ALTAS-C++
A C++ Algorithms Library of Interval Analysis for equation Systems
Version 2.7
September 2012
The COPRIN project
Download ALIAS here!

Chapter 1

Introduction

ALTAS-C++ is a C++ library of algorithms, intended to be run on Sun computers and PC under Unix or
Linux, that deal with problems like solving systems of equations and inequalities,optimization, linear algebra
.... Expressions involved in these problems may be arbitrary combination of the most classical mathematical
functions (algebraic terms, sine, cosine, log etc..) and whose coefficients are real numbers or, in some cases,
intervals. Most algorithms in ALIAS are based on interval analysis and can be used for almost any system as
soon as it is composed of classical mathematical operators (see section 2.1.1.2 for the available operators). Some
algorithms may be used only for problems with specific structure such as solving algebraic, linear, distance, ...
equation systems. ALIAS may also deal with functions that involve determinants of matrices, without having
to expand the determinants. Without being exhaustive you may find in ALTAS algorithms that enable one to:

e find an approximation of the real roots of 0-dimensional systems
e find an approximation of the variety defined by n-dimensional systems

e find an approximation of the global minimum or maximum of a function (eventually under equations
and/or inequalities constraints) up to an accuracy provided by the user

e analyze a system of algebraic equations to determine bounds for its real roots

e parse a formula file describing a set of functions in order to compute an interval evaluation of the functions
that can be used for the solving procedures

e check the regularity of an interval matrix
e provide an enclosure of definite integrals

This version of the library has about 86353 lines of C++ code, to which should be added the 13 000 lines
for BIAS/Profil/ Most of these algorithms are designed in view of their use in a parallel implementation (see
chapter 13).

This library is one of the main software development platform of the COPRIN project. There are various
motivations underlying the development of this platform:

e interval analysis allows to solve very different problems (not only solving systems of equations) as soon
as the unknowns are restricted to lie within a given domain, which is relevant to many applications. The
expertise of the COPRIN project in application domains such as mechanism theory, control theory, robotics
has allowed us to develop algorithms and test the library on numerous realistic problems (historically
speaking it was the need of tools to solve problems in these fields that has led to the development of
ALIAS)

e interval analysis allows to deal with uncertainties that are present in almost all applications

e interval analysis allows to take into account numerical round-off errors that may have a very negative
impact on the result of classical numerical analysis algorithms. This allows one to get safe results:
whenever an interval-analysis based method will give a solution then the result is guaranteed. On the

CHAPTER 1. INTRODUCTION

other hand such algorithm may just states that the current problem cannot be solved with the current
computer arithmetics. At the same time interval-analysis based methods may provide an ezact answer in
the sense that it will be possible to get a solution of the problem wit an arbitrary accuracy in term of
number of exact digits for the solution.

e classical problem solving approaches rely on the transformation of the initial problem into a solving
problem that have the same solution (or solutions that may be transformed into the solutions of the initial
problem) but which has a structure that is more appropriate for solving (for example a system of sine and
cosine will be transformed into an algebraic system for which there is powerful solving methods). This
operation may transform a simple problem into a much more complex solving problem. At the opposite
interval analysis allows one to focus on the problem to be solved which will often results in a more efficient
strategy This may also be considered a drawback of interval analysis: very often it is necessary to think
backward and to focus on what is really the problem to be solved in view of a solving by interval analysis.
We will present some examples of this approach.

e although in many cases other approaches may be used to solve problems addressed in ALIAS they are very
often computer intensive. A short pre-processing with interval analysis based methods may avoid using
these approaches whenever it is not necessary, therefore drastically reducing the whole computation time.
Furthermore the computation time of interval analysis based methods will decrease with the decrease of
the search space: hence there will always be a limit on the search space under which the interval analysis
method will be faster than any other method

e although they are numerous papers and books on interval analysis (see [5, 6, 17, 18, 20, 21, 24] to name
a few) the few implementations that are freely available are far from being complete. Our purpose is to
offer a wide range of algorithms

e various communities are working on interval analysis based algorithms: constraint programming, opera-
tional research, numerical analysis, ... Furthermore other communities (such as the algebraic geometry
community) are addressing the same problems. In our view there is a lack of collaboration between these
communities although basically they intend to solve the same type of problems and that the different
methods are very often complementary

e the ALIAS-C++ library is partly interfaced with a Maple package. We strongly believe that symbolic
computation, apart for being very convenient to produce error-free C++ code, will also play an important
role to improve the efficiency of the algorithms. The ALIAS-Maple manual provides procedures and
examples for this increase in efficiency

e we do not claim that interval analysis is an universal tool: it may fail to solve a given problem. It is almost
impossible to determine beforehand if interval-analysis based method will work. One of the purposes of
ALIAS is to provide the necessary tool to test quickly existing methods. Another purpose is to provide
the basic tools so that new algorithms may be developed efficiently. On the other hand interval analysis
allow to solve problems for which (to the best of our knowledge) there is no alternate solution.

e we have sometime heard the somewhat negative comment that interval analysis is ”"only” a version of
the branch-and-bound algorithm. Although branch-and-bound is indeed a key component of the interval
analysis algorithm we strongly believe that classifying the strategy only by this component is unfair as
many other methods are used (and will make a drastic difference in term of computation time). Further-
more we consider that methods should also be judged according to what problem they may solve. In that
regard interval analysis is very rich and has proved to be effective in realistic applications problems for
which, to the best of our knowledge, there was no alternate methods (chapter 15 will present some of this
problems)

ALTAS is partly interfaced with Maple, see the ALIAS-Maple documentation.
This manual contains the following chapters:

e Chapter 2 is devoted to a brief description of interval analysis and to the various algorithms of ALIAS
enabling to solve systems, either general purpose solving methods or algorithms for specific type of systems
(e.g. system with a large number of linear terms or involving determinant of matrices).

1.1.

1.1
This

HOW TO READ THIS MANUAL)

Chapter 3 deals with the analysis of system of functions
Chapter 4 deals especially with the analysis of trigonometric functions
Chapter 5 describes algorithms for the analysis of univariate polynomial.

Chapter 6 is devoted to the study of parametric polynomials and calculation on the eigenvalues of para-
metric matrices

Chapter 7 is devoted to procedure related to linear algebra
Chapter 8 deals with global optimization problems, constrained or not.

In Chapter 9 we describe how ALIAS can be used for dealing with one-dimensional systems and n > 0
dimensional systems

Chapter 10 is devoted to guaranteed integration procedures

Chapter 11 describes some miscellaneous ALTAS procedures

Chapter 12 is devoted to the ALIAS parser and the generic analyzer and solver based on this parser
In Chapter 13 we explain how ALTAS can be used in a parallel implementation

In Chapter 14 we explain how to use and install ALIAS,

the examples treated in the various chapters are presented in chapter 12,

Chapter 15 presents various examples used in this documentation together with some examples of problems
that interval analysis can solve

Chapter 16 is the troubleshooting chapter, in which is explained what can go wrong with ALTAS procedures
and how to adjust ALIAS parameters to obtain a better efficiency

How to read this manual
manual is intended to be read by two types of users:
application oriented

developer

In the first case you may skip all the ”Mathematical background” sections and go directly to the ”Implemen-
tation” and ”Examples” sections. In some cases it may be necessary however to consult the ”Mathematical
background” section to understand the meaning of some parameters of the procedure you intend to use.

In the latter case the ”Mathematical background” sections may be of interest.

CHAPTER 1. INTRODUCTION

Chapter 2

Solving with Interval Analysis

2.1 Introduction

The purpose of this chapter is to describe the methods based on interval analysis available in the ALIAS library
for the determination of real roots of system of equations and inequalities.

2.1.1 Interval Analysis
2.1.1.1 Mathematical background

This section is freely inspired from the book [5]. An interval number is a real, closed interval (z,Z). Arithmetic
rules exist for interval numbers. For example let two interval numbers X = (z,7), Y = (y,¥), then:

X+Y=[z+yT+7

An interval function is an interval-valued function of one or more interval arguments. An interval function F
is said to be inclusion monotonic if X; CY; for ¢ in [1, n] implies:

F(X1,...,X,) C F(Yi,...,Y,)

A fundamental theorem is that any rational interval function evaluated with a fixed sequence of operations
involving only addition, subtraction, multiplication and division is inclusion monotonic. This means in practice
that the interval evaluation of a function gives bounds (very often overestimated) for the value of the function:
for any specific values of the unknowns within their range the value of the function for these values will be
included in the interval evaluation of the function. A very interesting point is that the above statement will be
true even taking into account numerical errors. For example the number 1/3, which has no exact representation
in a computer, will be represented by an interval (whose bounds are the highest floating point number less than
1/3 and the smallest the lowest floating point number greater than 1/3) in such way that the multiplication of
this interval by 3 will include the value 1. A straightforward consequence is that if the interval evaluation of a
function does not include 0, then there is no root of the function within the ranges for the unknowns.

In all the following sections an interval for the variable x will be denoted by (z,Z). The width or diameter
of an interval (z,T) is the positive difference T — z. The mid-point of an interval is defined as (T + z)/2.

A box is a set of intervals. The width of a box is the largest width of the intervals in the set and the center
of the box is the vector constituted with the mid-point of all the intervals in the set.

2.1.1.2 Implementation

All the procedures described in the following sections use the free interval analysis package BIAS/Profil! in
which the basic operations of interval analysis are implemented?.

Thttp://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
2Some bugs in this package have been corrected and the patches are available in the version distributed with the ALIAS package

8 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

This package uses a fixed precision arithmetics with an accuracy of roughly 1076, Different types of data
structure are implemented in this package. For fixed value number:

BOOL, BOOL_VECTOR, BOOL_MATRIX,
INT, INTEGER_VECTOR, INTEGER_MATRIX, REAL, VECTOR, MATRIX, COMPLEX

for intervals:
INTERVAL, INTERVAL_VECTOR, INTERVAL_MATRIX

All basic arithmetic operations can be used on interval-valued data using the same notation than for fixed
numbers. Not that for vector and matrices the index start at 1: V(1,1) for an interval matrix represents the
interval at the first row and first column of the interval matrix V. The type INTERVAL _VECTOR will be used to
implement the box concept, while the type INTERVAL_MATRIX will be used to implement the concept of list of
boxes.

For the evaluation of more complex interval-valued function there are also equivalent function in the
BIAS/Profil, whose name is usually obtained from their equivalent in the C language by substituting their
first letter by the equivalent upper-case letter: for example the evaluation of sin(X) where X is an interval
will be obtained by calling the function Sin(X). We have also introduced in ALIAS some other mathematical
operators whose names are derived from their Maple implementation: ceil, floor, round.

Table 2.1 indicates the substitution for the most used functions.

H C function \ Substitution \ C function \ Substitution H
sin Sin cos Cos
tan Tan arcsin ArcSin
arccos ArcCos arctan ArcTan
sinh Sinh cosh Cosh
tanh Tanh arcsinh ArcSinh
arccosh ArcCosh arctanh ArcTanh
exp Exp log Log
log10 Logl0 x2 Sqr
sqrt Sqrt(x) v/ () Root(x,1)
xt Power(x,i) xY Power(x,y)
|| IAbs(x) ceil(x) ALIAS Ceil(x)
floor(z) ALTAS Floor(z) | rint(z) ALTAS Round(z)

Table 2.1: Equivalent interval-valued function

Note also that the mathematical operators cot, arccot, arccoth exist under the name Cot, ArcCot, ArCoth.

A special operator is defined in the procedure ALTAS Signum: formally it defines the signum operator of

Maple defined as
x

signum(z) = Tl
which is not defined at = 0. In our implementation for an interval z = [z,7] ALIAS_Signum(x) will return:
e 1ifz>0
o -1ifzT <0
e 1if |z| is lower than ALIAS Value Sign Signum and ALIAS Sign Signum is positive
o -1 if |z| is lower than ALTAS Value Sign Signum and ALTIAS_Sign_Signum is negative

-1,1 otherwise

2.1. INTRODUCTION 9

The default value for ALTAS Value_Sign Signum and ALTAS Sign Signum are respectively le-6 and 0.

The derivative of ALTAS_Signum is defined in the procedure ALTAS Diff Signum. Formally this derivative is
0 for any x not equal to 0. In our implementation ALIAS Diff_Signum(z) will return 0 except if |z| is lower
than ALTAS Value Sign Signum in which case the procedure returns [-1ell,1ell].

The derivative of the absolute value is defined in the procedure ALIAS Diff_Abs. If the interval X includes
0 the procedure returns [-1lell,1lell] otherwise it returns ALIAS _Signum(X).

Using the above procedures when an user has to write an interval-valued function he has to convert its C
source code using the defined substitution. For example if a function is written in C as:

double z,y,z, f; [= sin(x) * cos(y) + sqri(z);
then its equivalent interval valued function is
INTERVAL x,y,z, f; f= Sin(x) x Cos(y) + Sqrt(z);

Note that all the even powers of an interval are better managed with the Sqr and Power procedures. Indeed let
consider the interval X = [—1, 1], then the interval product X x X leads to the interval [-1,1] while the interval
Sqr(X) leads to [0,1]. For an interval X = (z,7) the width of the interval is obtained by using the procedure
Diam(X) while we have z =Inf(X) and T =Sup(X).

We will denote by box a set of intervals which define the possible values of the unknowns. By extension and
according to the context boxes may also be used to denote a set of such set. A function intervals will denote
the interval values of a set of functions for a given box, while a solution intervals will denote the box which are
considered to be solution of a system of functions.

2.1.1.3 Problems with the interval-valuation of an expression

An important point is that not all expressions can be evaluated using interval arithmetics. Namely constraints
that prohibits the interval evaluation of an expression are:

e denominator that may include 0

e argument of square should be positive

e argument of arcsin and arccos should be included in [-1,1]

e argument of log,In,log10 should be positive

e argument of arccosh should be greater than 1

e argument of arctanh cannot include the interval [-1,1]

e argument x of z¥ where y is not an integer should be

e argument z of exp(x) should not be too large to avoid overflow problem.

If such situation occurs a fatal error will be generated at run time. Hence such special cases has to be dealt
with carefully. ALIAS-Maple offers the possibility of dealing with such problem. For example the procedure
Problem Expression allows one to determine what constraints should be satisfied by the unknowns so that
each equations can be interval evaluated, see the ALIAS-Maple documentation.

If you use your own evaluation procedure and are aware of evaluation problems and modify the returned
values if such case occurs it will be a good policy to set C++ flags ALIAS_ChangeF, ALIAS ChangeJ to 1 (default
value 0) if a change occurs. Currently the interval Newton scheme that is embedded in some of the solving
procedures of ALTAS will not be used if one of these flags is set to 1 during the calculation.

2.1.1.4 Dealing with infinity

In some specific cases we may have to deal with interval in which infinity is used. These quantities are represented
using BIAS convention, BiasNegInf representing the negative infinity and BiasPosInf the positive infinity.

10 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

2.2 Non 0-dimensional system

Although the solving procedures of ALTAS are mostly devoted to be used for 0 dimensional system (i.e. systems
having a finite number of solutions) most of them can still be used for non 0-dimensional system. In that case
the result will be a set of boxes which will be an approximation of the solution. When dealing with such system
it is necessary to set the global variable ALIASND to 1 (its default value is 0) and to define a name in the
character string ALTAS_ND File. The solution boxes of the system will be stored in a file with the given name.
The quality of the approximation may be estimated with the flags ALTAS Volume_In, ALTAS Volume Neglected
that give respectively the total volume of the solution boxes and the total volume of the neglected boxes (i.e.
the boxes for which the algorithm has not been able to determine if they are or not a solution of the system).
Note that there are special procedures for 1-dimensional system, see chapter 9.

2.3 General purpose solving algorithm

This algorithm enable to determine approximately the solutions of a system of n > 0 equations and inequalities
in m > 0 unknowns. Hence this method may be used to solve a system composed of ny equations F;(X) =
0,...,F,, =0, ny inequalities G1(X) > 0,...,G,,)X) > 0 and ng inequalities H;(X) <0,..., H,,(X) <0.

2.3.1 Mathematical background

2.3.1.1 Principle

Let x1,..., 2y be the set of unknowns and let 7, = {(z1, zh), ... (2, x1)} be the set of m intervals in which

you are searching the solutions of the n equations Fj(x1,...,2m) = 0,... Fp(x1,...,2m) = 0 (for the sake of
simplicity we don’t consider inequalities but the extension to inequalities is straightforward).

We will denote by Fj the interval value of F; when this function is evaluated for the box (z1,%7), ..., (Tm, Tm)
of the unknowns while F'(Z;) will denote the n-dimensional interval vector constituted of the F; when the
unknowns have the interval value defined by the set Z;.

The algorithm will use a list of boxes Z whose maximal size M is an input of the program. This list is
initialized with Z;. The number of Z currently in the list is IV and therefore at the start of the program N = 1.
The algorithm will also use an accuracy on the variable € and on the functions ep. The norm of a 7 is defined
as:

|Z7]] = Max(z], — x1) for k € [1,m]

The norm of the interval vector F'(Z;) is defined as:

T F(Z;) 1= Max(Fy(Z;) — F(Z;)) for k € [1,n]

The algorithm uses an index ¢ and the result is a set S of interval vector Sy for the unknowns whose size is
S. We assume that there is no Fj, with k in [1,n] such that F(Z;) < 0 or F(Z1) > 0, otherwise the equations
have no solution in Z;. Two lists of interval vectors V, W whose size is 2™ will also be used. The algorithm is
initialized with ¢ = 1, S = 1 and proceed along the following steps:

1. if i = N+ 1return S — 1 and S and exit
2. bisect Z; which produce 2™ new interval vectors V; and set j =1
3. forli=1,...,2™
(
(

a) evaluate F'(V)

b) if it exist Fj with k in [1,n] such that Fi,(V;) < 0 or Fy(V;) > 0, then I =1+ 1 and go to step 3
)
)

(c) if V]| < eor T F(V;) 1< €y, then store V; in Sg, increment S and go to step 3
(d) store V; in W, increment j and go to step 3

4. if j = 1 increment ¢ and go to step 1

5. if N 4+ j —2 > M return a failure code as there is no space available to store the new intervals

2.3. GENERAL PURPOSE SOLVING ALGORITHM 11

6. if j > 1 store one of the W in Z;, the other j — 2 at the end of Z, starting at position N + 1. Add j — 2
to N and go to step 1

Basically the algorithm just bisect the box until either their width is lower than e or the width of the interval
function is lower than e; (provided that there is enough space in the list to store the intervals). Then if all the
intervals functions contain 0 we get a new solution, if one of them does not contain 0 there is no solution of
the equations within the current box. A special case occurs when all the components of the box are reduced to
a point, in which case a solution is obtained if the absolute value of the interval evaluation of the function is
lower than ey.

Now three problems have to be dealt with:

1. how to choose the W which will be put in place of the Z; and in which order to store the other W at the
end of the list?

2. can we improve the management of the bisection process in order to conclude the algorithm with a limited
number M7

3. how do we distinguish distinct solutions ?

The first two problems will be addressed in the next section.

2.3.1.2 Managing the bisection and ordering

The second problem is solved in the following way: assume that at some step of the algorithm the bisection
process leads to the creation of k W such that N + k —2 > M. As we have previously considered the i — 1
elements of 7 we may use them as storage space. This means that we will store Z;,7 > 4 at Z;_;11 thereby
freeing i — 1 elements. In that case the procedure will fail only if N +k—i4+1 > M.

Now we have to manage the ordering of the YW. We have defined two types of order for a given set of boxes
I

1. mazimum equation ordering: the box are ordered along the value of C' = Max(|Fy(Z)|, |Fi(Z)|) for all k
n [1,n]. The first box will have the lowest C.

2. mazimum middle-point equation ordering: let C; be the vector whose components are the middle points
of the intervals Z. The box are ordered along the value of C' = Max(|F(C;)|, |Fr(C;)]) for all k in [1,n].
The first box will have the lowest C.

When adding the W we will substitute the Z; by the W having the lowest C' while the others W will be added
to the list Z by increasing order of C. The purpose of these ordering is to try to consider first the box having
the highest probability of containing a solution. This ordering may have an importance in the determination of
the solution intervals (see for example section 2.3.5.2).

This method of managing the bisection is called the Direct Storage mode and is the default mode in ALIAS.
But there is another mode, called the Reverse Storage mode. In this mode we still substitute the Z; by the W
having the lowest C' but instead of adding the remaining n W at the end of the list Z we shift by n the boxes
in the list, thereby freeing the storage of Z;11,...,Z;414+» which is used to store the remaining n W. In other
words we may consider the solving procedure as finding a leaves in a tree which are solutions of the problem:
in the Direct Storage mode we may jump during the bisection from one branch of the tree to another while
in the Reverse storage mode we examine all the leaves issued from a branch of the tree before examining the
other branches of the tree. If we are looking for all the solutions the storage mode has no influence on the total
number of boxes that will be examined. But the Reverse Storage mode may have two advantages:

e if we are looking for only one solution it may enable to find it more rapidly (but that is not compulsory,
see section 2.3.5.4),

e as we are following one branch at a time we will consider very rapidly small box that either will lead
to a solution or will be discarded thereby enabling to free some storage space. Hence the storage space
available in the reverse mode will be in general higher than in the direct mode: a practical consequence
is that a problem may not be solved with the direct mode due to problem in the storage while with the
same amount of storage solutions will be obtained in the reverse mode.

12 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

To switch the storage mode see section 2.3.4.5 .We may also define a mixed strategy which is staring in the
direct mode and then switching to the reverse mode when the storage becomes a problem (see section 8.3).

2.3.1.3 An alternative: the single bisection

A possibility to reduce the combinatorial explosion of the previous algorithm is to bisect not all the variables
i.e. to use the full bisection mode, but only one of them (it must be noted that the algorithms in ALIAS will
not accept a full bisection mode if the number of unknowns exceed 10). This may reduce the computation
time as the number of function evaluation may be reduced. But the problem is to determine which variable
should be bisected. All the solving algorithms of ALTAS may manage this single bisection by setting the flag
Single Bisection to a value different from 0. The value of this global variable indicates various bisection
modes. Although the behavior of the mode may change according to the algorithm here are the possible modes
for the general solving algorithm and the corresponding values for Single Bisection:

e 1 : we just split the variable having the largest width (valid for all algorithms). Note however that
it is still possible to order the bisection i.e. to split first a subset of the unknowns until their width
is small (i.e. lower than ALIAS_ Accuracy, then another subset and so on. This is obtained by setting
flag ALTAS Ordered Bisection to 1 and defining an integer matrix ALTAS Order Bisection whose rows
indicate the bisected subset and should end by 0. For example if this matrix has as rows [1,3,0],(2,4,5,0],
then the algorithm will first bisect the unknowns 1 and 3 until their width is small, then the unknowns
2,4.5. If all unknowns indicated in the rows of the matrix have a small width, then the bisection algorithm
revert to the normal behavior.

e 2: to determine the variable that will be bisected we use the following approach: we compute the order
criteria for the two boxes P;, P, that will result from the bisection of variable xz; and retain the lowest
criteria ¢;. The variable that will be bisected is the one that has the lowest ¢; except if for at least one
variable the interval evaluation of the function for P; or P, does not contain 0. In that case the variable
that will be bisected is the one that verify the previous property and which has the lowest ¢; among all
the input intervals having the property. However to avoid bisecting over and over the same variable we
use another test: let d; be the width of the interval [z;,T;] and dy,q, be the maximum of all the d;. If
di/dmaez < 0.1 we don’t consider the variable x; as a possible bisection direction. It is also possible to
mix this mode with mode 1. If the integer variable ALIAS_RANDG is set to a strictly positive value then
ALTIAS RANDG bisection will be performed using mode 2 while the next bisection will be performed using
mode 1 and the process will be repeated

e 3,4 : similar to 1

e 5 : we use a round-robin mode i.e. each variable is bisected in turn (first =1, then x5 and so on) unless the
width of the input intervals is less than the desired accuracy on the variable, in which case the bisected
variable is the next one having a sufficient width (valid for all algorithms) The flag ALIAS Round Robin is
used to indicate at each bisection which variable should be bisected.

e 6: we emulate the smear function (see section 2.4.1.3) with an estimation of the gradient based on finite
difference (procedure Select Best Direction_Grad)

e 7: here again we use the flag ALTAS Ordered Bisection set to 1 and defining an integer matrix ALTAS_Order Bisect
whose rows indicates an order for bisecting the unknowns. The largest variable in the first row will be
bisected first and so on until all the variables in a row have a width lower than ALTAS_Accuracy. We then
proceed to the second row. As soon as all variables in all rows have a width lower than ALTAS _Accuracy
we use the bisection 1.

e 20: the user has defined its own bisection procedure, see section 11.3

For all general purpose solving procedures the number of the variable that has been bisected is available in the
integer ALTAS Selected For_Bisection.

There is another mode called the mized bisection: among the n variables we will bisect m; < n variables,
which will lead to 2™ new boxes. This mode is obtained by setting the global integer variable
ALTAS Mixed Bisection to m;. Whatever is the value of Single Bisection we will order the variables accord-
ing to their width and select the m; variables having the largest width.

2.3. GENERAL PURPOSE SOLVING ALGORITHM 13

2.3.1.4 Solutions and Distinct solutions
An interval will be considered as a solution for a function of the system in the following cases:

e for equations the maximal diameter of the intervals is less than a given threshold epsilon and the
corresponding interval evaluation of the function contains 0 or the corresponding interval evaluation of
the function has a diameter less than a given threshold epsilonf and the interval contains 0

e for inequalities F'(X) < 0: the upper bound of the interval evaluation of the function is negative or the
maximal diameter of the intervals is less than a given threshold epsilon and the corresponding interval
evaluation of the function has at least a negative lower bound or the corresponding interval evaluation of
the function has a diameter less than a given threshold epsilonf and the interval contains 0

o for inequalities F/(X) > 0: the lower bound of the interval evaluation of the function is positive or the
maximal diameter of the intervals is less than a given threshold epsilon and the corresponding interval
evaluation of the function has at least a positive upper bound or the corresponding interval evaluation of
the function has a diameter less than a given threshold epsilonf and the interval contains 0

A solution of the system is defined as a box such that the above conditions hold for each function of the system.
Note that for systems having interval coefficients (which are indicated by setting the flag ALTAS Func_Has_Interval
to 1) a solution of a system will be obtained only if the inequalities are strictly verified.

Assume that two solutions S, S¢ have been found with the algorithm. We will first consider the case where
we have to solve a system of n equations in n unknowns, possible with additional inequality constraints. First
we will check with the Miranda theorem (see section 3.1.5) if Soo, Se include one (or more) solution(s). If both
solutions are Miranda, then they will kept as solutions. If one of them is Miranda and other one is not Miranda
we will consider the distance between the mid-point of S, S¢: if this distance is lower than a given threshold
we will keep as solution only the Miranda’s one. If none of S, S¢ is Miranda we keep these solutions, provided
that their distance is greater than the threshold. Note that in that case these solutions may disappear if a
Miranda solution is found later on such that the distance between these solutions and the Miranda’s one is
lower than the threshold.

In the other case the solution will be ranked according the chosen order and if a solution is at a distance
from a solution with a better ranking lower than the threshold, then this solution will be discarded.

2.3.2 The 3B method

In addition to the classical bisection process all the solving algorithms in the ALIAS library may make use of
another method called the 3B-consistency approach [2].

Although its principle is fairly simple it is usually very efficient (but not always, see section 2.4.3.1). In this
method we consider each variable z; in turn and its range [z;,7;]. Let z}* be the middle point of this range.
We will first calculate the interval evaluation of the functions in the system with the full ranges for the variable
except for the variable i where the range will be [x;, z]"]. Clearly if one of the equations is not satisfied (i.e. its
interval evaluation does not contain 0), then we may reduce the range of the variable ¢ to [z, Z;]. If this is not
the case we will define a new z* as the middle point of the interval [z;,]"] and repeat the process until either
we have found an equation that is not satisfied (in which case the interval for the variable ¢ will be reduced to
[]",7;]) or the width of the interval [x;, 2}"] is lower than a given threshold 6. Using this process we will reduce
the range for the variable i on the left side and we may clearly use a similar procedure to reduce it on the left
side. The 3B procedure will be repeated if:

e the variable ALTAS Full3B is set to 1 or 2 (default value: 0) and if there are two changes on the variable
(a change is counted when a variable is changed either on the left or right side) or the change in at least
one variable is larger than ALTAS_Full3B_Change

e the variable ALTAS Full3B is set to 1 and the change in at least one variable is larger than
ALIAS Full3B_Change

For all the algorithms of ALIAS this method may be used by setting the flag ALIAS Use3B to 1 or 2. In
addition you will have to indicate for each variable a threshold ¢ and a maximal width for the range (if the
width of the range is greater than this maximal value the method is not used). This is done through the VECTOR

14 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

variables ALTAS Delta3B and ALIAS_Max3B. The difference of behavior of the method if ALTAS_Use3B is set to 1
or 2 is the following:

e 1: let e be the value of ALTAS Delta3B for the current variable which is in the range [a,b]. On the left
side we will check if [a,a+e] may lead to no solution. If yes then the current value of the variable is
[a+e,b]. We will start again but this time we will double the size of of the interval we will check i.e.
we will test the elimination of [a+e,a+3e], then [a+3e,a+7e] and will stop as soon as the check on one
interval fail. For example assume that the test for [a+3e,a+7e] fails, then the updated range for the
variable will be [a+3e,b].

e 2: the procedure at the beginning is similar to the previous one but changes when the check fails. In the
previous example after the failure for [a+3e,a+7e] we will start again to examine if interval with width
e can be eliminated. Hence we will check [a+3e,a+4e], then [a+4e,a+6e] and so on. In consequence in
this mode we will get as left bound for the interval the highest possible value A such that [A,A+e] cannot
be eliminated. Clearly in that case the procedure will be more computer intensive but will produce better
results.

A typical example for a problem with 25 unknowns will be:

ALTAS_Use3B=1;
Resize (ALIAS_Delta3B,25) ;Resize (ALIAS_Max3B,25);
for(i=1;i<=25;i++)
{
ALTAS _Delta3B(i)=0.1;ALIAS_Max3B(i)=7;
}

which indicate that we will start using the 3B method as soon as the width of a range is lower than 7 and will
stop it if we cannot improve the range by less than 0.1.

A drawback of the 3B method is that it may imply a large number of calls to the evaluation of the functions.
The larger number of evaluation will be obtained by setting the ALIAS Use3B to 2 and ALTAS_Full3B to 1 while
the lowest number will be obtained if these values are 1 and 0. It is possible to specify that only a subset of the
functions (the simplest) will be checked in the process. This is done with the global variable ALIAS_SubEq3B,
an integer array whose size should be set to the number of functions and for which a value of 1 at position ¢
indicates that the function ¢ will be used in the 3B process while a value of 0 indicates that the function will
not be used. For example:

Resize (ALTAS_SubEq3B,10);
Clear (ALIAS_SubEqg3B);
ALTAS_SubEq3B(1)=1;
ALTAS_SubEq3B(2)=1;

indicates that only the two first functions will be used in the 3B process. If you are using your own solv-
ing procedure, then it is necessary to indicate that only part of the equations are used by setting the flag
ALIAS Use_SubEg3B to 1.

In some cases it may be interesting to try to use at least once the 3B method even if the width of the range
is larger than ALTIAS Max3B. If the flag ALIAS_Always3B is set to 1, then the 3B will be used once to try to
remove the left or right half interval of the variables.

If you are using also a simplification procedure (see section 2.3.3) you may avoid using this simplification
procedure by setting the flag ALTAS Use_Simp_In_3B to 0. You may also adapt the simplification procedure
when it is called within the 3B method. For that purpose the flag ALTAS _Simp_3B is set to 1 instead of 0 when
the simplification procedure is called within the 3B method. For some procedure if ALTAS Use_Simp_In_3B is
set to 2 then ALTAS Simp_3B is set to 1 when the whole input is checked. But if ALTAS Use_Simp_3B is set to a
value larger than 2 then ALTAS_Simp_3B is set to 0.

Some methods allows to start the 3B method not by a small increment that is progressively increased but
by a large increment (half the width of the interval) and to decrease it if it does not work. This is done by
setting the flag ALTAS Switch_3B to a value between 0 and 1: if the width of the current interval is lower than
the width of the initial search domain multiplied by this flag, then a small increment is used otherwise a large
increment is used.

When the routine that evaluate the expression uses the derivatives of the expression we may avoid to use
these derivatives if the width of the ranges in the box are too large. This is obtained by assigning the size of

2.3. GENERAL PURPOSE SOLVING ALGORITHM 15

the vector ALTAS Func_Grad to the number of unknowns and assigning to the components of this vector to the
maximal width for the ranges of the variables over which the derivatives will not be used: if there is a range
with a width larger than its limits then no derivatives will be used.

Note also that the 3B-consistency is not the only one that can be used: see for example the ALIAS-Maple
manual that implements another consistency test for equations which is called the 2B-consistency or Hull-
consistency in the procedure HullConsistency (similarly HullIConsistency implement it for inequalities).
See also the section 2.17 for an ALTAS-C++ implementation of the 2B and section 11.4 for detailed calls to the
3B procedures.

2.3.3 Simplification procedure

Most of the procedures in ALTIAS will accept as optional last argument the name of a simplification procedure: a
user-supplied procedure that take as input the current box and proceed to some further reduction of the width
of the box or even determine that there is no solution for these box, in which case it should return -1. Such
procedure must be implemented as:

int Simp_Proc (INTERVAL_VECTOR & P)

where P is the current box. This procedure must return either -1 or any other integer. If a reduction of an
interval is done within this procedure, then P must be updated accordingly.

This type of procedure allows the user to add information to the algorithm without having to add additional
equations. The simplification procedure is applied on a box before the bisection and is used within the 3B
method if this heuristic is applied.

Note that the Maple package associated to ALIAS allows in some cases to produce automatically the code
for such procedure (see the ALTAS-Maple manual) and that section 2.17 presents a standard simplification
procedure that may be used for almost any system of equations.

2.3.4 Implementation

The algorithm is implemented as:

int Solve_General_Interval(int m,int n,
INTEGER_VECTOR Type_Eq,
INTERVAL_VECTOR (* IntervalFunction) (int,int,INTERVAL_VECTOR &),
INTERVAL_VECTOR & TheDomain,
int Order,int M,int Stop,
double epsilon,double epsilonf,double Dist,
INTERVAL_MATRIX & Solution,int Nb,
int (* Simp_Proc) (INTERVAL_VECTOR &))

the arguments being:
e m: number of unknowns
e n: number of functions, see the note 2.3.4.1
e Type_Eq: type of the functions, see the note 2.3.4.2

e IntervalFunction: a function which return the interval vector evaluation of the functions, see the
note 2.3.4.3

e TheDomain: box in which we are looking for solution of the system. A copy of the search domain is
available in the global variable ALTAS Init Domain

e Order: the type of order which is used to store the intervals created during the bisection process. This order
may be either MAX_FUNCTION_ORDER or MAX MIDDLE FUNCTION_ORDER. See the note on the order 2.3.4.4.

e M: the maximum number of boxes which may be stored. See the note 2.3.4.5

16 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

e Stop: the possible values are 0,1,2

— 0: the algorithm will look for every solution in TheDomain
— 1: the algorithm will stop as soon as 1 solution has been found

— 2: the algorithm will stop as soon as Nb solutions have been found
e epsilon: the maximal width of the solution intervals, see the note 2.3.4.6
e epsilonf: the maximal width of the function intervals for a solution, see the note 2.3.4.6
e Dist: minimal distance between the middle point of two interval solutions, see the note 2.3.4.7

e Solution: an interval matrix of size (Nb,m) which will contained the solution intervals. This list is sorted
using the order specified by Order

e Nb: the maximal number of solution which will be returned by the algorithm

e Simp Proc: a user-supplied procedure that take as input the current box and proceed to some further
reduction of the width of the box or even determine that there is no solution for this box, in which case
it should return -1. Remember also that you may use the 3B method to improve the efficiency of this
algorithm (see section 2.3.2).

Note that the following arguments may be omitted:
e Type_Eq: in that case all the functions will supposed to be equations.

e Simp_Proc: no simplification procedure is provided by the user

2.3.4.1 Number of unknowns and functions

The only constraint on n,m is that they should be strictly positive. So the algorithm is able to deal with
under-constrained or over-constrained systems.

2.3.4.2 Type of the functions

The i-th value in the array of n integers Type_Eq enable one to indicate if function F; is an equation or an
inequality:

e Type Eq(i)=0 : F; must verify F;(X) =0

e Type Eq(i)=1 : F; must verify F;(X) >0

e Type Eq(i)=-1: F; must verify F;(X) <0
For all the general solving algorithms the integer ALTAS Pure _Equation is set to the number of equations in the
constraints list.
2.3.4.3 Interval Function

The user must provide a function which will compute the function intervals of the functions for a given box.
When designing ALTAS we have determined that to be efficient we need a procedure that allow to calculate the
interval evaluation of all the functions or only a subgroup of them in order to avoid unnecessary calculations.
Hence the syntax of this procedure is:

INTERVAL_VECTOR IntervalFunction (int 11,int 12,INTERVAL_VECTOR & x)
e x: a m dimensional interval vector which define the intervals for the unknowns

e 11,12: the function must be able to return the interval value of the functions 11 to 12. The first function
has number 1, the last m. So if 11=12=1 the function should return an interval vector whose only the
first component has been computed.

2.3. GENERAL PURPOSE SOLVING ALGORITHM 17

This function should be written using the BIAS/Profil rules. If you have equations and inequalities in the
system you must define first the equations and then the inequalities.

The efficiency of the algorithm is heavily dependent on the way this procedure is written. Two factors are
to be considered:

e efficiency of the evaluation
e sharp bound on the evaluation

Efficiency will enable to decrease the computation time of the evaluation. Let consider for example the following
system:

22+ 92 —=50=0

22 — 20z + 8z cos(h) + 90 — 80 cos(h) + y? + 8ysin(h) = 0
2% — 6z +4xcos(f) —4xsin(d) + 92 — 52 cos() — 28 sin(f) + y* — 20y + 4ysin(f) + 4y cos(d) =0

The evaluation function may be written as:

el = Sqr(x)+Sqr(y)-50.0 ;

e2 =3qr(x)-20.0*x+8.0*x*Cos (teta)+90.0-80.0*Cos (teta)+Sqr(y)+8.0*y*Sin(teta) ;

e3 =3qr(X)-6.0*x+4.0*x*Cos(teta)-4.0*x*Sin(teta)+92.0-52.0*Cos(teta)-28.0%
Sin(teta)+SQR(Y)-20.0*y+4.0*y*Sin(teta)+4.0*xy*Cos(teta) ;

or, using temporary variables:

t1 = Sqr(x);

t2 = Sqr(y);

t5 = Cos(teta);

t6 = x*t5;

t9 = Sin(teta);

t10 = y*t9;

el = t1+t2-50.0;

e2 = t1-20.0%x+8.0%t6+90.0-80.0%t5+t2+8.0%t10;

e3 = t1-6.0%x+4.0%t6-4.0*x*t9+92.0-52.0%t5-28.0*%t9+t2-20.0%y+4.0%xt10+4.0*y*t5;

the second manner is more efficient as the intervals sin, cos, x2,y2, xcosf, ysinf are evaluated only once
instead of 3 or 2 in the first evaluation. Note also that for speeding up the computation it may be interesting
to declare the variables t1, t2, t5, t6, t9, t10 as global to avoid having to create a new interval data
structure at each call of the evaluation function.

The second point is the sharpness of the evaluation. Let consider the polynomial z2 — . If the variable
lie in the interval [0,1] the evaluation will lead to the interval [-1,1]. The same polynomial may we written in
Horner form as z(x — 1) the function being then evaluated as [-1,0]. Now suppose that z lie in [0.8,1.1]. The
initial polynomial will be evaluated as [-0.46,0.41] while in Horner form the evaluation leads to [-0.22,0.11]. But
this polynomial may also be written as (r — 1)? +x — 1 (which is the centered form at 1) whose evaluation
leads to [-0.2,0.14] which has a sharper lower bound than in the Horner form (note that Horner form is very
efficient for the evaluation of a polynomial but do not lead always to the sharpest evaluation of the bounds
on the polynomial although this is some time mentioned in the literature). Unfortunately there is no known
method which enable to determine what is the best way to express a given function in order to get the sharpest
possible bounds. For complex expression you may use the procedures MinimalCout or Code of ALIAS-Maple
that try to produce the less costly formulation of a given expression.

Another problem is the cost of the tests which are necessary to determine if the interval evaluation of one
of the function does not include 0. Indeed let us assume that we have 40 equations and 7 unknowns and that
we are considering a box such that the function interval all contain 0. When testing the functions we may
either evaluate all the functions with one procedure call (with the risk of performing useless evaluations e.g. if
the interval evaluation of the first equations does not contain 0) or evaluate the functions one after the other
(at a cost of 40 procedure calls but avoiding useless equation evaluations). The best way balances the cost of
procedure calls compared to the cost of equation evaluations. By default we are evaluating all the functions in

18 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

one step but by setting the variable Interval Evaluate Equation_Alone to 1 the program will evaluate the
functions one after the other.

A last problem is the interval valuation of the equations. Indeed you may remember that some expression
may not be evaluated for some ranges for the unknowns (see section 2.1.1.3). If such problem may occur a
solution is to include into this procedure a test before each expression evaluation that verify if the expression is
interval-valuable. If not two cases may occur:

e the expression will never be interval-valuated whatever is the value of one of the unknown in its range
(e.g. the expression involves ArcSin(x) and the range for x is [-4,-3])

e the expression may be evaluated for some values of the unknowns in their range (e.g. the expression
involves Sqrt (x) while the range for x is [-3,10])

In the first case the interval evaluation of the expression should be set to an interval which does not include 0
(hence the algorithm will discard the box). In the second case the best strategy seems to be to set the interval
evaluation of the expression to a very large interval that includes 0 (e.g. [-1e8,1e8]). Note that some filtering
strategy such as the one described in section 2.17 may help to avoid some of these problems (in the example this
strategy will have determined that Sqrt (x) is interval-valuable only for x in [0,10] and will have automatically
set the range for x to this value).

2.3.4.4 The order

Basically the algorithm just bisect the box TestDomain until one of the criteria described in 2.3.4.6 is satisfied.
The boxes resulting from the bisection process are stored in a list and the boxes in the list are treated sequentially.
If we are looking only for one solution of the equation or for the first Nb solutions of a system (see the Stop
variable) it is important to store the new boxes in the list in an order which ensure that we will treat first
the boxes having the highest probability of containing a solution. Two types of ordering may be used, see
section 2.3.1.2, indicated by the flag MAX_FUNCTION_ORDER or MAX _MIDDLE FUNCTION_ORDER.

Note that if we are looking for all the solutions of the system the order has still an importance: although
all the boxes of the list will be treated the order define how close solution intervals will be distinguished (see
for example section 2.3.5.2).

2.3.4.5 Storage

The boxes generated by the bisection process are stored in an interval matrix:
Box_Solve_General _Interval(M,m)

The algorithm try to manage the storage in order to solve the problem with the given number M. As seen in
section 2.3.1.2 two storage modes are available, the Direct Storage and the Reverse Storage modes, which are
obtained by setting the global variable Reverse_Storage to 0 (the default value) or at least to the number of
unknowns plus 1. See also section 8.3 to use a mixed strategy between the direct and reverse mode.

For both modes the algorithm will first run until the bisection of the current box leads to a total number of
boxes which exceed the allowed total number. It will then delete the boxes in the list which have been already
bisected, thereby freeing some storage space (usually larger for the reverse mode than for the direct mode) and
will start again.

If this is not sufficient the algorithm will consider each box in the list and determine if the bisection process
applied on the box does create any new boxes otherwise the box is deleted from the list. Note that this procedure
is computer intensive and constitute a ”last ditch” effort to free some storage space. You can disable this feature
by setting the integer variable Enable Delete Fast_Interval to 0. If the storage space freed by this method
is not sufficient the algorithm will exit with a failure return.

If epsilonf=0, epsilon=¢ and f is the largest width of the intervals in TestDomain, then the number of
boxes that will be considered in the direct mode is M with, in the worst case:

M = 98w+t (2.1)

2.3. GENERAL PURPOSE SOLVING ALGORITHM 19

where Sup(%) is the largest integer greater than f/2e. In the direct storage mode the storage space N will be
in the worst case: ,
N =255y (2.2)

In the reverse storage mode the storage space is only:

log(£)
N= s (2.3)

Note that with the reverse storage mode, storage is not really a problem. For example if the width of the initial
box is 1000 and the accuracy 10710, then the necessary storage space is only 44. Thus only the computation
time or the conditioning of the functions may lead to a failure of the algorithm. If epsilonf is not equal to 0
the size of the storage cannot be estimated.

If the procedure has to be used more than once it is possible to speed up the computation by allocating the
storage space before calling the procedure. Then you may indicate that the storage space has been allocated
beforehand by indicating a negative value for M, the number of boxes being given by the absolute value of M.

Note also that the bisection process applied only to one variable may lead to a better estimation of the roots
of the system if the algorithm stops when the accuracy required on the variable is reached: indeed, compared
to the standard algorithm, one (or more) of the variable may have been individually split before reaching the
step where a full bisection will lead to a solution (see the example in section 2.4.3.2).

Note also a specific use of ALTAS RANDG: if this integer is not set to 0, then every ALTAS _RANDG iteration the
algorithm will put the box having the largest width as current box, except if the number of boxes remaining to
be processed is greater than half the total number of available boxes.

2.3.4.6 Accuracy

Two criterion are used to determine if a box possibly includes a solution of the system:

e the largest width of the components of the box is lower than epsilon and the functions intervals for this
box all contain 0

e the largest width of the function intervals is lower than epsilonf and they contain all 0. You must be
aware that this test is only used if there is no inequality in the system. In that case it is compulsory
to have an epsilon not equal to 0 otherwise the procedure may lead to an infinite loop.

If we use only the first criteria (i.e. we put epsilonf=0) the largest width of the solution intervals will be
epsilon. A consequence is that the unknowns should be normalized in order that all the intervals in the
TestDomain have roughly the same width.

If we use only the second criteria the width of the solution intervals cannot be determined and the functions
should be roughly normalized (see the example in section 15.1.3 for the importance of the conditioning).

2.3.4.7 Distinct solutions

Two solution intervals will be assumed to contain distinct solutions if the minimal distance between the middle
point of all the intervals is greater than the threshold Dist.

2.3.4.8 Return code

The procedure will return an integer k
e k > 0: number of solutions

e k= —1: the size of the storage is too low (possible solutions: increase M, or use the 3B method, or use
the reverse storage mode or the single bisection mode)

e k= —2: mor n is not strictly positive

e k= —3: Order is not 0 or 1

20 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

e k = —4: one of the function in the system has not a type 0, -1 or 1 (i.e. it’s not an equation, neither
inequality F' < 0 or an inequality F' > 0)

e k = —5: we are in the optimization mode and more than one functions are expressions to be optimized
(see the Optimization chapter)

e k = —100: in the mixed bisection mode the number of variables that will be bisected is larger than the
number of unknowns

e k= —200: one of the value of ALTAS Delta3B or ALTAS Max3B is negative or 0
o k= —300: one of the value of ALTAS_SubEq3B is not 0 or 1
e k= —400: although ALTAS_SubEq3B has as size the number of equations none of its components is 1

e k= —500: ALIAS ND is different from 0 (i.e. we are dealing with a non-0 dimensional problem, see the
corresponding chapter) and the name of the result file has not been specified

e k= —1000: the value of the flag Single Bisection is not correct

e k= —3000: we use the full bisection mode and the problem has more than 10 unknowns

2.3.4.9 Debugging

If the algorithm fail some debugging options are provided. The integer variable
Debug Level Solve_General Interval indicate which level of debug is used:

e 0: no debug (the default value)

e 1: during the process are printed on the standard output: the index of the current box, the total number
of boxes and the number of remaining boxes together with the current number of solutions

e 2 : same as 1 but the intervals of the current box are also printed and when it is split the new boxes are
printed together with their function intervals

2.3.5 Examples and Troubleshooting

2.3.5.1 Example 1

We will present first a very silly example of system in the three unknowns z(1), z(2), z(3):
z(1)?+2z(1)+1=0
z(2)? +22(2)+1=0
z(3)2+22(3)+1=0

Clearly this system has the unique solution (-1,-1,-1). We choose to define the TestDomain as the interval [-2,0]
for all three unknowns. So we define a function which specify the TestDomain:

VOID SetTestDomain (INTERVAL_VECTOR & x)

{
Resize (%, 3);
x(1) = Hull (-2.0,0.0);
x(2) = Hull (-2.0,0.0);
x(3) = Hull (-2.0,0.0);
}

The we have to define the IntervalFunction:

INTERVAL_VECTOR IntervalTestFunction (int 11,int 12,INTERVAL_VECTOR & x)
// interval valued functions. The input are intervals for the
//variables and the output is intervals on the functions

//x are the input variables and xx the function intervals

{

INTERVAL_VECTOR xx(3);

if (11==1) xx(D)=x(1)*(x(1)+2)+1;
if (11<=2 && 12>=2) xx(2)=x(2)*(x(2)+2)+1;
if(12==3) xx(3)=x(3)*(x(3)+2)+1;

return xx;

}

2.3. GENERAL PURPOSE SOLVING ALGORITHM 21

This function returns the interval vector xx which will contain the value of the function from 11 to 12 for the
box x. Note that the initial functions have been written in Horner form (or "nested” form) which may lead to

a sharper estimation of the function intervals.
The main program may be written as:

INT main()

{

int Num; //number of solution

INTERVAL_MATRIX SolutionList(1,3);//the list of solutions
INTERVAL_VECTOR TestDomain;//the input intervals for the variable

//We set the value of the variable intervals
SetTestDomain (TestDomain);

//let’s solve....

Num=Solve_General_Interval(3,3,IntervalTestFunction,TestDomain,
MAX_FUNCTION_ORDER,50000,1,0.001,0.0,0.1,S0lutionList,1);

//too much intervals have been created, this is a failure

if (Num== -1)cout << "The procedure has failed (too many iterations)"<<endl;

return 0;

}

This main program will stop as soon as one solution has been found. We set epsilonf to 0 and epsilon to
0.001 which mean that the maximal width of the interval solution will be lower than 0.001. The chosen order
is the maximum equation ordering. The number of boxes should not be larger than 50000 and the distance
between the distinct solutions must be greater than 0.1.

Running this program will provide the solution interval [-1.000977,-1] for all three variables and uses 71
boxes. The result will have been similar if we have chosen the maximum middle-point equation ordering.

On the other hand if we have epsilon to 0 and epsilonf to 0.001 the algorithm find the solution interval

[-1.00048828125,-1] and use 78 boxes.
Now let’s look at a more complete test program which enable to test the various options of the procedure.

INT main()

{

int Iterations;//maximal size of the storage

int Dimension,Dimension_Eq; // size of the system

int Num,i, j,order,precision,Stop;

// accuracy of the solution either on the function or on the variable
double Accuracy,Accuracy_Variable,Diff_Sol;

INTERVAL_MATRIX SolutionList(200,3);//the list of solutions
INTERVAL_VECTOR TestDomain;//the input intervals for the variable
INTERVAL_VECTOR F(3),P(3);

//We set the number of equations and unknowns and the value of the variable intervals
Dimension_Eq=Dimension=3;
SetTestDomain (TestDomain);

cerr << "Number of iteration = "; cin >> Iterations;
cerr << "Accuracy on Function = "; cin >> Accuracy;
cerr << "Accuracy on Variable = "; cin >> Accuracy_Variable;cerr << "Order (0,1)"; cin >>order;

cerr << "Stop at first solutions (0,1,2):";cin>>Stop_First_Sol;
cerr << "Separation between distincts solutions:";cin>> Diff_Sol;

//let’s solve....

Num=Solve_General_Interval(Dimension,Dimension_Eq,IntervalTestFunction,TestDomain,order,Iterations,Stop,
Accuracy_Variable,Accuracy,Diff_Sol,SolutionList,1);

//too much intervals have been created, this is a failure

if (Num== -1){cout<<"Procedure has failed (too many iterations)'"<<endl;return -1;}

cout << Num << " solution(s)" << endl;

for(i=1;i<=Num;i++)

{
cout << "solution " << i <<endl;
cout << "x(1)=" << SolutionList(i,1) << endl;
cout << "x(2)=" << SolutionList(i,2) << endl;
cout << "x(3)=" << SolutionList(i,3) << endl;
cout << "Function value at this point" <<endl;
for(j=1;j<=3;j++)F(j)=SolutionList(i,j);
cout << IntervalTestFunction(1l,Dimension_Eq,F) <<endl;
cout << "Function value at middle interval" <<endl;
for(j=1;j<=3;j++)P(j)=Mid(SolutionList(i,j));
F=IntervalTestFunction(1,Dimension_Eq,P);
for(j=1;j<=3;j++)cout << Sup(F(j)) << endl;

}

return 0;

}

22 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

This program is basically similar to the previous one except that it enable to define interactively the order, M,
Stop, epsilon, epsilonf,Dist. Then it print the solution together with the function interval for the solution
interval and the value of the functions at the middle point of the solution interval. Let’s test the algorithm
to find all he solution (Stop=0) with epsilonf=0 and epsilon=0.001. The algorithm will fail: indeed let’s
compute the maximal storage that we may need using the formula (2.1). We end up with the number 26900
which is indeed a very large number.... But (2.1) is only an upper bound for the storage. For example if we have
used epsilon=0.01 in the previous formula we will find that M=2%"° although the algorithm converge toward
[-1,-0.992188] while using only 5816 boxes.

Although academic this system shows several properties of interval analysis. If we set epsilon=epsilonf=1le-
6, which is the standard setting of ALTAS-Maple, the algorithm will run for a very long time before finding
the solution of the system. Even using the 3B method, section 2.3.2 and the 2B method (section 2.17) the
computation time, although improved, will still be very large. Now if we write the system as

(z(1)+1)*=0
(z(2)+1)2=0
(z(3)+1)*=0

the system will be solved with only 8 boxes, with 2 boxes if we use the 3B method and without any bisection if
we use the 2B method. This shows clearly the importance of writing the equations in the most compact form.

2.3.5.2 Example 2

The problem we want to solve is presented in section 15.1.1. We consider a system of three equations in the
unknowns x,y, 0:

22 4+9*-50=0
22 — 20z + 8z cos(h) + 90 — 80 cos(d) + y* + 8ysin(h) = 0
2% — 6z +4xcos(f) — 4xsin(d) + 92 — 52 cos(f) — 28 sin(f) + y* — 20y + 4ysin(f) + 4y cos(d) =0

which admit the two solutions:

(5,5,0) (3.369707132,6.216516219, —0.806783438)

By looking at the geometry of the problem it is easy to establish a rough TestDomain:

VOID SetTestDomain (INTERVAL_VECTOR & x)
{

Resize (x, 3);

x(1) = Hull (0.9,7.1);

x(2) = Hull (2.1,7.1);

x(3) = Hull (-Constant::Pi,Constant::Pi);
¥

and to determine that the maximum number of real solution is 6. The IntervalFunction is written as:

INTERVAL_VECTOR IntervalTestFunction (int 11,int 12,INTERVAL_VECTOR & in)
{
INTERVAL_VECTOR xx(3);
if (11==1)xx(1)=in(1)*in(1)+in(2)*in(2)-50.0;
if (11<=2 && 12>=2)
xx(2)=-80.0%Cos (in(3))+90.0+(8.0%Sin(in(3))+in(2))*in(2)+(-20.0+8.0*Cos (in(3))+in(1))*in(1);
if (12==3)
xx(3)=92.0-52.0%Cos (in(3))-28.0%Sin(in(3))+(-20.0+4.0*Sin(in(3))+
4.0%Cos(in(3))+in(2))*in(2)+(-4.0%Sin(in(3))-6.0+4.0*Cos(in(3))+in(1))*in(1);
return xx;

}

and we may use the same main program as in the previous example (the name of this program is
Test_Solve_Generall).

Let’s assume that we set epsilonf to 0 and epsilon to 0.01 while looking at all the solutions (Stop=0), using
the maximum equation ordering and setting Dist to 0.1. The algorithm provide the following solutions,using
684 boxes:

x = [4.99297,4.99902] y = [5.00527,5.01016] 6 = [—0.00613592, 0]
o =[3.36426,3.37031] y =[6.21133,6.21621] 6 = [—0.809942, —0.803806]

2.3. GENERAL PURPOSE SOLVING ALGORITHM 23

We notice that indeed none of the roots are contained in the solution intervals. If we use the maximum
middle-point equation ordering the algorithm provide the solution intervals, using 684 boxes:

o = [3.36426,3.37031] y = [6.21621,6.22109] 6 = [—0.809942, —0.803806]
z =[5.00508,5.01113] y = [4.99063,4.99551] 6 = [0,0.00613592]

which still does not contain the root (5,5,0) (but contain one of the root which show the importance of the
ordering). Let’s look at what is happening by setting the debug flag Debug Level Solve General Interval
to 2 (see section 2.3.4.9). At some point of the process the algorithm has determined four different solution
intervals:

Solutionl [4.9990234375,5.005078125] [4.990625,4.9955078125] [0, 0.006135923151542]

Solution2 [4.9990234375,5.005078125] [4.9955078125, 5.000390625] [0, 0.006135923151542]
Solution3 [5.005078125,5.0111328125] [4.990625,4.9955078125] [0, 0.006135923151542]

Solutiond [3.3642578125,3.3703125] [6.211328125,6.2162109375] [—0.809941856, —0.803805932852]

the criteria C for the ordering being:

0.300481441333159 0.329822553021982
0.293359098885522 0.416913915955262

Clearly solution 3 has the lowest criteria and will therefore be stored as the first solution. Then solution 1 will
be considered: but the distance between the middle point of solution 3 and 1 is lower than Dist and therefore
solution 1 will not be retained. The solution 2 will be considered but for the same reason than for solution 1
this solution will not been retained. Finally solution 4 will be considered and it spite of his index being the
worse this solution will be retained as its distance to solution 3 is greater than Dist.

Note that if the single bisection is activated and setting the flag Single Bisection to 1 we find the two

roots for epsilonf to 0 and epsilon to 0.01 with 650 boxes using the maximum equation ordering.
We may also illustrate on this example how to deal with inequalities. Assume now that we want to deal
with the same system but also with the inequality zy — 22 < 0. We modify the IntervalTestFunction as:

INTERVAL_VECTOR IntervalTestFunction (int 11,int 12,INTERVAL_VECTOR & in)
{

INTERVAL x,y,teta;

INTERVAL_VECTOR xx(4);

x=in(1) ;y=in(2) ;teta=in(3);
if (11==1)xx (1) =x*x+y*y-50.0;
if (11<=2 && 12>=2)
xx(2)=-80.0*Cos (teta)+90.0+(8.0*Sin(teta) +y) *y+(-20.0+8.0*Cos (teta) +x) *x;
if(11<=3 && 12>=3)
xx(3)=92.0-52.0%Cos (teta)-28.0*Sin(teta)+(-20.0+4.0*Sin(teta)+
4.0%Cos(teta) +y) *y+(-4.0*Sin(teta)-6.0+4.0*Cos (teta)+x) *x;
if (12==4)
xx (4)=x*y-22.;
return xx;

¥
Part of the main program will be:

Type (1)=0;Type (2)=0;Type (3)=0;Type (4)=-1;
Num=Solve_General_Interval(3,4,Type,IntervalTestFunction,TestDomain,order,
Iterations,Stop_First_Sol,Accuracy_Variable,
Accuracy,Diff_Sol,SolutionList,6);

Here Type(4)=-1; indicates that the fourth function is an inequality of the type F;(X) < 0. If we have to deal
with the constraint xy — 22 > 0 then we will use Type (4)=1;.

2.3.5.3 Example 3

This example is derived from example 2. We notice that in the three functions of example 2 the second degree
terms of x,y are for all functions 2 4+ y2. Thus by subtracting the first function to the second and third we
get a linear system in x,y. This system is solved and the value of z,y are substituted in the first function.
We get thus a system of one equation in the unknown 6 (see section 15.1.2). The roots of this equation are
0,-0.806783438. The test program is Test_Solve_General2. The IntervalFunction is written as:

24 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

INTERVAL_VECTOR IntervalTestFunction (int 11,int 12,INTERVAL_VECTOR & in)

{

INTERVAL_VECTOR xx(1);
xx(1)=11092.0+(-25912.0+(19660.0-4840.0*Cos(in(1)))*Cos(in(1)))*Cos(in(1))+(
-508.0+(3788.0-1600.0*Cos(in(1)))*Cos(in(1)))*Sin(in(1));

return xx;

}

This program is implemented under the name Test_Solve_General2. With epsilonf=0 and epsilon=0.001
we get the solution intervals, using 32 boxes:

6 = [—0.0007669904,0] 6 = [—0.8068739, —0.8061069]
for whatever order. If we use epsilon=0 and epsilonf=0.1 we get, using 50 boxes:

0 = [—0.806784012741056, —0.806781016684830]
0 = [—4.793689962142628¢ — 05, 0]

In both cases the solution intervals contain the roots of the equation.

2.3.5.4 Example 4

In this example (see section 15.1.3) we deal with a complex problem of three equations in three unknowns
1,60, ¢. We are looking for a solution in the domain:

[4.537856054, 4.886921908], [1.570796327, 1.745329252], [0.6981317008, 0.8726646262]
The system has a solution which is approximately:
4.6616603883, 1.70089818026, 0.86938888189
This problem is extremely ill conditioned as for the TestDomain the functions intervals are:
[—1.45096e + 08, 1.32527e + 08]; [—38293.3,29151.5]; [—36389.1, 27705.7]

This program is implemented under the name Test_Solve_General. With espsilonf=0 and epsilon=0.001
and if we stop at the first solution we find with the maximum equation ordering;:

1 = [4.664665,4.665347] 6 = [1.7034,1.703741] ¢ = [0.8706193,0.8709602]
with 531 boxes. We may also mention the following remarks:
e we get no improvement with the single bisection mode as we need 2435 boxes to find the first solution,

e using the Reverse Storage mode does not lead to any improvement for finding the first root: in this mode
we need 5587 boxes to get the first solution,

With the maximum middle-point equation ordering we find:

¥ = [4.665347,4.666029] 6 = [1.701355,1.701696] ¢ = [0.8709602,0.8713011]

with 203 boxes. The importance of normalizing the functions appears if we use epsilonf=0.1 and epsilon=0.
If we stop at the first solution we find:

1 = [4.661660388259656, 4.661660388340929]
6 = [1.700898180243437, 1.700898180284073]
¢ = [0.869388881899751, 0.869388881940387]

while if we divide the first function by 1000 we find:

1 = [4.661658091884636, 4.661658424779772]
6 = [1.700898403947993, 1.700898570395561]
¢ = [0.869388105618527, 0.869388272066095)

in four time less computation time.

2.4. GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN 25

2.3.5.5 General comments

The advantages of the proposed algorithm is that it is easy to use and implement for a fast check. For
sharp system it may provide quickly solutions with a reasonable accuracy. The drawback is that it may
provide solutions intervals which does not contain roots or, worse, miss some roots if Dist is not set to 0 (see
section 2.3.5.2).

This algorithm may be used also for analysis: if we have to solve numerous systems we may use this algorithm
with a low M in order to fast check if the current system may have some real roots, in which case we may consider
using a more sophisticated algorithm.

This solving algorithm may be tested on-line on the web page ALIAS-on-line that can be found on the
COPRIN web page.

2.4 General purpose solving algorithm with Jacobian

2.4.1 Mathematical background

Assume now that we are able to compute the jacobian matrix of the system of functions. We will use this
jacobian for improving the evaluation of the function intervals using two approaches:

1. use the monotonicity of the function
2. use the gradient for the evaluation of the function intervals

Note also that this method may be used to solve a system composed of n; equations Fy(X) =0,...,F,, =0,
ngy inequalities G1(X) > 0,...,Gp,)X) > 0 and ng inequalities H1(X) < 0,..., H,,(X) < 0. Note also that
not all the function must be differentiable to use this procedure: only one of them is sufficient. In that case you
will have however to set special values in the gradient function (see 2.4.2.2).

A notable difference with the previous procedure is that we use Moore theorem (see section 3.1.1) to de-
termine if a unique solution exists in a given box, in which case we use Krawczyk method for determining this
solution (see section 2.10). Therefore if the algorithm proposes as solution a point instead of a range this imply
that this solution has been obtained as the result of Moore theorem. Note however that getting a range for a
solution instead of a point does not always imply that we have a singular solution. For example it may happen
that the solution is exactly at one extremity of a box (see example in section 2.4.3.2) which a case that our
algorithm does not handle very well. A local analysis of the solution should however confirm quickly if the
solution is indeed singular.

In addition we use also the inflation method presented in section 3.1.6 to increase the width of the box in
which we may guarantee that there is a unique solution.

Hence this algorithm allows to determine ezact solutions in the sense that we determine boxes that contains
a unique solution and provides a guaranteed numerical scheme that allows for the calculation of the solution.

In the same way we use the Hansen-Sengupta version of the interval Newton method to improve the boxes
(see [21]). Note that an improved interval Newton that may benefit from the structure of the system is available
(see section 3.1.4).

This algorithms allows also to determines the solutions of non-0 dimensional system, see section 2.2.

2.4.1.1 Using the monotonicity

For a given box we will compute the jacobian matrix using interval analysis. Each row j of this interval matrix
enable to get some information of the corresponding function Fj.

o if the i-th column of the j-th row is an interval which is strictly negative or strictly positive, then F} is
monotonic with respect to the unknowns x;

o if the i-th column of the j-th row is equal to 0, then function F}; does not depend on the variable z;

In the first case the minimal and maximal value of F; will be obtained either for x; = z; or x; = 7; and
we are able to define the value of x; to get successively the minimal and maximal value as we know the sign
of the gradient. But this procedure has to be implemented recursively. Indeed we have previously computed

26 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

the jacobian matrix for x; = (;,7;) but now x; have a fixed value: hence a component Jj;;, of the j-th row
which for «; = (2;,7;) was such that J;; < 0 and ﬂ > 0 may now be a strictly positive or negative intervals.
Consequently the minimal and maximal value will be obtained for some combination of z;,x) in the two sets
{z;,7;} and {x}, Ty }. Bus as z;, has now a fixed value some other component of J;, may become strictly negative
or positive...

The algorithm for computing a sharper evaluation of F is:

(&7 Fj)=EvaluateF;((z1,Z1), - (Tm, Tm))

1. compute J;((z1,Z1),. .., (Zm, Tm))
2. let l; be the number of components of J; such that J;, > 0 or ﬂ < 0 and let x;,..., 7, be the variables
for which this occur o
3.ifl; >0
loop: for all combination of x;,...,x, in the set {z;,77,...,2p, Tp}:
e ifli <m
— compute J;((Z1,Z1), -, &1y s Tpy ooy (Tins Trm))

— let I3 be the number of components of J; such that J;; > 0 or Jir <0

— if Iy > Iy, then (F,, F,)=EvaluateF;((21,%1),. .-, &1, -, Tmy -« s (T, Trm))
— otherwise (Fu, Fy) = Fj((21,71)s s Tty e v s Tiny v v oy (Tiy Tm))

— if this is the first estimation of F}; then F}; = F,

— otherwise

* if F, < F}, then I} =
x if F,, > F}, then F; =

& [

e otherwise

- (&,E) :Fj((ﬂ>x71)v"'axl""vxmv"”(hvm))
— if this is the first estimation of F}; then F}; = F,
— otherwise

* if F, < F}, then

=F,
x if F,, > Fj, then F; = F,

L
7
4. end loop:

5. otherwise (Fj, Fj) = Fj((21, 71), -, (Zm, Tm))
6. return (Fj, F))

This procedure has to be repeated for each Fj}.

2.4.1.2 Improving the evaluation using the Jacobian and centered form
Let 27" be the middle point of (z;,7;) and X = {(21,%1), ..., (Zm, Tm)} be the box. Then:

(F5(X), F(X)) € Fj(z", o am) +) (26, %) — 2) Ji((20, %0, - oo (20,), 2505 m) - (24)

Il
3

.
I

see [5], pp. 52. This expression enable to get in some cases a sharper bound on Fj.
This evaluation is embedded into the evaluation procedure of the solving algorithms using the Jacobian. It
is also available in its general form as

2.4. GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN 27

INTERVAL_VECTOR Centered_Form(int DimVar,int DimEq,
INTERVAL_VECTOR (* TheIntervalFunction) (int,int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient)(int, int, INTERVAL_VECTOR &),
VECTOR &Center,
INTERVAL_VECTOR &Input)

where
e DimVar: number of variables
e DimEq: number of expressions
e ThelIntervalFunction: procedure in MakeF format for interval evaluating the expressions
e Gradient: procedure un MakeJ format for evaluating the derivatives of the expressions
e Center:the center point for the centered form
e Input: the ranges for the variables
A variant of this procedure is

INTERVAL Centered_Form(int k,int DimVar,int DimEq,
INTERVAL_VECTOR (* TheIntervalFunction) (int,int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
VECTOR &Center,
INTERVAL_VECTOR &Input)

which is used to evaluate only expression number k.
A more sophisticated evaluation for the centered form is based on Baumann theorem [18]. First we define
the procedure cut(double x,INTERVAL X) as:

Xifr>X
cut(z, X) =< Xifz<X
x otherwise

For a system of m equations F in n unknowns X we define

Mid(DF!/0X) (X))
Diam((0F/[0X)(X))

p%c = cut(7[_171])

For a given equation ! we use the centered form with as center
zh = Mid(Xy) — plDiam(Xy) 22 = Mid(Xy) — pt Diam(X},)

with & in [1,n]. The choice for z!,2? is based on the property that the lower end-point of the centered form
F(x,X) has a maximum at 22 while its upper end-point has a minimum at z!. The interval evaluation of F}
is obtained as Fj(z!, X) N Fj(2?, X). Although 2nm centered form are used to compute the interval evaluation
of the m equations the calculation is in fact not so expensive as the interval evaluation of the Jacobian matrix
has to be done only once.

The implementation is:

INTERVAL_VECTOR BiCentered_Form(int DimVar,
int DimEq,
INTERVAL_VECTOR (* TheIntervalFunction) (int,int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR &Input,
int Exact)

where

28 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

e DimVar: number of variables

e DimEq: number of expressions

e TheIntervalFunction: procedure in MakeF format for interval evaluating the expressions
e Gradient: procedure un MakeJ format for evaluating the derivatives of the expressions

e Input: the ranges for the variables

e Exact: if 0 the procedure will return as soon as an interval evaluation of one expression does not include
0

A variant for evaluating only equation number k is

INTERVAL_VECTOR BiCentered_Form(int k,int DimVar,
int DimEq,
INTERVAL_VECTOR (* TheIntervalFunction) (int,int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR &Input,
int Exact)

Another variant is based on the property that the numerical interval evaluation of the product J(Input) (Input-Cente
may be overestimated as there may be several occurence of the same variable in this product. We may assume
that this product has been computed symbolically, then re-arranged to reduce the number of occurence of the
same variable leading to a procedure in MakeF format that computes directly the product. The syntax of the
bicentered form procedure is

INTERVAL_VECTOR BiCentered_Form(int DimVar,
int DimEq,
INTERVAL_VECTOR (* TheIntervalFunction) (int,int,INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR (* ProdGradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR &Input,
int Exact)

where ProdGradient is the procedure that computes the product J(Input) (Input-Center), being understood
that the Center is available in the global variable ALIAS Center _CenteredForm.

2.4.1.3 Single bisection mode

We may use the single bisection mode i.e. bisect only one variable at a time. Fives modes exist for determining
the variable to be bisected, the choice being made by setting Single Bisection to a value from 1 to 8

e 1 : we just split the variable having the largest width

e 2 : this mode is based on the smear function as defined by Kearfott [7]: let J = ((J;;)) be the Jacobian
matrix of the system and let define for the variable z; the smear value s; = Max(|J;; (@i,]|, |Jij[24, T5l|
Vj € [1,n] where n is the total number of functions. The variable that will be bisected will be the one
having the largest s;. There is however a drawback f the smear function: let consider for example the
equation F' = f2b® — 1 = 0 where f, b are large identical intervals centered at 0. The derivative of F with
respect to f is 2fb% and with respect to b 3f2b%: multiplied by the width of the interval we get 2f2b% and
3£2b>. Hence the smear function for b will be in general larger than for f and b will always be bisected
until its width is lower than the desired accuracy. Another example in which the smear function is not
the best choice is presented in section 2.4.3.4. However the smear function is very often the most efficient
mode and should be privileged.

e 3 : this is similar to the smear function except that we take into account its drawback. To avoid bisecting
over and over the same variable we impose that a variable may be considered for bisection only if the ratio
of its width over the maximal width of the box is not lower than the variable ALTAS_Bound_Smear (default
value 1.e-5).

2.4. GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN 29

e 4 : this mode is based on the Krawczyk operator: to determine which variable should be bisected we
consider the box P = {[z1,%1],...,[%n,Tn]}. When dealing with the variable z; the single bisection
mode will lead to two new boxes Pi, P,. Let X1, X5 be the middle point of these boxes We have seen
(section 2.10) that a fundamental point of Moore test for determining the unicity of a solution in a box is
that ;(P;) = ||[I — J~Y(X;)J(P;)|| < 1. Thus we will consider in turn each of the variable and compute
the value of r; for both Py, P,. The bisected variable will be chosen as the one leading to the minimal
value of all r;. However to avoid bisecting over and over the same variable we use another test: let d;
be the width of the interval [z;,T;] and dya. be the maximum of all the d;. If d;/dpe. < 0.1 we don’t

consider the variable x; as a possible bisection direction.

e 5: we use a round-robin mode i.e. each variable is bisected in turn (first z;, then x5 and so on) unless
the width of the range for the variable is less than the desired accuracy on the variable, in which case the
bisected variable is the next one having a sufficient width

e 6: like mode 2 of SolveGeneral. ALTAS RANDG may still be used to switch between mode 1 and mode 2
of SolveGeneral

e 7: like mode 2 of SolveGeneral except that it is assumed that the user has defined a simplification
procedure that may allow to reduce the box directly within the bisection process

e 8: the variable are regrouped by groups of ALIAS Tranche Bisection elements. The bisection will
look at each group in turn and bisect the first group that has elements whose diameter is larger than
ALTIAS Size Tranche Bisection. When the element of the group have all elements whose diameter is
lower than this threshold the bisection will consider the next group. If all elements of all groups have a
diameter lower than the threshold the smear function will be used to determine which variable will be
bisected.

The smear mode leads in general to better result than the other modes (but there are exception, see example
in section 2.4.3.4). There is another mode called the mized bisection: among the n variables we will bisect
mi1 < n variables, which will lead to 2™ new boxes. This mode is obtained by setting the global integer
variable ALTAS Mixed Bisection to m; — 1. Here we will order the variables according to the value of their
smear function (if the flag Single Bisection is 2 or 3) or according to their width (for 1,4,5).

2.4.2 Implementation

The algorithm is implemented in generic form as:

int Solve_General_Gradient_Interval(int m,int n,
INTEGER_VECTOR Type_Eq,

INTERVAL_VECTOR (* IntervalFunction) (int,int,INTERVAL_VECTOR &),
INTERVAL_MATRIX (* IntervalGradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR & TheDomain,
int Order,int M,int Stop,
double epsilon,double epsilonf,double Dist,
INTERVAL_MATRIX & Solution,int Nb,INTEGER_MATRIX &GI,
int (¥ Simp_Proc) (INTERVAL_VECTOR &))

the arguments being:
e m: number of unknowns
e n: number of functions, see the note 2.3.4.1
e Type_Eq: type of the functions, see the note 2.3.4.2

e IntervalFunction: a function which return the interval vector evaluation of the functions, see the
note 2.3.4.3. Remember that if you have equations and inequalities in the system you must first de-
fine the equations and then the inequalities.

30

CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

IntervalGradient: a function which the interval matrix of the jacobian of the functions, see the note 2.4.2.2

TheDomain: box in which we are looking for solution of the system. A copy of the search domain is
available in the global variable ALTAS Init Domain

Order: the type of order which is used to store the boxes created during the bisection process. This order
may be either MAX_FUNCTION_ORDER or MAX_MIDDLE FUNCTION_ORDER. See the note on the order 2.3.4.4.

M: the maximum number of boxes which may be stored. See the note 2.3.4.5
Stop: the possible values are 0,1,2

— 0: the algorithm will look for every solution in TheDomain
— 1: the algorithm will stop as soon as 1 solution has been found

— 2: the algorithm will stop as soon as Nb solutions have been found
epsilon: the maximal width of the box, see the note 2.3.4.6

epsilonf: the maximal width of the function intervals, see the note 2.3.4.6. Note that if this value is set
to 0, then Moore test is not used.

Dist: minimal distance between the middle point of two interval solutions, see the note 2.3.4.7

Solution: an interval matrix of size (Nb,m) which will contained the solution intervals. This list is sorted
using the order specified by Order

Nb: the maximal number of solution which will be returned by the algorithm

GI: an integer matrix called the simplified jacobian, which give a-priori information on the sign of the
derivative of the function. GI(i,j) indicates the sign of the derivative of function i with respect to
variable j using the following code:

— -1: the derivative is always negative

— 0: the function is not dependent of variable j

— 1: the derivative is always positive

— 2: the sign of the derivative is not known
Simp_Proc: a user-supplied procedure that take as input the current box and proceed to some further
reduction of the width of the box components or even determine that there is no solution for this box, in

which case it should return -1 (see note 2.3.3). Remember that you may use the 3B method to improve
the efficiency of this algorithm (see section 2.3.2).

Note that the following arguments may be omitted:

Type_Eq: in that case all the functions will supposed to be equations.
GI: in that case all the sign of the derivatives will supposed to be unknown

Simp_Proc: no simplification procedure is provided by the user

2.4.2.1 Return code

The procedure will return an integer k

k > 0: number of solutions

k = —1: the size of the storage is too low (possible solutions: increase M, or use the 3B method, or use
the reverse storage mode or the single bisection mode)

k = —2: m or n is not strictly positive

2.4. GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN 31

e k= —3: Order is not 0 or 1

e k= —4: one of the function in the system has not a type 0, -1 or 1 (i.e. it’s not an equation, an inequality
F <0 or an inequality F' > 0)

k = —5: we are in the optimization mode and more than one functions are expressions to be optimized
(see the Optimization chapter)

e k = —100: in the mixed bisection mode the number of variables that will be bisected is larger than the
number of unknowns

e k= —200: one of the value of ALTAS Delta3B or ALIAS Max3B is negative or 0
o k= —300: one of the value of ALTAS_SubEq3B is not 0 or 1
e k= —400: although ALTAS_SubEq3B has as size the number of equations none of its components is 1

e k= —500: ALIAS ND is different from 0 (i.e. we are dealing with a non-0 dimensional problem, see the
corresponding chapter) and the name of the result file has not been specified

e k= —1000: the value of the flag Single Bisection is not correct
e k= —3000: we use the full bisection mode and the problem has more than 10 unknowns
The following variables play also a role in the computation:

e ALTAS Store_Gradient: if not 0 the gradient matrix of each box will be stored together with the input
intervals. Must be set to 0 for large problem (default value: 1)

e ALTAS Diam Max_Gradient: if the maximal width of the ranges in a box is lower than this value, then the
gradient will be used to perform the interval evaluation of the functions (default value: 1.e10)

e ALTAS Diam Max Kraw: if the maximal width of the ranges in a box is lower than this value, then the
Krawczyk operator will be used to determine if there is a unique solution in the box (default value: 1.e10)

e ALTAS Diam Max Newton: if the maximal width of the ranges in a box is lower than this value, then the
interval Newton method will be used either to try to reduce the width of the box or to to ensure that
there is no solution of the system in the box (default value: 1.e10)

2.4.2.2 Jacobian matrix

The user must provide a function which will compute the interval evaluation of the jacobian matrix of its
particular functions for a given box. As for the function evaluation procedure we have chosen a syntax which
shows the best compromise between program calls and interval calculation. The syntax of this function is:

INTERVAL_MATRIX IntervalGradient (int 11,int 12,INTERVAL_VECTOR & x)

e x: a m dimensional interval vector which define the intervals for the unknowns

e 11,12: the function must be able to return the interval evaluation of the component of the jacobian matrix
at row 11 and column 12 i.e. the derivative of the function number 11 with respect to the variable number
12. The first row has number 1, the last n and the first column has number 1, the last m.

This procedure returns an interval matrix grad of size m X n in which grad(11,12) has been computed. This
function should be written using the BIAS/Profil rules.

Note that if ALTAS_Store_Gradient has not been set to 0 we will store the simplified Jacobian matrix for
each box. Indeed if for a given box B the interval evaluation of one element of the gradient has a constant
sign (indicating a monotonic behavior of the function) setting the simplified jacobian matrix element to -1 or 1
allows to avoid unnecessary evaluation of the element of the Jacobian for the box resulting from a bisection of
B as they will exhibit the same monotonic behavior. Although this idea may sound quite simple it has a very
positive effect on the computation time. The name of the storage variable of the simplified jacobian is:

32 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

INTEGER_MATRIX Gradient_Solve_General_Interval

If a function i is not differentiable you just set the value of grad(i,..) to the interval [-1e30,1e30]. It is
important to define here a large interval as the program Compute_Interval Function Gradient that computes
the interval evaluation of the function by using their derivatives uses also the Taylor evaluation based on the
value of the derivatives: a small interval value of the derivatives may lead to a wrong function evaluation.

Note also that a convenient way to write the Gradient procedure is to use the procedure MakeJ offered by
ALTAS-Maple (see the ALIAS-Maple manual). Take care also of the interval valuation problems of the element
of the Jacobian (see section 2.1.1.3) which may be different from the one of the functions: for example if a
function is v/zF(x,y, . ..) it is interval-valuable as soon as the lower bound of z is greater or equal to 0 although
the gradient will involve 1//z which is not interval-valuable if the lower bound of x is equal to 0. ALTAS-Maple
offers also the possibility to treat automatically the interval-valuation problems of the jacobian elements.

2.4.2.3 Evaluation procedure using the Jacobian

A better evaluation of the function intervals than the IntervalFunction can be obtained using the Jacobian
matrix. A specific procedure can be used to obtain this evaluation:

INTERVAL_VECTOR Compute_Interval_Function_Gradient(int m,int n,
INTEGER_VECTOR &Type_Eq,
INTERVAL_VECTOR (* IntervalFunction) (int,int,INTERVAL_VECTOR &),
INTERVAL_MATRIX (* IntervalGradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR & Input, int Exact,
INTEGER_VECTOR &AG,INTEGER_MATRIX &AR)

This procedure computes the function intervals for the box Input.

e Type_Eq is an integer array whose Dimension_Eq elements indicates the nature of the functions: -1 for
inequality <= 0, 0 for equation, 1 for inequality >= 0, -2 for a function to be minimized, 2 for a function
to be maximized and 10 for a function to be both minimized and maximized (note that for an optimization
problem the function that has to be minimized must be the last function in the list of function).

e the integer Exact should be put to 1 as for a value of 0 the procedure stop the evaluation of each box as
soon as the lower bound of the interval is negative and the upper bound positive.

e AG is an integer vector of size m x n which indicates if the sign of some derivatives are already known (the
elements should then have the values -1, 0 or 1) or not (the value must then be 2)

e AR is a return matrix with the sign of the derivatives for Input

The parameters Type_Eq, AG, AR may be omitted. This procedure uses the derivatives for improving the interval
evaluation of the functions in two different ways:

e by taking into account of the monotonicity of the functions

e by using an interval evaluation of the functions based on their Taylor expansion: it is therefore necessary
to evaluate rightly the derivatives of the functions

The best evaluation of the 1-th equation may be computed with

INTERVAL Compute_Interval_Function_Gradient_Line(int 1,int Dim_Var,
int Dimension_Eq,

INTERVAL_VECTOR (* IntervalFunction) (int,int,INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR &Input,int Exact,INTEGER_VECTOR &AG)

2.4. GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN 33

2.4.2.4 Storage

The boxes generated by the bisection process are stored in an interval matrix:
Box_Solve_General_Interval (M,m)

while the corresponding simplified Jacobian matrix is stored in the integer matrix of size (M, m x n):
Gradient_Solve_General_Interval

called the simplified jacobian: the entry 7, j of this matrix indicates for function ¢ and variable j that the gradient
is always positive (1), the gradient is always negative (-1), the function does not depend upon the variable (0),
the gradient may have not a constant sign within the range of the variable (2). The purpose of storing the
simplified gradient for each box is to avoid to re-compute a gradient as soon as it has been determined that a
father of the box has already a gradient with a constant sign. This has the drawback that for large problems this
storage will be also large: hence it is possible to avoid this storage by setting the variable ALTAS _Store_Gradient
to 0 (its default value is 1).

The algorithm try to manage the storage in order to solve the problem with the given number M. As seen in
section 2.3.1.2 two storage modes are available, the Direct Storage and the Reverse Storage modes, which are
obtained by setting the global variable Reverse_Storage to 0 (the default value) or 1.

For both modes the algorithm will first run until the bisection of the current box leads to a total number of
boxes which exceed the allowed total number. It will then delete the boxes in the list which have been already
bisected, thereby freeing some storage space (usually larger for the reverse mode than for the direct mode) and
will start again.

2.4.3 Examples
2.4.3.1 Example 1

This problem has been presented in section 2.3.5.1.
The IntervalGradient function is defined as:

INTERVAL_MATRIX IntervalGradient (int 11,int 12,INTERVAL_VECTOR & x)
{
INTERVAL_MATRIX Grad(3,3);
if (11==1)
{
if (12==1){Grad(1,1)=2*x(1)+2;return Grad;}
if (12==2){Grad(1,2)=0;return Grad;}
if (12==3){Grad(1,3)=0;return Grad;}
}
if(11==2)
{
if (12==1){Grad(2,1)=0;return Grad;}
if (12==2){Grad(2,2)=2*x(2)+2;return Grad;}
if (12==3){Grad(2,3)=0;return Grad;}
}
if(11==3)
{
if (12==1){Grad(3,1)=0;return Grad;}
if (12==2){Grad(3,2)=0;return Grad;}
if (12==3){Grad(3,3)=2*x(3)+2;return Grad;}
}
}

A test main program may now be written as:

INT main()

{

int Num,i, j,order,precision,Stop;

// accuracy of the solution either on the function or on the variable
double Accuracy,Accuracy_Variable,Diff_Sol;

INTERVAL_MATRIX SolutionList(200,3);//the list of solutions
INTERVAL_VECTOR TestDomain;//the input intervals for the variable
INTERVAL_VECTOR F(3);

//We set the value of the variable intervals
SetTestDomain (TestDomain);

cerr << "Accuracy on Function = "
cerr << "Accuracy on Variable

; cin >> Accuracy;

"; cin >> Accuracy_Variable;

34 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

cerr << "Order (0,1)"; cin >>order;
cerr << "Stop at first solutiomns (0,1,2):";cin>>Stop_First_Sol;
cerr << "Separation between distincts solutions:";cin>> Diff_Sol;

//let’s solve....
Num=Solve_General_Gradient_Interval(3,3,IntervalTestFunction,
IntervalGradient,TestDomain,order, 10000, Stop,

Accuracy_Variable,Accuracy,Diff_Sol,SolutionList,1);

//too much intervals have been created, this is a failure
if (Num== -1)cout<<"Procedure has failed (too many iterations)"<<endl;

//otherwise print the solution intervals
for (i=1;i<=Num;i++)
{
cout << "solution " << i <<endl;
cout << "x(1)=" << SolutionList(i,1) << endl;
cout << "x(2)=" << SolutionList(i,2) << endl;
cout << "x(8)=" << SolutionList(i,3) << endl;
cout << "Function value at this point" <<endl;
for(j=1;j<=3;j++)F(j)=SolutionList(i,j);
cout << Compute_Interval_Function_Gradient(Dimension,Dimension_Eq,
IntervalTestFunction,
IntervalGradient,
F,1) << endl;
}
return O;

}

A property of this problem is that the Jacobian of the system is singular at the solution. Hence the unicity test
cannot be verified as it needs to evaluate the inverse of the jacobian matrix (as will fail the classical Newton
scheme, see section 2.9, that needs also the inverse Jacobian). But even with epsilon=epsilonf=1e-6 the
algorithm is able to find an approximation of the solution with 16 boxes only. Interestingly this is a case where
the 3B method is not efficient at all: with the 3B method the number of boxes increases to over 100 000. This
is quite normal: as the 3B method is used before the interval Newton method it reduces the range for the
unknowns toward a region where the interval Newton method will fail as the Jacobian is close to a singularity.
We therefore end up with a solving that is only based on the bisection process and we have seen that this
process behaves poorly for this system. But if we mix the 3B method and the 2B filtering of section 2.17 then
the solving needs only 1 box.

2.4.3.2 Example 2

The problem we want to solve has been presented in section 2.3.5.2,15.1.1.
The IntervalGradient procedure is:

INTERVAL_MATRIX IntervalGradient (int 11,int 12,INTERVAL_VECTOR & in)
{
INTERVAL_MATRIX Grad(3,3);
INTERVAL x,y,teta;
x=in(1) ;y=in(2) ;teta=in(3);
if (11==1)
{
if (12==1){Grad(1,1)=2*x;return Grad;}
if(12==2){Grad(1,2)=2*y;return Grad;}
if (12==3){Grad(1,3)=0;return Grad;}
}
if (11==2)
{
if (12==1){Grad(2,1)=2.0%x-20.0+8.0*Cos (teta) ;return Grad;}
if (12==2){Grad(2,2)=2.0%y+8.0*Sin(teta) ;return Grad;}
if (12==3){Grad(2,3)=-8.0*x*Sin(teta)+80.0*Sin(teta)+8.0*y*Cos(teta) ;
return Grad;}
¥
if(11==3)
{
if (12==1){Grad(3,1)=2.0%x-6.0+4.0%Cos (teta)-4.0%Sin(teta) ;
return Grad;}
if (12==2){Grad(3,2)=2.0*y-20.0+4.0xSin(teta)+4.0*Cos(teta) ;return Grad;}
if (12==3)1{
Grad(3,3)=52.0%Sin(teta)-28.0*Cos(teta)+(4.0*Cos(teta)-
4.0xSin(teta))*y+(-4.0*Sin(teta)-4.0*Cos(teta)) *x;
return Grad;

}

2.4. GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN 35

We may use the same main program as in the previous example (the name of this program is
Test_Solve_Generall Gradient).

Let’s assume that we set epsilonf to 0 and epsilon to 0.01 while looking at all the solutions (Stop=0),
using the maximum equation ordering and setting Dist to 0.1. The algorithm provide the following solutions
after using 55 boxes:

x = [3.36607,3.37306] y = [6.21468, 6.21850]
x = [4.99845,5.00165] y = [4.99845, 5.00146]

[—0.808416, —0.805665]

0=
6 = [—0.000536641, 0]
We notice that all of the roots are contained in the solution intervals.

If we use the maximum middle-point equation ordering the algorithm provide the same solution intervals.

With epsilonf=0.001, epsilon=0 the algorithm still find exactly the root with 55 boxes and a computation
time of 7010ms. Here Moore test may have failed as the solution in 6 is 0, which correspond exactly to split
point in the bisection process: it may be useful to break the symmetry in the test domain.

Using the single bisection mode and setting the flag Single Bisection to 2 enable to reduce the number of
boxes to 33 and the computation time to 3580ms for epsilonf=0.00001.

Note that we may improve the efficiency of the procedure by using simplification procedures such as the
2B (section 2.17) and the 3B method. In that case for epsilonf=1e-6, epsilon=1e-6 the number of boxes
will have been reduced to 7. Note that the solution [5,5,0] is still not guaranteed. But using a search space of
[—7, 7+ 1] for 6 allow the Moore test to guarantee both solutions.

2.4.3.3 Example 3

This example is derived from example 2. We notice that in the three equations of example 2 the second degree
terms of z,y are for all functions 2 + y2. Thus by subtracting the first function to the second and third we
get a linear system in x,y. This system is solved and the value of xz,y are substituted in the first function.
We get thus a system of one equation in the unknown 6 (see section 15.1.2). The roots of this equation are
0,-0.8067834380. The test program is Test_Solve_Gradient General2. The IntervalGradient function is
written as:

INTERVAL_MATRIX IntervalGradient (int 11,int 12,INTERVAL_VECTOR & in)

{

INTERVAL_MATRIX Grad(1,1);
Grad(1,1)=-3788.0+(2692.0+(7576.0-4800.0%Cos (in(1)))*Cos (in(1)))*Cos(in(1))+(
25912.0+(-39320.0+14520.0%Cos (in(1)))*Cos(in(1)))*Sin(in(1));

return Grad;

}

With epsilonf=0 and epsilon=0.001 we get the solution by using 8 boxes:
6 = [-0.0005316396,0] 6 = [—0.8071015, —0.8063247]

for whatever order. The solution intervals contain the roots of the equation. If we use epsilon=0 and
epsilonf=0.1 we get by using 8 boxes:

0 = [—0.8067839277] 6 = [—5.4136579¢ — 16]

Here we get a unique solution and a range solution. But we notice that the solution 0 is exactly the middle
point of the test domain: Moore test will fail as 0 will always be an end-point of the range. If we break the
symmetry of the test domain we will get exactly both solutions.

2.4.3.4 Example 4

In this example (see section 15.1.3) we deal with a complex problem of three equations in three unknowns
1,60, ¢. We are looking for a solution in the domain:

[4.537856054,4.886921908], [1.570796327,1.745329252], [0.6981317008, 0.8726646262]
The system has a solution which is approximatively:

4.6616603883, 1.70089818026, 0.86938888189

36 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

This problem is extremely ill conditioned as for the TestDomain the functions intervals are:
[—1.45096e + 08, 1.32527¢ + 08]; [—38293.3,29151.5]; [—36389.1, 27705.7]

The name of the test program is Test_Solve_General Gradient. With espsilonf=0 and epsilon=0.001 and
if we stop at the first solution we find with the maximum equation ordering:

1 = [4.661209,4.661906] 6 = [1.700332,1.701014] ¢ = [0.8693552,0.8696447]

with 73 boxes using the direct storage mode (with the reverse storage mode only 37 boxes are needed). With
the maximum middle-point equation ordering we find the same intervals with 67 boxes in the direct storage
mode (41 for the reverse storage mode).

The importance of normalizing the functions has been mentioned in section 2.3.5.4. But in this example
the use of the Jacobian matrix enable to drastically reduce the computation time. If we use epsilonf=0.1 and
epsilon=0 and if we stop at the first solution we find an exact solution using 73 boxes:

1 = [4.66166] 6 = [1.700898] ¢ = [0.869388]

in a time which is about 1/100 of the time necessary when we don’t use the Jacobian.

In the single bisection smear mode (i.e. only one variable is bisected in the process) the same root is obtained
in 21080ms (about 50% less time than when using the full bisection mode) with only 40 boxes in the direct
storage mode.

Note that for epsilonf=0.1 and epsilon=0 we find the only root with 73 boxes in 39760ms (41 boxes and
24650ms in the single bisection smear mode).

Note that we may improve the efficiency of the procedure by using simplification procedures such as the 2B
(section 2.17) and the 3B method. An interesting point in this example is that the bisection mode 1 (bisecting
along the variable whose interval has the largest diameter) is more effective than using the bisection mode 2
(using the smear function) with 53 boxes against 108 for the mode 2 for epsilonf=1e-6 and epsilon=1e-6. This
can easily been explained by the complexity of the Jacobian matrix elements that leads to a large overestimation
of their values when using interval: in that case the smear function is not very efficient to determine which
variable has the most influence on the equations.

2.4.4 General comments

According to the system this procedure may not be especially faster than the general purpose algorithm but
the number of necessary boxes is in general drastically reduced. Furthermore the use of Moore test and interval
Newton method enable in many cases to determine exactly the solutions.

This solving algorithm may be tested on-line on the web page ALIAS-on-line that can be found on the
COPRIN web page.

2.5 General purpose solving algorithm with Jacobian and Hessian

2.5.1 Mathematical background

In this new algorithm we will try to improve the evaluation of the function intervals by using the Hessian of the
functions. This improvement is based on a sharper analysis of the monotonicity of the functions which in turn
is based on a sharper evaluation of the Jacobian matrix of the system. The element .J;; of the Jacobian matrix
at row ¢ and column j is:

OF;
8(Ej
Now consider the corresponding line of the Hessian matrix which is:
oF;
H;; = ——— with ke[l
7 Ozj0x b [1,m]

The elements of this line indicate the monotonic behavior of the elements of the Jacobian matrix. If some
elements in this line have a constant sign, then the elements of the Jacobian are monotonic with respect to some

2.5. GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN AND HESSIAN 37

of the unknowns and using this monotonicity we may improve the evaluation of the element of the Jacobian
matrix. This improvement has to be applied recursively: indeed as we will evaluate the Jacobian elements for
boxes in which some components have now a fixed value the evaluation of the Hessian matrix for these boxes
may lead to a larger number of the component of the Hessian which have a constant sign. The recursion will
stop if all the component of the Hessian line have a constant sign or if the number of component with a constant
sign does not increase.

Note also that not all the function must be differentiable to use this procedure: only one of them is sufficient.
In that case you will have however to set special values in the gradient and hessian function (see 2.4.2.2).

We will also use the Hessian in order to try to sharpen the evaluation of J;;. Let the box intervals be
{(z1,71), ..., (2, Tn)}. Let 27" be the middle point of (z;,7;) and X = {(z1,71),..., (Zm, Tm)} be the box.
Then:

i
(Jij(X), Jij (X)) € Jij(aT, .. oxm) + Y (24, 75) — @]) Hij (21, T7), -+ - (24, T7), 345 - -5 Ton) (2.5)
1

I
3

<.
Il

see [5], pp. 52. This expression enable to get in some cases a sharper bound on J;;.

The improvement of the evaluation of the function intervals is due to the fact that a sharper evaluation
of the Jacobian matrix may lead to a larger number of Jacobian elements with constant sign than with the
direct evaluation of the Jacobian matrix. To speed up the algorithm we store the Jacobian matrix of each box:
this enable to avoid the evaluation of the components of the Jacobian matrix which have a constant sign when
bisecting the box

Another interest of the Hessian is that it enable to use Kantorovitch theorem. This theorem (see section 3.1.2)
can be applied if the number of unknowns is equal to the number of equations and enable to determine boxes
in which there is an unique solution, solution which can be found using Newton method (see section 2.9) with
as estimate of the solution any point within the boxes.

We will use this theorem at three possible levels:

e level 0: we want solution intervals for which the maximal width is equal or lower than a given threshold.
In that case imagine that two solution intervals have been found at some point of the algorithm, this two
solutions being close. We will apply Kantorovitch theorem for the center of the two solution intervals. In
the most favorable case one of them will contain an unique solution while the boxes given by Kantorovitch
theorem will cover the other one: consequently this input intervals will be eliminated of the solution
intervals. Therefore Kantorovitch theorem will eliminate spurious solution intervals and we don’t need to
indicate a minimal distance between the solution intervals.

e level 1: we look for solution intervals whose width has no importance as soon as we are sure that they
contain one unique solution which can be found using Newton method with as estimate of the solution any
point within the solution intervals. In that case we will apply Kantorovitch theorem for each boxes which
appear during the algorithm. If the theorem give a solution intervals we will store it in the solution list and
update the remaining boxes of the list so that none of them contain the solution intervals. A consequence
is that the width of the solution intervals cannot be determined beforehand while each solution intervals
that have been determined using this method contain one unique solution which can be determined using
Newton method.

e level 2: we apply Newton method for each box and if Newton converge toward a solution within the
current box we store the box as solution interval. The boxes in the list are then filtered so that none of
them contains the solution interval.

Furthermore we use the inflation method presented in section 3.1.6 to increase the width of the box in which
we may guarantee that there is a unique solution.

As for the method using only the gradient we use the Hansen-Sengupta version of the interval Newton
method to improve the boxes (see [21]).

2.5.1.1 Single bisection mode

Instead of bisecting all the variables we may bisect only one of the variable. The criteria for determining which
of the variable will be bisected is identical to the one presented in section 2.4.1.3 for the mode up to 5. The

38 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

mode 6 is different: basically we will bisect the variable having the largest diameter except that it is supposed
that a weight is assigned to each variable and the diameter used by the bisection process is the diameter of
the range for the variable multiplied by the weight of the variable. The weight must be indicated in the vector
ALTAS Bisection_Weight.

2.5.2 Implementation

The generic implementation of this solving procedure is:

int Solve_General_ JH_Interval(int Dimension_Var,int Dimension_Eq,
INTEGER_VECTOR &Type_Eq,
INTERVAL_VECTOR (* TheIntervalFunction) (int,int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int,INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Hessian) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR & TheDomain,
int Order,
int Iteration,
int Stop_First_Sol,
double Accuracy_Variable,
double Accuracy,
INTERVAL_MATRIX & Solution,
INTEGER_VECTOR & Is_Kanto,
int Apply_Kanto,
int Nb_Max_Solution,INTERVAL_MATRIX &Grad_Init,
int (* Simp_Proc) (INTERVAL_VECTOR &),
int (* Local_Newton) (int Dimension,int Dimension_Eq,
INTERVAL_VECTOR (* ThelntervalFunction) (int,int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
VECTOR &Input,double Accuracy,int Max_Iter, VECTOR &Residu,INTERVAL_VECTOR &In))

the arguments being:
e m: number of unknowns
e n: number of functions, see the note 2.3.4.1
e Type_Eq: type of the functions, see the note 2.3.4.2

e IntervalFunction: a function which return the interval vector evaluation of the functions, see the
note 2.3.4.3. Remember that if you have equations and inequalities in the system you must first de-
fine the equations and then the inequalities.

e IntervalGradient: a function which return the interval matrix of the jacobian of the functions, see the
note 2.4.2.2

e IntervalHessian: a function which return the interval matrix of the Hessian of the functions, see the
note 2.5.2.1

e TheDomain: box in which we are looking for solution of the system. A copy of the search domain is
available in the global variable ALTAS Init Domain

e Order: the type of order which is used to store the intervals created during the bisection process. This order
may be either MAX_FUNCTION_ORDER or MAX_MIDDLE FUNCTION_ORDER. See the note on the order 2.3.4.4.

e M: the maximum number of boxes which may be stored. See the note 2.5.2.2
e Stop: the possible values are 0,1,2

— 0: the algorithm will look for every solution in TheDomain

2.5.

GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN AND HESSIAN 39

— 1: the algorithm will stop as soon as 1 solution has been found

— 2: the algorithm will stop as soon as Nb solutions have been found
epsilon: the maximal width of the box, see the note 2.3.4.6
epsilonf: the maximal width of the function intervals, see the note 2.3.4.6

Solution: an interval matrix of size (Nb,m) which will contained the solution intervals. Each solution may
be:

— a set of intervals with the associated flag IsKanto to 0:

— a set of intervals with the associated flag IsKanto to 1: there is an unique solution in the set and
Newton method will converge toward this solution

— a set of intervals reduced to a point with the associated flag IsKanto to 0: this point is a solution
which has been obtained with Krawczyk method (see 2.10). The accuracy of this solution may be
improved by using the point as starting point for Krawczyk method and decreasing the accuracy
epsilonf

IsKanto: an integer vector of dimension Nb. A value of 1 for IsKanto(i) indicate that applying Newton
method (see section 2.9) with as estimate the center of the solution intervals Solution(i) will converge
toward the unique solution which lie within the solution intervals Solution (i)

ApplyKanto: an integer which indicate at which level we use Kantorovitch theorem. If 1 we use Kan-
torovitch theorem (see section 3.1.2 and the mathematical background) to determine the solution. A
consequence is that the solution interval may have a width larger than epsilon. If 0 we use Kantorovitch
theorem just to separate the solutions: the solution interval will have a width epsilon. If 2 we will apply
Newton method for every box which has not been eliminated during the bisection process but we will
consider the result a solution only if it lie within the box. The maximal number of iteration is determined
by the global variable Max_Iter_Newton_JH Interval (by default 100). In that case we may miss solutions
if they are lying inside the same box.

Nb: the maximal number of solution which will be returned by the algorithm

GM: an interval matrix which give a-priori information on the values of the derivatives of the function.
GM(i,j) is the interval value of the derivative of function i with respect to variable j

Simp_Proc: a user-supplied procedure that take as input the current box and proceed to some further
reduction of the width of the box or even determine that there is no solution for this box, in which case it
should return -1 (see note 2.3.3). Remember that you may use the 3B method to improve the efficiency
of this algorithm (see section 2.3.2).

Local Newton: a Newton scheme that is used when Apply _Kanto is set to 2. When omitted the algorithm
will use the ALTAS Newton procedure (see section 2.9).

Note that the following arguments may be omitted:

Type_Eq: in that case all the functions will supposed to be equations.
GM: in that case all the derivatives will supposed to be unknown
Simp_Proc: no simplification procedure is provided by the user

Local Newton

The following variables play also a role in the computation:

ALIAS Store_Gradient: if not 0 the gradient matrix of each box will be stored together with the boxes.
Must be set to 0 for large problem (default value: 1)

40 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

e ALTAS Diam Max Gradient: if the maximal width of the ranges in a box is lower than this value, then the
gradient will be used to perform the interval evaluation of the functions (default value: 1.e10)

e ALTAS Diam Max Kraw: if the maximal width of the ranges in a box is lower than this value, then the
Krawczyk operator will be used to determine if there is a unique solution in the box (default value: 1.e10)

e ALTAS Diam Max Newton: if the maximal width of the ranges in a box is lower than this value, then the
interval Newton method will be used either to try to reduce the width of the box or to to ensure that
there is no solution of the system in the box (default value: 1.e10)

e ALTAS Always Use_Inflation: if ApplyKanto is set to 1 we get for each solution a box B which contains
only one solution. If this flag is set to 1 we compute the solution using Newton and then we use an inflation
procedure that try to determine a box B; which is larger than B and contains also only one solution

e ALTAS Eps_Inflation: the inflation algorithm will try to increase the width of the box B by at least this
value

e ALTAS Sing Determinant: if the determinant of the jacobian matrix of the system is lower than this value,
then the system is supposed to be singular

e ALTAS Diam Sing: for a value s of this parameter if there is singular solution in the system, then the
algorithm will not look for solution of the system in a box of width 2s around the singular solution
(default value: 0)

e ALTAS Use _Grad Equation: if this integer array has a size of n the derivatives of equation ¢ will be used
to evaluate the i-th equation only if ALTAS Use_Grad Equation[i] is not 0

e ALTIAS No_Hessian_Evaluation: if set to 0 we will not use the Hessian to sharpen the interval evaluation
of the Gradient when performing the interval evaluation of the equations. This may be useful if its known
that the interval evaluation of the elements of the hessian will have always a constant sign

2.5.2.1 Hessian procedure

The syntax of this function is:
Hess=INTERVAL_MATRIX IntervalHessian (int 11,int 12,INTERVAL_VECTOR & in)

This procedure should return an interval matrix of size m X n, m in which the Hessian of function numbered
11 to 12 has been updated (function number start at 1). The Hessian matrix of function ¢ (which is of size n
x m) is stored at location Hess((i-1)m+1...im,1...m). Remember that for each function the Hessian matrix is
symmetric: this fact should be used in order to speed up the evaluation of this matrix. If a function in the
system is not C? you set all the elements of its hessian matrix to the interval [-1e30,1e30]. Remember also here
to verify that each element of the Hessian should be interval-valuable (see section 2.1.1.3).

2.5.2.2 Storage

The boxes generated by the bisection process are stored in an interval matrix:
Box_Solve_General _Interval(M,m)

while the corresponding Jacobian matrix is stored in the interval matrix of size (M, m X n):
Gradient_Solve_JH_Interval

The purpose of storing the gradient for each box is to avoid to re-compute a gradient as soon as it has been
determined that a father of the box has already a gradient with a constant sign. This has the drawback that for
large problems this storage will be also large: hence it is possible to avoid this storage by setting the variable
ALIAS_Store_Gradient to 0 (its default value is 1). Note that here we store the interval gradient matrix and
not the simplified gradient matrix as in the solving procedure involving only the Jacobian.

2.5. GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN AND HESSIAN 41

The algorithm try to manage the storage in order to solve the problem with the given number M (see
section 2.3.1.2). As seen in section 2.3.1.2 two storage modes are available, the Direct Storage and the Reverse
Storage modes, which are obtained by setting the global variable Reverse _Storage to 0 (the default value) or
to the number of unknowns+1.

For both modes the algorithm will first run until the bisection of the current box leads to a total number of
boxes which exceed the allowed total number. It will then delete the boxes in the list which have been already
bisected, thereby freeing some storage space (usually larger for the reverse mode than for the direct mode) and
will start again.

If the procedure has to be used more than once it is possible to speed up the computation by allocating the
storage space before calling the procedure. Then you may indicate that the storage space has been allocated
beforehand by indicating a negative value for M, the number of boxes being given by the absolute value of M.

2.5.2.3 Improvement of the function evaluation and of the Jacobian

An improved value of the Jacobian is obtained by taking account its derivative in the procedure:

INTERVAL_MATRIX Compute_Best_Gradient_Interval(int Dimension,
int Dimension_Eq,
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Hessian) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR &Input,
int Exact,INTERVAL_MATRIX &InGrad)

where

e Exact: if 1 the calculation for one element of the Jacobian will stop as soon as the method has found that
the interval evaluation of the element will not have a constant sign. If 0 the best interval evaluation will
be computed

e InGrad: if this matrix is not the zero matrix we will assume that the non zero elements of this matrix are
the interval evaluation of the Jacobian

To compute only the best value of the jacobian element at 1-th row nad j-th column you may use:

INTERVAL Compute_Best_Gradient_Interval_line(int 1,int j,int Dim,
int Dimension_Eq,
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Hessian) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR &Input,int Exact)

We may also obtain the best interval evaluation of the equations through the procedure

INTERVAL_VECTOR Compute_Interval_Function_Gradient(int Dimension,
int Dimension_Eq,
INTERVAL_VECTOR (* ThelIntervalFunction) (int,int,INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Hessian) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR &Input, int Exact)

2.5.2.4 Return code and debug
The procedure will return an integer k
e k£ > 0: number of solutions

e it = —1: the size of the storage is too low (possible solutions: increase M, or use the 3B method, or use
the reverse storage mode or the single bisection mode)

e k= —2: mor n is not strictly positive

42 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

e k= —3: Order is not 0 or 1

e k= —4: one of the function in the system has not a type 0, -1 or 1 (i.e. it’s not an equation, neither
inequality F' < 0 or an inequality F' > 0)
e k= —100: in the mixed bisection mode the number of variables that will be bisected is larger than the

number of unknowns
e k= —200: one of the value of ALTAS Delta3B or ALTAS Max3B is negative or 0
e k= —300: one of the value of ALTAS_SubEq3B is not 0 or 1
e k= —400: although ALTAS_SubEq3B has as size the number of equations none of its components is 1

e it = —500: ALIASND is different from 0 (i.e. we are dealing with a non-0 dimensional problem, see the
corresponding chapter) and the name of the result file has not been specified

e k= —1000: the value of the flag Single Bisection is not correct
e k= —3000: we use the full bissection mode and the problem has more than 10 unknowns

As for the debug option they have been presented in the section 2.3.4.9.

2.5.3 Examples
2.5.3.1 Example 2

The problem we want to solve has been presented in section 2.3.5.2 and section 15.1.1. The name of the test
program is Test_Solve_JH Generall.

If epsilonf=0.01 the program using the maximum equation ordering find the two solutions using 50 boxes.

If we use the single bisection smear mode the program using the maximum equation ordering find the two
solutions in 4260ms using 32 boxes.

Note that we may improve the efficiency of the procedure by using simplification procedures such as the 2B
(section 2.17) and the 3B method. In that case for epsilonf=1e-6, epsilon=1e-6 the number of boxes will
have been reduced to 2 and both solutions will be guaranteed. even with a search space of [—, 7] for 6.

2.5.3.2 Example 3

This example is derived from example 2 and has been presented in section 2.3.5.3. The test program is
Test_Solve_JH General2. The IntervalFunction and IntervalGradient have been presented before. The
IntervalHessian is:

INTERVAL_MATRIX IntervalHessian (int 11,int 12,INTERVAL_VECTOR & in)

{

INTERVAL_MATRIX Hess(1,1);

Hess(1,1)=39320.0+(-3128.0+(-78640.0+43560.0%Cos (in(1)))*
Cos(in(1)))*Cos(in(1))+(-2692.0+(-15152.0+14400.0%Cos (in(1)))*
Cos(in(1)))*Sin(in(1));

return Hess;

}
A test main program may be written as:

INT main()

{

int Iterations,Dimension,Dimension_Eq,Apply_Kanto;
int Num,i, j,order,Stop_First_Sol,precision,niter,nn;
double Accuracy,Accuracy_Variable,eps;
INTERVAL_MATRIX SolutionList(200,3);

INTERVAL_VECTOR TestDomain,F(1),P(1),H(3);

VECTOR TR(1),Residu(1);

INTEGER_VECTOR Is_Kanto(6);

Dimension_Eq=Dimension=1;SetTestDomain (TestDomain) ;
cerr << "Number of iteration = "; cin >> Iterations;

cerr << "Accuracy on Function = "; cin >> Accuracy;
cerr << "Accuracy on Variable = "; cin >> Accuracy_Variable;

2.5.

cerr
cerr
cerr
cerr

Num=

if (W

cout

for(
{

P(1)
cout

GENERAL PURPOSE SOLVING ALGORITHM WITH JACOBIAN AND HESSIAN

<< "Debug Level (0,1,2)="; cin >> Debug_Level_Solve_General_Interval;
<< "Order (0,1)="; cin >>order;

<< "Stop at first solutions (0,1,2)=";cin>>Stop_First_Sol;

<< "Apply Kanto (0,1)=";cin>>Apply_Kanto;

Solve_General_JH_Interval(Dimension,Dimension_Eq,
IntervalTestFunction,IntervalGradient,IntervalHessian,
TestDomain,order,Iterations,Stop_First_Sol,Accuracy_Variable,
Accuracy,SolutionList,Is_Kanto,Apply_Kanto,6) ;

um== -1){cout << "The procedure has failed (too many iterations)'"<<endl;return 0;}
<< Num << " solution(s)" << endl;
i=1;i<=Num;i++)

cout<<"solution "<<i<<endl;cout<<"teta="<<SolutionList(i,1)<<endl;
cout << "Function value at this point" <<endl;F(1)=SolutionList(i,1);
cout << Compute_Interval_Function_Gradient(Dimension,Dimension_Eq,
IntervalTestFunction,IntervalGradient,
IntervalHessian,F,1) << endl;
cout << "Function value at middle interval" <<endl;
P(1)=Mid(SolutionList(i,1)); F=IntervalTestFunction(1,Dimension_Eq,P);
cout << Sup(F(1)) << endl; TR(1)=Mid(SolutionList(i,1));
if (Is_Kanto(i)==1)cout << "This solution is Kanto" <<endl;
else cout << "This solution is not Kanto" << endl;
if (Kantorovitch(Dimension,IntervalTestFunction,IntervalGradient,
IntervalHessian,TR,&eps)==1)

{

=INTERVAL(TR(1)-eps,TR(1)+eps);

<< "Unique solution in: " <<P << endl;
}

if (Is_Kanto(i)==1)
{

nn=Newton(Dimension, IntervalTestFunction,IntervalGradient,TR,Accuracy,1000,Residu) ;
if (nn>0)
{
cout << "Newton iteration converge toward: " << endl;
cout << TR << "with residu= " << Residu<< endl;

else
{
if (nn==0) cout << "Newton does not converge" << endl;
if (nn== -1)cout<<"Newton has encountered a singular matrix'"<<endl;

43

With epsilonf=0.0001 and epsilon=0.001 , using Kantorovitch at level 1, we get the solution intervals, using
4 boxes:

Newton method initialized with the center of these boxes converge toward 4.08282e-15 and -0.8067834.

2.5

6 = [—0.04244333,0.1295874] 6 = [—0.8376338, —0.7968275]

.3.3 Example 4

In this example (see section 15.1.3) we deal with a complex problem of three equations in three unknowns
1,0, ¢. We are looking for a solution in the domain:

[4.537856054, 4.886921908], [1.570796327, 1.745329252], [0.6981317008, 0.8726646262]

The system has a solution which is approximatively:

4.6616603883, 1.70089818026, 0.86938888189

This problem is extremely ill conditioned as for the TestDomain the equations intervals are:

[—1.45096¢ + 08,1.32527¢ + 08]; [—38293.3,29151.5]; [-36389.1, 27705.7]

The name of the test program is Test_Solve_JH General.
If we use epsilonf=0.1 and epsilon=0, we get the first solution with the following number of boxes and
computation time:

44 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

full bisection | smear bisection
direct storage 71, 31200ms 38, 20220ms
reverse storage | 35, 14710ms 38, 20280ms

We need 71 boxes in the full bisection mode to determine that this solution is unique and 38 boxes in the smear
bisection mode.

Note that we may improve the efficiency of the procedure by using simplification procedures such as the 2B
(section 2.17) and the 3B method. An interesting point in this example is that the bisection mode 1 (bisecting
along the variable whose interval has the largest diameter) is more effective than using the bisection mode
2 (using the smear function) with 33 boxes against 38 for the mode 2 for epsilonf=1e-6 and epsilon=le-
6. This can easily been explained by the complexity of the Jacobian matrix elements that leads to a large
overestimation of their values when using interval: in that case the smear function is not very efficient to
determine which variable has the most influence on the equations. But it must be noted that the use of the
Hessian allows to reduce this overestimation and consequently the differences in term of used boxes between
the two bisection mode is slightly reduced compared to the one we have observed when using only the Jacobian
(see section 2.4.3.4).

2.6 Stopping the general solving procedures

It may be interesting to stop the solving procedures although the algorithm has not been completed. We have
already seen that a possible mean to do that was to specify a number of roots in such way that the procedure
will exit as soon it has found this number of roots.

Another possible way to stop the calculation is to use a time-out mechanism. For that purpose you may
define in the double ALTAS TimeOut the maximum number of minutes allowed for the calculation. If this number
is reached (approximatively) the procedure will exit and will set the flag ALTAS TimeOut_Activated to 1.

The solution that have been found by the algorithms are stored in the interval matrix ALIAS_Solution and
their number is ALTAS Nb_Solution. Note that for the procedures involving the Jacobian this matrix will
usually describes the boxes that include a unique solution.

2.7 Ridder method for solving one equation

2.7.1 Mathematical background

Ridder method is an iterative scheme used to obtain one root of the equation F(z) = 0 within an interval
[z1, 22]. It assumes that F'(zq1)F(z2) < 0. Let x3 be the mid-point of the interval [z1,z2]. A new estimate of
the root is x4 with:

sign(F(x1) — F(x2))F(x3)

VF(23)? — F(x1)F (x2)
under the assumption F'(z1)F (z2) < 0 it may be seen that x4 is guaranteed to lie within the interval [z1, z2].

As soon as x4 as been determined we choose as new [z1,x2] the interval [z, z4] if F(21)F(x4) <0 or [z4,x2] if
F(z2)F (z4) < 0. The convergence of this algorithm is quadratic.

x4 =3+ (23 — 21)

2.7.2 Implementation

Ridder’s method enable to find a root of an equation F'(z) = 0 as soon as the root is bracketed in an interval
[z1, z2] such that F(x1)F(x2) < 0. It is implemented as:

int Ridder(REAL (* TheFunction) (REAL),INTERVAL &Input,
double AccuracyV,double Accuracy,int Max_Iter,double *Sol, double *Residu)

with:
e TheFunction: a procedure which enable to compute the value of the equation at a given point

e Input: the interval [x1, z2] in which we are looking for a root

2.8. BRENT METHOD FOR SOLVING ONE EQUATION 45
e AccuracyF: a threshold on the minimal value of the width of the interval [z, 2j+1] with F(z)F(2g4+1) <0
considered during the procedure
e Accuracy: a threshold on the value of F(z) which determine a root of the equation
e MaxIter: maximal number of iteration
e Sol: on success the value of the root
e Residu: the value of the equation at Sol
The procedure returns:
e 1: a solution has been found as F(Sol) <Accuracy
e 2: a solution has been found as |zy — zx11| <AccuracyV
o -1: F(x1)F(z2) >0
e -2: a numerical error was encountered during the computation
e -3: the maximal number of iteration has been reached without finding a solution

The test program Test_Ridder2 present a program to solve the trigonometric equation presented as example 2
(see section 15.1.1).

2.8 Brent method for solving one equation

2.8.1 Mathematical background

Brent method is an iterative scheme used to obtain one root of the equation F'(x) = 0 within an interval [z1, z2].
It assumes that F'(z1)F(z2) < 0. Let 3 be the mid-point of the interval [z1,z2]. A new estimate of the root
is x4 with:

T4 = T3+ —<

Q
with:
_ F(zs) _ F(X3) _ F(x1)
B = Fay T Fm) 1T Fm
P S[T(R—T)(aig —$3) — (1 —R>($3 —$1)]

Q = T-DER-1(S-1)

In this method x3 is considered to be the current estimate of the solution. The term P/Q is a correction factor:
when this factor leads to a new estimate of the solution outside the interval we use a bisection method to compute
a new interval [z1,x2]. In other words if F(x1)F(xz3) < 0 the new interval is [z, 23] and if F(xz2)F(z3) <0
the new interval is [z3,x2]. Therefore Brent method is a cross between a bisection method and a super-linear
method which insure that the estimate of the solution always lie within the interval [z1, x2].

2.8.2 Implementation

Brent’s method enable to find a root of an equation F'(z) = 0 as soon as the root is bracketed in an interval
[z1, z2] such that F(z1)F(x2) < 0. It is implemented as:

int Brent(REAL (* TheFunction) (REAL),INTERVAL &Input,
double AccuracyV,double Accuracy,int Max_Iter,double *Sol, double *Residu)

with:

e TheFunction: a procedure which enable to compute the value of the equation at a given point

46 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

e Input: the interval [x1, z2] in which we are looking for a root

e AccuracyF: a threshold on the minimal value of the width of the interval [z, j41] with F(z,)F (z541) <0
considered during the procedure

e Accuracy: a threshold on the value of F(z) which determine a root of the equation
e MaxIter: maximal number of iteration
e Sol: on success the value of the root
e Residu: the value of the equation at Sol
The procedure returns:
e 1: a solution has been found as F(Sol) <Accuracy
e 2: a solution has been found as |ry — xj4+1| <AccuracyV
o -1: F(x1)F(z2) >0
e -3: the maximal number of iteration has been reached without finding a solution

The test program Test_Ridder2 present a program to solve the trigonometric equation presented as example 2
(see section 15.1.1).

2.9 Newton method for solving systems of equations

2.9.1 Mathematical background

Let F be a system of n equations in the n unknowns x and xp be an estimate of the solution of the system.
Let J be the Jacobian matrix of the system of equation. Then the iterative scheme defined by:

Xk4+1 = Xk + J_l(xk)]-'(xk) (26)

starting with x¢ may converge toward a solution of the system.
A simplified Newton method consist in using a constant matrix in the classical Newton method, for example
the inverse Jacobian matrix at some point like xg. The iterative scheme become:

Xk11 = Xk + Jfl(XO)]-'(xk) (2.7)

Although the simplified method may need a larger number of iteration before converging than the classical
scheme each iteration has a lower computation time as there is no computation of the inverse of the Jacobian
matrix. This method may also encounter convergence problem as it has a convergence ball smaller than the
classical Newton method.

Newton method has advantages and drawbacks that need to be known in order to use it in the best way:

e it may really be fast: this may be important, for example in real-time control
e it is very simple to use

e but it does not necessarily converge toward the solution ”closest” to the estimate (see the example in
section 15.1.2)

e but it may not converge. Kantorovitch theorem (see section 3.1.2) enable to determine the size of the
convergence ball but this size is usually small (but quite often in practice the size is greater than the size
given by the theorem which however is exact in some cases)

e but a numerical implementation of Newton may overflow

2.9. NEWTON METHOD FOR SOLVING SYSTEMS OF EQUATIONS 47

2.9.2 Implementation
The procedure for using Newton method is:

int Newton(int n,VECTOR (* TheFunction) (VECTOR &),
MATRIX (* Gradient) (VECTOR &),
VECTOR &Input,double Accuracy,int MaxIter,VECTOR &Residu)

with
e n: number of equations

e TheFunction: a procedure which return the value of the equation for given values of the unknowns (see
note 2.3.4.3)

e Gradient: a procedure which return the Jacobian matrix of the system for given values of the unknowns
(see note 2.4.2.2)

e Input: at the start of the procedure the estimate of the solution, at the end of the procedure the solution

e Accuracy: the procedure return a solution if there is an Input such that |Fj(Input)| < Accuracy for all
k in [1,n].

e MaxIter: the procedure will return a failure code if a solution is not found after MaxIter iteration
e Residu: the value of the equations for the solution

Note that it also possible to use in the Newton method the interval evaluation of the equation and of the
Jacobian matrix which are necessary for the general purpose solving algorithm with Jacobian (see section 2.4).
The syntax of this implementation is:

int Newton(int Dimension,
INTERVAL_VECTOR (* IntervalFunction) (int,int,INTERVAL_VECTOR &),
INTERVAL_MATRIX (* IntervalGradient) (int, int, INTERVAL_VECTOR &),
VECTOR &Input,double Accuracy,int MaxIter,VECTOR &Residu)

e IntervalFunction: a function which return the interval vector evaluation of the equations, see the
note 2.3.4.3

e IntervalGradient: a function which the interval matrix of the jacobian of the equations, see the
note 2.4.2.2

To avoid overflow problem it is possible to use the vector ALTAS Newton Max Dim that must be resized to
the number of unknowns and in which will be indicated the maximal possible value of each variable after each
Newton operation. If one of these values is exceeded Newton will return 0.

The version of Newton method with constant J~! matrix is implemented as:

int Newton(int n,VECTOR (* TheFunction) (VECTOR &),
MATRIX &InvGrad,VECTOR &Input,double Accuracy,int MaxIter,VECTOR &Residu)

There is a special implementation of Newton method for univariate polynomial P:
int Newton(int Degree,REAL *Input,VECTOR &Coeff,double Accuracy,int Max_Iter,REAL *Residu)
with:

e Degree: degree of the polynomial

e Input: on entry an estimate of the solution and on exit the solution

e Coeff: coefficient of the polynomial ordered in increasing degree

e Accuracy: Input is a solution if —P(Input—< Accuracy

48 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

e MaxIter: the procedure will return a failure code if a solution is not found after MaxIter iteration
e Residu: the value of the polynomial for the solution

In that case we may have a problem if the Accuracy cannot be reached due to numerical errors. If you have
determined that Newton should converge (using for example Kantorovitch theorem, see section 3.1.2) then you
may use the procedure Newton_Safe with the same argument: this procedure will return the solution which has
led to the lowest Residu during the Newton scheme.

An example of use of the Newton method is presented in section 15.1.1, where it is compared to alternative
methods.

2.9.2.1 Return value
e -1: A singular matrix has been found during the scheme (not applicable if we use Newton with a constant
Jh
e (0: Newton has not converged after MaxIter iteration

e 1: Newton has converged toward solution Input

e 2: only valid for the implementation in which the function evaluation return an interval vector. It has
not been possible to find a solution such that all the mid point of the interval evaluation of the function
was at a distance less than Accuracy from 0. However the procedure will return as solution the point
obtained during Newton iteration for which the interval evaluation of all the function include 0 and has
the minimal average value for the width of the interval evaluation of the functions.

2.9.2.2 Functions

The procedures TheFunction and IntervalFunction should be user written. They return the value of the
equations (either as a vector of REAL or as a vector of INTERVAL, see 2.3.4.3) for given values or intervals for the
unknowns. They take one argument which is the vector of REAL which describe the unknowns.

In the same way the procedures Gradient and IntervalGradient should be user written. They return
the Jacobian matrix of the system of equations of the equations (either as a matrix of REAL or as a matrix of
INTERVAL) for given values of the unknowns. The Gradient procedure take one argument which is the vector
of REAL which describe the unknowns. The IntervalGradient procedure has three arguments and is described
in section 2.4.2.2.

2.9.3 Systematic use of Newton

It may be interesting to systematically use the Newton scheme in a solving procedure in order to quickly
determine the solutions of a system of equations.

For that purpose we may use the TryNewton procedure whose purpose is to run a few iterations of the
Newton scheme for a given box. The syntax of this procedure is:

int TryNewton(int DimensionEq,int DimVar,
INTERVAL_VECTOR (* TheIntervalFunction) (int,int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Gradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_MATRIX (* Hessian) (int, int, INTERVAL_VECTOR &),
double Accuracy,
int MaxIter,
INTERVAL_VECTOR &Input,
INTERVAL_VECTOR &Domain,
INTERVAL_VECTOR &UnicityBox)

where
e DimensionEq: number of equations

e DimVar: number of variables

2.10. KRAWCZYK METHOD FOR SOLVING SYSTEMS OF EQUATIONS 49

e TheIntervalFunction: a procedure in MakeF format for computing an interval evaluation of the equations

Gradient: a procedure that compute the jacobian in MakeJ format

Hessian: a procedure in MakeH format that computes the Hessian of the system
e Domain: the domain in which we are looking for solutions of the system
e Input: a sub-box of Domain

The mid-point of Input is used as initial guess of the Newton scheme. The parameters Accuracy is used in the
Newton scheme to determine if Newton has converged i.e. if the residues are lower than Accuracy. A maximum
of MaxIter iterations are performed.

If the Newton scheme converges, the presence of a single solution in the neighborhood of the approximated
solution is checked by using the Kantorovitch theorem (see section 3.1.2). If this check is positive, then a ball that
includes this single solution is determined and returned in UnicityBox. If the flag ALTAS Epsilon_Inflation
is set to 1, then the inflation scheme is used to try to enlarge this unicity box.

This procedure returns 11 if an unicity box has been determined, 0 otherwise. Note that this procedure is
already embedded in HessianSolve.

2.10 Krawczyk method for solving systems of equations

2.10.1 Mathematical background

Let F be a system of n equations in the n unknowns x. Let X be a range vector for x and yo = Mid(X). Let
ro be the norm of the matrix I — Y F'(X). Let the following iterative scheme for k > 1:

yr = Mid(Xy)
Vi — (Mid(F'(Xy))~t if |[I = YF/ (Xp)|| <761
k Y._1 otherwise

i = [T = Yo F'(Xy)]|

Let define K as:
KX =y—-YF(y) +{I -YF(X)}(X ~y)

If
K(Xo) CXp and rp <1
then the previous iterative scheme will converge to the unique solution of F' in X [8]. The procedure described

in section 3.1.1 enable to verify if the scheme will be convergent.

2.10.2 Implementation

The procedure is implemented as:

int Krawczyk_Solver(int m,int n,
INTERVAL_VECTOR (* IntervalFunction) (int,int,INTERVAL_VECTOR &),
INTERVAL_MATRIX (* IntervalGradient) (int, int, INTERVAL_VECTOR &),
INTERVAL_VECTOR &Input,double Acc , VECTOR &Result)

with
e m: the number of unknown
e n: the number of equations

e IntervalFunction: a function which return the interval vector evaluation of the equations, see the
note 2.3.4.3

50 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

IntervalGradient: a function which the interval matrix of the jacobian of the equations, see the
note 2.4.2.2

Input: the ranges for the variables

e Acc: the algorithm will return the result if |F;| < Acc

Result: the solution of the system

The procedure will return 1 if it has converged to a solution, 0 or -1 otherwise.

2.11 Solving univariate polynomial with interval analysis

2.11.1 Mathematical background

Clearly interval analysis may be used for solving univariate polynomial, especially if we are looking for some
roots within a specific interval (note that for generic polynomial we may always obtain intervals in which lie
the positive and negative roots using the algorithm described in section 5.2).

2.11.2 Implementation

The algorithm we have implemented is a direct derivation of the general purpose solving algorithm with Jacobian
and Hessian in which these values are automatically derived. To isolate the roots we use the Kantorovitch
theorem (which may also optionally be used during the resolution, see section 3.1.2). To eliminate boxes during
the bisection process we use the safe Budan-Fourier method (see section 5.5.2).

int Solve_UP_JH_Interval(int Degree,VECTOR Coeff,
INTERVAL & TheDomain,
int Order,int M,int Stop,
double epsilon,double epsilonf,
INTERVAL_VECTOR & Solution,
INTEGER_VECTOR & IsKanto,int NbSolution);

with:
e Degree: degree of the polynomial
e Coeff: the Degree+1 coefficients of the polynomial in increasing degree
e TheDomain: the interval in which we are looking for roots

e Order: the type of order which is used to store the intervals created during the bisection process. This order
may be either MAX_FUNCTION_ORDER or MAX MIDDLE_FUNCTION_ORDER. See the note on the order 2.3.4.4.

e M: the maximum number of boxes which may be stored. See the note 2.5.2.2
e Stop: the possible values are 0,1,2

— 0: the algorithm will look for every solution in TheDomain
— 1: the algorithm will stop as soon as 1 solution has been found

— 2: the algorithm will stop as soon as Nb solutions have been found
e epsilon: the maximal width of the box, see the note 2.3.4.6
e epsilonf: the maximal width of the equation intervals, see the note 2.3.4.6

e Solution: an interval matrix of size (Nb,m) which will contained the solution intervals.

2.11. SOLVING UNIVARIATE POLYNOMIAL WITH INTERVAL ANALYSIS 51

e IsKanto: an integer vector of dimension Nb. A value of 1 for IsKanto(i) indicate that Newton method
(see section 2.9) with as estimate the center of some solution interval Solution(i) has been used and has
converged toward the unique solution Solution(i) which lie within this solution intervals. Note that the
interval which contain the solution may be retrieved in the interval vector Interval _Solution UP.

e NbSolution: the maximum number of solution we are looking for.

The procedure will return the number of solution(s) or -3 if the order is not 0 or 1, -2 if the number of equations
or unknowns is equal or lower to 0 and -1 if the number of iteration is too low. There is an alternate form of
this procedure in the case where we are looking for all the roots of the polynomial.

int Solve_UP_JH_Interval(int Degree,VECTOR Coeff,
int Order,int M,int Stop,
double epsilon,double epsilonf,
INTERVAL_VECTOR & Solution,
INTEGER_VECTOR & Is_Kanto,int NbSolution);

There are two alternate forms of this procedure in the case where we are looking for the positive or negative
roots of the polynomial.

int Solve_UP_JH_Positive_Interval
int Solve_UP_JH_Negative_Interval

In the three previous procedures there is no TestDomain as it is automatically determined by the procedure. If
there was a failure in the determination of the domain (for the reasons explained in section 5.2) the procedures
will return -1.

The previous procedures are numerically safe in the sense that we take into account rounding errors in the
evaluation of the polynomial and its gradient. For well conditioned polynomials you may use faster procedures
whose name has the prefix Fast. For example Fast_Solve UP_JH_Interval is the general procedure for finding
the roots of a polynomial.

Clearly this procedure is not intended to be used as substitute to more classical algorithms.

It makes use of a specific Krawczyk procedure for polynomials:

int Krawczyk_UP(int Degree,INTERVAL_VECTOR &Coeff,
INTERVAL_VECTOR &CoeffG,INTERVAL &Input)

2.11.2.1 Example

The program Test_Solve UP is a general test program which enable to solve univariate polynomial whose
coeflicients are given in a file by increasing power of the unknown.
We use as example the Wilkinson polynomial of degree n where P:

It is well known that this polynomial is extremely ill-conditioned. For n = 12 the coefficient of z!'!' is 78. But
if we modify this coefficient by 10~5 there is a big change in the roots, 4 of them becoming complex [4]. The
general procedure leads to reasonable accurate result up to n = 18. At n = 19 although Kantorovitch theorem
has determined interval solutions that indeed contain all the solutions, Newton method is unable to provide an
accurate estimate of this root due to numerical errors.

For n = 10 and if we are looking for the roots in the interval [0,2] the computation time is 90ms, for n = 15
190ms and 330ms for n = 20. For the fast algorithm these times are: 10ms, 20ms, 30 ms Note that the best
classical solving algorithm start to give inaccurate results for n = 22 (between 12.5 and 18.5 the interval analysis
algorithm finds the roots 13.424830, 13.538691, 15.477653, 15.498664, 17.554518, 17.553513) and give imaginary
roots for n = 23.

92 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

2.12 Solving univariate polynomial numerically

As an alternative to interval solving ALIAS proposes a numerical algorithm
ALTAS_Solve_Poly((double *C, int *Degree,double *Sol),

The arguments are the coefficients C of the polynomial, a pointer to the integer Degree that is initially the
degree of the polynomial and Sol which will be used to store the real roots. This procedure returns the number
of real roots or -1 if the computation has failed. The procedure ALIAS_Solve_Poly_PR takes the same arguments
but returns the real part of the roots.

There is also a version of the Newton scheme for univariate polynomial:

int Fast_Newton(int Degree,REAL *Input,VECTOR &Coeff,VECTOR &CoeffG,
double Accuracy,int Max_Iter,REAL *Residu)

where
e Degree is the degree of the polynomial
e Input: an approximation of the solution
e Coeff: the polynomial is written as Coeff [1]+Coeff [2]x+..... Coeff [Degree+1]pow(x,Degree)
e CoeffG: the coeflicients of the derivative of the polynomial

e Accuracy: the algorithm will stop if the absolute value of the evaluation of the polynomial at the current
point is lower than this number

e Max_Iter: maximum number of iteration
e Residu: the value of the polynomial at the solution

This procedure returns -1 if the derivative polynomial is 0. Otherwise it returns 1 if a solution has been found
or 0 if Max_Iter iteration has been completed.

2.13 Solving trigonometric equation

2.13.1 Mathematical background

The purpose of this section is to present an algorithm which enable to determine the roots of an equation F' in

the unknown x of the form:
F= Z ag sin™ (z) cos™ (x) (2.8)

with m in [0, M] and n in [0, N], m,n being integers. We use the half angle tangent substitution. If § is the
unknown we define T as:

0
T = tan(-
an(2)
Then we have:)
. 2T 1-T
Sln(@) = ﬁ COS(G) = 1-’—7112

Note that the change of variable is not valid if § = +x. In that case it will be preferable to define a = 6 +
and to transform the initial into an equation in «. Then the change of variable may be applied.

Using the above relation any trigonometric equation can be transformed into a polynomial equation which
is solved using the tools of section 2.11.

It remains to define an interval for angles that we will denote an angle interval. The element of an angle
interval is usually defined between 0 and 27 (although in most of the following procedures any value can be used
when not specified: internally the element of the angle interval are converted into value within this range). A
difference between numbers interval (INTERVAL) and angle interval is that the lower bound of an angle interval
may be larger than the upper bound. Indeed the order in an angle interval is important: for example the angle
intervals [0,7/4] and [r/4,0] are not the same.

2.13. SOLVING TRIGONOMETRIC EQUATION 93

2.13.2 Implementation

The purpose of this procedure is to determine the roots of a trigonometric equation within a given angle interval.

int Solve_Trigo_Interval(int n,VECTOR &A,INTEGER_VECTOR &SSin,
INTEGER_VECTOR &CCos,double epsilon,double epsilonf,
int M,int Stop,INTERVAL_VECTOR &Solution,int Nb,REAL Inf,REAL Sup);

with:
e M: the maximum number of boxes which may be stored. See the note 2.3.4.5
e Stop: the possible values are 0,1,2

— 0: the algorithm will look for every solution in the angle interval
— 1: the algorithm will stop as soon as 1 solution has been found

— 2: the algorithm will stop as soon as Nb solutions have been found
e epsilon: the maximal width of the box, see the note 2.3.4.6
e epsilonf: the maximal width of the equation intervals, see the note 2.3.4.6
e Solution: an interval vector of size at least Nb which will contained the solution intervals.
e Nb: the maximal number of solution which will be returned by the algorithm
e Inf, Sup: the bound of the angle interval in which we are looking for solutions.

Note that the returned Solution will always be a range [a,b] included in [0,27] and in [Inf,Sup], this interval
angle being reduced to an angle interval in the range [0,27]. The procedure will return:

e > (: the number of roots
e -1: the bound Inf or Sup is incorrect (positive or negative infinity)

If you are looking for all the roots of the trigonometric equation you may either specify [Inf,Sup] as [0,27] or
use the procedure:

int Solve_Trigo_Interval(int n,VECTOR &A,INTEGER_VECTOR &SSin,
INTEGER_VECTOR &CCos,double epsilon,double epsilonf,
int M,int Stop,INTERVAL_VECTOR &Solution,int Nb);

This procedure first analyze the trigonometric equation to find bounds on the roots using the algorithm described
in section 4.3, then use the previous procedure to determine the roots within the bound. In some case this
procedure may be faster than the general purpose algorithm.

2.13.3 Examples

The test program Test_Solve Trigo enable to determine the roots of any trigonometric equation which is
described in a file. In this you indicate first the coefficient of the term, its sine power and then its cosine power,
this for each term of the equation.

We consider the trigonometric equation derived in section 15.1.2:

—508 sin(#)—25912 cos(0)+3788 cos(#) sin(6)+11092419660 (cos(#))>—1600 (cos(0))” sin(h)—4840 (cos(6))* =0

which has 0,5.47640186917958647 as roots. The general procedure find the roots 1.743205553711625e-11,
5.476401869153828 while the procedure using the determination of the bounds (which are [0,1.570796326794896],
[5.235987755982987,6.283185307179586]) find the roots 5.974250609803587e-12, 5.476401869153828.

o4 CHAPTER 2. SOLVING WITH INTERVAL ANALYSIS

2.14 Solving systems with linear and non-linear terms: the simplex

method
2.14.1 Mathematical background
Consider a system of n equations Fi, ..., F, in the m unknowns X = {x1,...,2,,} such that the F; may be
written as:

F;, = GZ(X) + ap —I—Zajacj

F; is the sum of the non-linear function G; and of the linear terms with coefficients a;. Let the interval evaluation
of G be [G;, G;]: we define a new variable Y; as Y; = G; — G, which imply Y; > 0. F; may now be written as
the sum of linear term:

Fi:Y}—l—aO—i—@—i—Zajmj

Hence the system is now a linear system with the additional constraint that Y7 > 0,...,Y;, > 0. We may now
apply a well-known method in linear programming: the simplez method which can be used to find the minimum
or maximum of a linear function under the m; equality constraints G1(X) = 0,...,Gp,, (X) = 0 and the mq
inequality constraints K1(X) > 0,...,K,,,(X) > 0. There are two phases in the simplex method: phase I
verifies if a feasible solution exists and phase II is used to determine the extremum of the linear function.

In our case we may use only phase I or phase I and II by considering the 2m optimum problems which are
to determine the minimum and maximum of the m unknowns under the 2n constraints F;(X) = 0,Y;(X) =0
and update the interval for an unknown if the simplex applied to minimize or maximize enable to improve the
range. It may be seen that this is a recursive procedure: an improvement on one variable change the constraint
equations and may thus change the result of the simplex method applied for determining the extremum of a
variable which has already been considered.

This procedure, proposed in [25], enable to correct one of the drawback of the general solving procedures:
each equation is considered independently and for given intervals for the unknowns two equations may have an
interval evaluation that contain 0 although these equations cannot be canceled at the same time. The pre