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ABSTRACT
This paper presents and compares two methods for checking
if a box is included inside the solution set of an equality con-
straint with existential quantification of its parameters. We
focus on distance constraints, where each existentially quan-
tified parameter has only one occurrence, because of their
usefulness and their simplicity. The first method relies on
a specific quantifier elimination based on geometric consid-
erations whereas the second method relies on computations
with generalized intervals (interval whose bounds are not
constrained to be ordered). We show that on two dimen-
sions problems, the two methods yield equivalent results.
However, when dealing with higher dimensions, generalized
intervals are more efficient.
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1. INTRODUCTION
There are different situations where the solution set of a

constraint satisfaction problem (CSP) has a non-null vol-
ume, e.g. inequality constraints or equality constraints with
existentially quantified parameters. In this paper, we fo-
cus on existentially quantified distance constraints where the
variables are the coordinates of a point x ∈

� n. As param-
eters, we have the coordinates of another point a ∈

� n and
a distance r ∈

�
. Then, the distance constraint fixes the

distance between a and x to be equal to r. The approxima-
tion of such constraints can be useful in many contexts, e.g.
GPS localization or parallel robots modeling ([5]).
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Interval constraint propagation ([2]) is a widely used tech-
nique. It reduces the domains of variables without losing
any solution. When it is coupled with some bisection al-
gorithm, an accurate reliable outer approximation of the
solution set of the problem is possible. However, when the
solution set has a non-null (hyper)volume, this technique
will bisect again and again the boxes included inside the
solution set, leading to inefficient computations. This sit-
uation can be strongly improved using a test for detecting
inner boxes. These boxes, which are proved to lie inside the
solution set are not bisected any more. Furthermore, such
inner boxes often have interesting interpretations in addition
to the speedup of computations.
In this paper we propose and compare two different meth-

ods for checking if a box is included inside the solution set of
a distance equation with existentially quantified parameters.
On one hand, using geometric arguments, the quantified dis-
tance constraint is changed to an equivalent non quantified
disjunction/conjunction of constraints which can be checked
using interval arithmetic. On the other hand, the Kaucher
arithmetic of generalized intervals ([1]), which represents a
new formulation of the modal intervals theory ([6]), allows
us to verify the inclusion through a generalized interval eval-
uation of the constraint. These two tests for inner boxes are
implemented in a branch and prune algorithm and experi-
ments have been carried out on academic examples in order
to compare these tests.

2. PROBLEM STATEMENT
The Euclidean distance between the points a ∈

� n and
x ∈

� n is defined by f(a, x) =
√

∑n

k=1(xk − ak)2. Given
two n-dimensional boxes x and a and an interval r, we are
interested in the following quantified distance constraint

(∃a ∈ a) (∃r ∈ r) (f(a, x) = r) (1)

which is denoted by ca,r(x). The set of x ∈
� n which satis-

fies (1) is denoted by ρa,r. This paper aims to provide some
sufficient conditions for the inclusion x ⊆ ρa,r.
It can be noted that a sufficient condition designed for one

quantified distance constraint can also be used for a conjunc-
tion of quantified distance constraints

∧

k∈[1..m] ca(k),r(k)(x),

where a(k) are some n-dimensional boxes and r(k) some in-
tervals. Indeed, if existentially quantified parameters are not
shared between different constraints, we have the following
implication:

∧

k∈[1..m]

x ⊆ ρ
a
(k),r(k) =⇒ x ⊆

⋂

k∈[1..m]

ρ
a
(k),r(k)



3. A SPECIFIC QUANTIFIER ELIMINATION
The quantifier elimination (QE) consists in transform-

ing a quantified constraint into an equivalent non quanti-
fied constraint. A general algorithm of QE for polynomial
constraints is available ([4]). However, its high complexity
restricts its application to very small problems. We pro-
pose a specific QE for the distance constraint ca,r(x) in the
two dimensional case. The three dimensional case can be
treated in the same way. However, higher dimensions are
still out of the scope of the proposed specific QE, because
of the complexity of these problems.
The typical graph of the constraint ca,r(x) is shown in

Figure 1a. We do not have a direct way to test the inclusion
of the box x in this graph as it is expressed by a quanti-
fied constraint. However, it can be reconstructed using the
graphs plotted in Figure 1b and Figure 1c. The former con-
sists of eight circles obtained considering the bounds of the
intervals a and r. The latter is also simply obtained thanks
to these intervals.
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Figure 1: Typical quantified distance constraint.

Let us call c′
a,r(x) the constraint whose graph is the union

of the four exterior disks of Figure 1b and the two boxes
of Figure 1c. This constraint is expressed by using some
simple inequalities. Also, let us call c′′

a,r(x) the constraint
whose graph is the intersection of the four interior disks
of Figure 1b. This constraint is also expressed using some
simple inequalities.
It is easily seen that c′

a,r(x) ∧ ¬c
′′

a,r(x) implies ca,r(x).
The corresponding real inequalities can be easily checked
for a box x using the interval arithmetic. We eventually
obtain a computable sufficient condition for the inclusion
x ⊆ ρa,r. Notice that it is not a necessary condition, because
a box can satisfy x ⊆ ρa,r while it does not satisfy the
constraint c′

a,r(x). However, it can be proved that given a
box satisfying x ⊆ ρa,r, the proposed sufficient condition
will prove this inclusion after a finite number of midpoint
bisections.

4. GENERALIZED INTERVAL EVALUATION
In this section a sufficient condition based on one evalua-

tion of the expression of f(x, a) using generalized intervals
and their arithmetic is proposed. This technique was ini-
tially proposed in the modal intervals theory ([3, 6]) and is
now informally presented in a revisited way using general-
ized intervals ([1]).
Generalized intervals are defined by relaxing the constraint

that bounds have to be ordered, e.g. [−1, 1] is a proper in-
terval and [1,−1] is an improper interval. So, related to a
set of reals {x ∈

�
| u ≤ x ≤ v}, where u, v ∈

�
, one can

consider two generalized intervals [u, v] and [v, u]. It will
be convenient to use the operations dual [u, v] = [v, u] and

pro [u, v] = [min{u, v},max{u, v}] to change the proper/im-
proper quality of a generalized interval keeping unchanged
the underlying set of reals. An inclusion is defined for gen-
eralized intervals by x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y, e.g.
[1,−1] ⊆ [0, 1].
The Kaucher arithmetic extends the classical intervals

arithmetic to generalized intervals and allows the evaluation
of an expression with both proper and improper intervals.
Based on Kaucher arithmetic, an evaluation of f(dual a,x)
is calculated. It can be proved that if r satisfies the inclusion
f(dual a,x) ⊆ r then

(∀x ∈ x) (∃a ∈ a) (∃r ∈ r) (f(a, x) = r)

is true. The inclusion f(dual a,x) ⊆ r is therefore a suffi-
cient condition for x ⊆ ρa,r. This condition is not necessary
in general, e.g. a = ([−2, 2], [−2, 2]) and r = [1, 1] so that
x = ([−2, 2], [−2, 2]) is an inner box which does not satisfy
f(dual a,x) ⊆ r (in this case, the specific QE presented in
Section 3 succeeds in proving the inclusion). However, it
can be proved that this sufficient condition is furthermore
necessary provided that x∩ a = ∅, which is likely to be met
for inner boxes x in some realistic situations.

5. CONCLUSION
Some experiments have been conducted on academic ex-

amples of conjunctions of quantified distance constraints.
Although both methods are very different, they raise very
similar results about both computation times and descrip-
tion of the solution set (with a slight advantage for the test
based on generalized intervals). Moreover, the test based on
generalized interval evaluation presents two advantages: on
one hand, it is much simpler to implement. On the other
hand, it can be trivially extended to quantified distance con-
straints in arbitrary dimensions, where the proposed specific
quantifier elimination fails.
As forthcoming work, a new inner test combining the two

presented tests will be studied aiming to obtain an optimal
test in all situations. Also, we will apply this method in
the context of parallel robots study, taking into account the
uncertainties on the geometric parameters.
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