum middle-point equation ordering we find:

\begin{displaymath}
\psi=[4.665347,4.666029]~~~~
\theta=[1.701355,1.701696]~~~~
\phi=[0.8709602,0.8713011]~~~~
\end{displaymath}

with 203 boxes. The importance of normalizing the functions appears if we use epsilonf=0.1 and epsilon=0. If we stop at the first solution we find:

\begin{eqnarray*}
&&\psi=[4.661660388259656,4.661660388340929]\\
&&\theta=[1.70...
...00898180284073]\\
&&\phi=[0.869388881899751,0.869388881940387]
\end{eqnarray*}

while if we divide the first function by 1000 we find:

\begin{eqnarray*}
&&\psi=[4.661658091884636,4.661658424779772]\\
&&\theta=[1.70...
...00898570395561]\\
&&\phi=[0.869388105618527,0.869388272066095]
\end{eqnarray*}

in four time less computation time.


next up previous contents
Next: General comments Up: Examples and Troubleshooting Previous: Example 3   Contents
Jean-Pierre Merlet 2012-12-20