next up previous contents
Next: Miscellaneous procedures Up: Definite integrals Previous: Integral with one variable   Contents


Integral with multiple variable

ALIAS offers 4 procedures to compute definite integral with more than one variable.
 
int IntegrateMultiRectangle(
          INTERVAL_VECTOR (* Function)
          (int,int,INTERVAL_VECTOR &), 
          INTERVAL_VECTOR (* Second_Derivative)
          (int,int,INTERVAL_VECTOR &), 
          INTERVAL_VECTOR & TheDomain, 
          int Iteration,
          double Accuracy,
          INTERVAL & Result)

int IntegrateMultiRectangle(
          INTERVAL_VECTOR (* Function)
          (int,int,INTERVAL_VECTOR &), 
          INTERVAL_VECTOR (* Second_Derivative)
          (int,int,INTERVAL_VECTOR &), 
          INTERVAL_MATRIX (* Gradient)(int, int,INTERVAL_VECTOR &),
          INTERVAL_VECTOR & TheDomain, 
          int Iteration,
          double Accuracy,
          INTERVAL & Result)
In the second form Gradient is a procedure in MakeJ format that allows to compute the derivatives of the second derivatives of the function. ALIAS offer also procedure based on Taylor expansion of the function.
 
int IntegrateMultiTaylor(
          INTERVAL_VECTOR (* CoeffInt)
          (int,int,INTERVAL_VECTOR &), 
          INTERVAL_VECTOR (* RestTaylor)
          (int,int,INTERVAL_VECTOR &), 
          INTEGER_MATRIX &APOWERINT,
          INTEGER_MATRIX &APOWERREM,
          int nbrem,
          int Order,
          INTERVAL_VECTOR & TheDomain, 
          int Iteration,
          double Accuracy,
          INTERVAL & Result)
int IntegrateMultiTaylor(
          INTERVAL_VECTOR (* CoeffInt)
          (int,int,INTERVAL_VECTOR &), 
          INTERVAL_VECTOR (* RestTaylor)
          (int,int,INTERVAL_VECTOR &), 
          INTEGER_MATRIX &APOWERINT,
          int Order,
          INTERVAL_VECTOR & TheDomain, 
          int Iteration,
          double Accuracy,
          INTERVAL & Result)
The Taylor expansion of the function $F$ may be written as:

\begin{displaymath}
F(x_1,\ldots,x_n)=\sum C_{i_1i_2\ldots i_n}
(x_1-h_1)^{i_1}(x_2-h_2)^{i_2}\ldots(x_n-h_n)^{i_n} +R
\end{displaymath}



Jean-Pierre Merlet 2012-12-20