The following Maple program enable to get the equations of this example.
with(linalg):
#location of the linear actuator on the ground
xa1:=0:ya1:=0:xa2:=10:ya2:=0:xa3:=3:ya3:=10:
#location of the linear actuator on the end-effector
xb1:=0;yb1:=0:xb2:=4:yb2:=0:xb3:=2:yb3:=2:
for i from 1 to 3 do
OA.i:=array([xa.i,ya.i]):
CBr.i:=array([xb.i,yb.i])
od:
rot:=array([[cos(teta),-sin(teta)],[sin(teta),cos(teta)]]):
for i from 1 to 3 do CB.i:=multiply(rot,CBr.i): od:
OC:=array([x,y]):
for i from 1 to 3 do
AB.i:=evalm(OC-OA.i):
AB.i:=evalm(AB.i+CB.i):
ro.i:=dotprod(AB.i,AB.i,'orthogonal'):
ro.i:=simplify(ro.i):
od:
eq1:=ro1-50:eq2:=ro2-26:eq3:=ro3-25:
The system admit the two solutions:
These algorithms are implemented in the test program Test_Solve_General1, Test_Solve_Gradient_General1, Test_Solve_JH_General1