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Abstract

We present and compare two methods for checking if a box
is included inside the solution set of an equality constraint
with existential quantification of its parameters. We focus
on distance constraints, where each existentially quantified
parameter has only one ocurrence.
The first method relies on a Specific Quantifier Elimination
(SQE) algorithm based on geometric consideration whereas
the second method relies on computations with Generalized
Intervals Evaluation (GIE).

Introduction

An Euclidean Distance Constraint ca,r(x) between two
points a, x ∈

� n can be expressed as following:

ca,r(x) :

n∑

k=1

(xk − ak)
2 = r2 (1)

If a and r are existentially quantified parameters, we have
the following quantified distance constraint (QDC):

ca,r(x) : (∃a ∈ a)(∃r ∈ r)(
n∑

k=1

(xk − ak)
2 = r2) (2)

Some examples of QDC and their solution set are presented
in Figure 1. A branch and prune algorithm can be used for
computing the solution set of ca,r(x), but this algorithm
will bisect again and again the boxes included inside the
solution set, leading to inefficient computation.
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Figure 1: Two quantified distance constraints and
their solutions. In (a), the distance r = [4, 5]. In
(b) the center a = ([−1, 1], [−1, 1]).

Problem Statement

Let ρca,r
be the set of x that satisfies (2). Given a box

x ∈ � � n, we are interested in a condition for:

(∀x ∈ x)(x ∈ ρca,r
) (3)

A box that satisfies (3) is called an inner box (Figure 2).

Solution set of
the constraint

x1

x2

Inner Boxes
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Figure 2: Some examples of inner boxes (boxes
included inside the solution set of ca,r(x)).

Specific Quantifier Elimination (SQE)

A quantifier elimination algorithm transforms a quantified
formula F into an equivalent quantifier-free formula F ′.
Our SQE algorithm ([2]) decomposes the constraint ca,r(x)
into two auxiliary constraints c′a,r(x) and c′′a,r(x) (Figure 3).
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Figure 3: A decomposition of the constraint ca,r(x)
into c′a,r(x) (left side) and ¬c′′a,r(x) (right side).

c′a,r(x) is described as the union of six non-quantified con-
straints (Figure 4), while c′′a,r(x) is described as the inter-
section of four constraints. Classic interval arithmetics ([4])
is used for probing that x ⊆ ρc′a,r(x) and x ∩ ρc′′a,r(x) = ∅.
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Figure 4: A description of c′a,r(x) with (a) four
constraints of the form f(x) ≤ r and (b) two inclu-
sion constraints of the form x ⊆ box.

Generalized Interval Evaluation (GIE)

A generalized interval x ∈ � �
is an interval whose bounds

are not constrained to be ordered. An interval x = [a, b] is
called proper if a ≤ b and improper if a ≥ b.
Kaucher arithmetics ([3]) and the (g,x)-interpretability
([1]) allows one to compute generalized interval evaluation
with special interpretation. For example:

[2, 5] + [−1, 1] = [1, 6] → (classic interpretation)
[2, 5] + [2,−2] = [4, 3] → (special interpretation)

Here are the interpretations of the above three examples
(based on the type of their intervals: proper/improper ).

(∀x ∈ [2, 5]) (∀y ∈ [−1, 1]) (∃z ∈ [1, 6]) (x + y = z)
(∀x ∈ [2, 5]) (∀z ∈ [3, 4]) (∃y ∈ [−2, 2]) (x + y = z)

Considering each existentially quantified parameter as an
improper interval and each variable as a proper one, we
have the following inner box text:

n∑

k=1

(xk − ak)
2 − r2 ⊆ [0, 0] =⇒ x ⊆ ρca,r

(4)

Preliminary Results

We notice that if existentially quantified parameters are not
shared between different constraints, we have the following
implication:

∧

k∈[1..m]

x ⊆ ρc(k) =⇒ x ⊆
⋂

k∈[1..m]

ρc(k) (5)

We can use (5), for solving a system of distance constraints:

x2 + y2 = [2, 2.25]2

(x − [3, 3.5])2 + y2 = [2.95, 3.05]2

(x − [−2.5,−2.25])2 + (y − 2)2 = [3.25, 3.5]2

where intervals denote existentially quantified parameters.
Table 1 shows a comparison of a branch and prune algo-
rithm using different inner box tests. The test based on
SQE and GIE obtained the same solutions (Figure 5).

No Test SQE Test GIE Test

Boxes 451655 5481 5481
Inner – 2550 2550
Volume 0.21236 0.21236 0.21236
IVolume – 0.21103 0.21103
Time (s) 36,08 0.53 0.43

Table 1: A comparison of a branch and prune
algorithm using different inner box tests.

Figure 5: Graphic results of a problem formed by
three quantified distance constraints.

Conclusion

Although both methods are very different, they raise very
similar results about both computation times and descrip-
tion of the solution set, but the test based on GIE presents
two advantages: it is much simpler to implement, and it
can be trivially extended to QDC in arbitrary dimensions
without loss of performance.
Both test must be considered as a sufficient condition for
(3). As forthcoming work, a new inner test combining the
two presented tests will be studied aiming to obtain an
optimal test in all situations.
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