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Abstract— In this paper we design an interval observer for to the unknown or poorly modeled kinetics. However their
the estimation of unmeasured variables of uncertain bioree convergence rates are fixed and linked to the operating mode
tors. The observer is based on a bounded error observer, as ¢ ihe system. Recently, a hybrid observer combining an
proposed in [1], that considered a loose approximation of ta . . "
growing rate. We first show how to generate guaranteed upper asymp_totlc and a high gain observer has_been proposed .by
and lower bounds on the state, provided that a known interval [1]. This observer assumes a loose bounding of the bacterial
for the initial condition and the uncertainties is available. These growth rate function and allows to accelerate the convargen
so called "framers” depend on a tuning gain. They can be rate. A gaind is tuned at a high positive value when the
run in parallel and the envelope provides the best estimate. ggiimate is far from the real state, and then comes back to

An optimality criterion is introduced leading to the definition the s but ¢ totic ob th timat
of an optimal observer. We show that this criterion provides € Slow but accurate asymptolic observer once the esimate

straighforwardly a gain set containing the best framers. Tle achieved an appropriate region. . o
method is applied to the estimation of the total biomass of An alternative approach to manage uncertainty consists in

an ipdustrial waste water treatment plant, demonstrating is using interval methods [7]. This approach was mainly devel-
efficiency. oped for discrete time systems and more recently for con-
tinuous systems, based on properties of positive diffeakent
systems [20], [10], [13]. The idea consists in bounding the
Optimization of biotechnological processes and in particstate by solutions of dynamical systems that satisfy some
ular of wastewater treatment plants is nowadays receiving @ooperativity conditions [11]. If the initial condition isure
increasing attention. It motivated the design of new cdntrao lie in a given interval, then the state is guaranteed to be
strategies [14], [2] that guarantee a better process workitmounded between an upper and a lower interval.
and efficiency. However these controllers often requirdihigWWe propose here an extension of this last approach, in the
quality measurements or efficient state estimation proc&amework of the nonlinear observers introduced by [1]. We
dures. On one hand the difficulty to have online reliableéake benefit of the possibility to tune the error dynamics
sensors that could provide the key variables is a well knowto improve the convergence properties. For this, we run in
limitation of biotechnological processes. On the otherchanparallel a broad set of interval observers that all guamnte
robustness of the controller to state uncertainties besane a bounding of the real state. It is then possible to select the
critical requirement in the framework of strong disturbasic inner envelope of the so callesbserver bundlgo obtain
and high uncertainties that characterize bioprocesses.  a new observer with much better convergence rate and
Designing a state estimator robust to large process uncetiuch smaller interval predictions [12]. It is worth noting
tainties is therefore a central issue, and classical methothat among the set of interval observers that are run in
may be hardly directly applicable to bioprocesses [18].r&he parallel, some may be unstable, but providing however a
was recently many advances on this topic, introducing fdsetter estimate during first transients associated to #teda
example novel uncertainty structures [4], [5] which haveeigenvalues.
helped the development of robust estimation schemes.  Additionally, in this paper we determine a criterion thatds
Several estimation methods that deal with uncertainty @n o an optimal gain for providing the best estimates. We show
found in the current literature. Most of them rely on claabic that this unique optimal gain cannot be computed without the
approaches like estimation through ellipsoidal sets [#ust state knowledge. However a gain interval which contain the
Kalman filtering [17],H Or H- filtering methods [16]. optimal gain can be determined. This allows us to reduce the
A popular class of observers for mass balance basédindle size and increase its accuracy and convergence rate.
models are based on the principle of observers with urFhis work is organized as follows. In section Il we introduce
known inputs [15]. The particular structure associated ta bioreactor model and some hypotheses about the system.
the mass balance modeling is exploited and the biologic8lection Il recalls a bounded error observer and proposes an
kinetics (one of the most critical uncertainties of the syt interval observer highlighting some of its main features. |
are considered as an unknown input and eliminated. Thégction IV we explain how to improve the interval estimates
leads to the formulation of asymptotic observers [6]. As &y using a bundle of observers and regular reinitialisation
consequence, these observers are very robust with respecsection V we apply a simple criterion in order to obtain
a characterization of the space of gains that performs the
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. INTRODUCTION



[I. DEFINITIONS AND HYPOTHESES A bounded error observer for the variabteof system (1)

We consider the following widely used model [6], whichcan be derived, considering that the system dynamics (growt

describes the behavior of the concentrations of a biomass rate) are poorly known. Let us introduce the transformation

a substrate and a producp in a perfectly mixed bioreactor: z=kx+0(t)s 4)
&= p(s)r —ux whered(t) € C1(R) is a gain that will be discussed later on.
$ = u(sin —s) — ku(s)x (1) Considering equation (1), the dynamicszotan be written
p=Au(s)x —up as follows:
y=s

F=1—0)u(s)(z — 0s) + u(@sym —2) +0s  (5)

?”hen, since the influent substratg, is well known, the
following bounded error observer can be derived:

s;n corresponds to the concentration of influent substrat
u is the dilution input andt and A are conversion yield
coefficients. The biological activity of the system are teatl
by the non negative growth rate functigr(s) such that . . .
1(0) = 0, known to be highly uncertain(.lrl(zo)r the sake of Froposition 1: The following system is a bounded error
simplicity p(s) is assumed to be @' function. observt?r of (1) .

2=1-0)a(s)(2—0s) + u(lsi — 2) + 0s ©6)

Property 1: For any nonnegative initial conditions, trajec- T=(£-10s)/k

torie_s_ of _system (1) remain bounded and positive for anY v are the functioni(s) is such thati(s) — u(s)| < a, and
positive tlfr.ne. a is a positive real.

Pr_qo_. s Proof: See [1]. [ ]
1) Positivity of the system is trivial it:(0) = 0 andu(s) = 0. ope can note that functigin(s) can bee.g.any of the known

Vs 2 0. , , functionsu(s) or i(s) introduced in hypothesis 2, fulfilling
2) Considerz; = s + kx andze = p + Ax. It is clear that the previously mentioned condition.

limg oo 21 = Sin andlimy, .o 29 = 0, for fixed v and s;,,,
which proves the boundedness of the state vector. m Remark 1:If § — 1 then equation (6) becomes the
In the sequel we assume that the following hypotheses atg;sgical asymptotic observer (see [6]).

fulfilled. ] o ] ) . The idea used in [1] was to implement Aypbrid observer
Hypothesis 1:The dilution rateu is a persistent input: for p5sed on equation (6). The estimations start with a high

u > 0 there existx and 3 positive constants such that:  anq positive value of which decreases down to one along
tra the time. From a methodological point of view, the hybrid

/ u(t)dr > 3> 0 (2) approach combines two type of observers: a bounded error

t observer with high convergence rate but poor accuracy and

_ . an asymptotic observer with fixed convergence rate but high
Hypothesis 2:We assume that the growth rate is boundeg@ccuracy. Even though this observer showed to improve
by two known functionsy(s) and 7i(s) and a positive the properties of asymptotic observers, adjusting the gain

constanta: 0 seems rather complicated. This last issue can be overcome
1. 0< pu(s) <p(s) <p(s) <a, Vs>0 using properties of interval estimates, as explained in the
2. m(0)=0 next sections. In what follows we consider the following

Now our objective is to develop a robust observer based dtypothesis. . _
interval approach with improved convergence properties in Hypothesis 3:The influent substrate;,, is an unknown
order to estimate the biomass concentrati¢t) in a reactor, Pounded input of system (1). However, we know bounds for
when monitoring the substratét) (the same analysis holds this input such that:
fo_r the est?mation of the variabje but for the sake of brevity si (1) < sin(t) < st (2) (7
this case is not developed here).
We denotee;, = si, — s;,, ef, = s — s, and
[1l. BOUNDED ERROR INTERVAL OBSERVER ein = S;, — 8.

A. Bounded error observers

We consider the class of observers introduced in [1]. Thede Interval observers
observers do not converge to zero but to a bounded error. The objective of an interval observer is to generate guar-
Definition 1: A bounded error observer of system (1) is aanteed bounds of the unknown state variables. For this we
dynamical system will introduce the concept oframer.
Definition 2: A framerfor system (1) is a pair of coupled

&= f(#,u,y) with lim |7 -zl <r () dynamical systems

wherer is positive real constant (depending on the uncer- =

T (0)==o )
tainty on ) such thatk = 0 if w(s) is perfectly known. T = =



such that, for an initial conditions verifying, < zo <7, which guarantees that the error will stay positive after
we havez(t) < z(t) < Z(t). Using similar arguments it is possible to show that) > 0
Note that this definition is rather general, highlighting th and therefore the interval that contains the state is pesiti
fact that a framer is conceived to give an upper and a lower
bound of the unknown state. Stability can be considered
as a second feature of a framer, to guarantee a boundpdese arguments are well known in the field of positive and
interval and obtain an interval observer. This point is morgnonotone differential systems [11]. u

deeply discussed hereatfter. Let us detail two cases of specific interest.

e=Tp—29g=€¢+e>0 a7)

Let us propose analytical expressions for framers of the- The cased =0 andf = 1
variable x of system (1). These expressions are deduced The framer ford = 1 is the interval version of the
from equation (6). classical asymptotic observer [6]: it does not depends on
the biological kinetics, however it has a fixed convergence
Proposition 2: Given z,, Ty such thatzy € [z,, To|, then rate given byu, provided that hypothesis (1) is satisfied.
for a gaind € C1(R), the following system defines a framer

for system (1). The framer depends on the value cds Property 2: The framer [z4_,(t), To=1(¢t)] provides a
follows: bounded interval estimation of variabl€t).
. foro <o Proof: This property is straightforward and relies on
_ ) the boundness of;,,. [ |
Zo = (1 — 0)(f(s)Zp — O1i(s)s) + u(Os;, — Zp) + 50 Property 3: The framerz,_, is positive, ifz,_,(0) > 0.
2o = (1—0)(u(s)zg — Op(s)s) + u(fs;, — zq) + 50 Proof: The proof is trivial. []
9) Note that this framer may be unstable.
« foro<o <1 As a consequence, the framers obtained éfoe 0 and
20 = (1— 0)(7(s)Z0 — Bu(s)s) + w(Bst —Zg) + <0 fh; ;ta\:\t/gl provide a guaranteed upper and lower bound for
Zg = (1= 0)(u(s)zg — O7i(s)s) + u(Bs;,, — zg) + 56 '

(10) IV. OBSERVERS BUNDLE AND REINITIALIZATION

o« foro>1 One of the key properties related to an interval observers is

Zo = (1 — 0)(u(s)Zo — O7i(s)s) + u(fsh —Zg) + sb that we can compare the solutions generated by two or more
2= (1— 9)(ﬁ(s)z — Ou(s)s) + u(fs;, — zp) + 50 framers. We run therefore several framers in parallel (for
=0 0 in =0 (11) different values of the gaifl), which all provide guaranteed

interval estimates for the state.
Definition 3: An observer bundle is a set of interval
To = (z—0s)/k and z, = (z — 0s)/k (12) estimates generated by a finite set of framers, using differe
- - values of the gaird.
Proof: The proof is carried out fof > 1 (the same B(#) _ o (t) : o(1) € O) (18)
: B(t) ={zy(t) : 0(t) € ©}

arguments hold for the other framers). Let us consider the

differencee between the upper candidate estimate and thghere® is a subset o' : R — R functions.

unknown state, this is:

with

B is the upper bundle anl is the lower bundle. Each bundle

e=Tg—x= (29— 2)/k (13) has an envelope that provides the best bounds:
Its dynamics is: Bint(t) = min{B(t)} (19)
e = (1-0)((u(s)Z0 — pu(s)z) — 0(ma(s) — p(s))s) Bgp(t) = max{B(t)} (20)

F o
+u(fe;, — ke) (14) That is, we take the inner envelope from all the set of

estimates generated by different gain values. It is worth
noting that we combine transient behavior of some unstable
framers (that may improve transient estimations), with the
asymptotic stability of others (that guarantees the boaasin

e(t*) = (1= 0)((u(s) — pls))z" = O(7(s) — pu(s))s) + ubee;, ~ Of the envelope).

Now we show that stays positive. We consider the first time
instantt* wheree = 0i.e.T =2 = 2* andzy = z = 2%,
then:

(15) _ — . .
Considering that* is positive (because of the positivity of ~Property 4: The intervalZ = [Bg,, Bin] is bounded if
the state and the gaif) and hypothesis (2), we have: o(t)=1€6O.

' Proof: First, it is worth to point out that if one framer is
et*) >0 (16)  bounded, thet,,, andBis are bounded too. This is the main



advantage of running several guaranteed estimates irlglaral
Boundedness of the intervdl is a direct consequence of

Property 2. n To,
Property 5: The lower bound best valuBy, is positive g .. To
if 6=0¢€ 0. & Ty,
Proof: This is a straight consequence of Property 3, %g .
which provides a lower positive framéft. ] & " Ty

A. Reinitialisation

A regular reinitialization of the bundle can be performed -
to restart all the framers with the best available interval time t
predicted byﬁSup and Bj,s. We consider the time interval
[tk,tx + A¢] (we denote byA; the reinitialisation time
interval) where the framers run. Then at the time instant
we take the best interval estimates performed by the prsviou
estimation period to reinitialize the whole bundle.

Fig. 1. Concept associated to the optimization criterio).(2

0 s —0 B — can writeZy = f(z,%,s,0) and &, = f(z,z,s,0) as
[25(t1), To (tk)] = [Bsugltr), Bint (tx)] (21) polynomials with respect to the gaih

The objective behind the regular reinitialisation of the

- e T
interval estimates is to improve the framer efficiency by fi(x,x,s,Z) B G;ZQ +Z;z+cz (24)
feeding it with the best available estimate, and thus take fi(@2,5,0)=a'0" + b0 +c
benefit of the transients of some of them. wherei — 1for < 0. i—=2for0<6 < 1andi =3

for # > 1. See the appendix for a detailed computation of
B. Convergence index the coefficients of equation (24). Fig. 2 provides a graph of

function f. It can be easily verified that fof > 1 there

One of the advantages of obtaining interval estimates IS . - : A
exists a global nontrivial solution that minimizas [resp.

that we can assess the observer convergence by Comparlqugximizesg] denoted [resp. B]. On the other hand, for
upper and lower bound estimates. This leads to a convergence = Ry '

. X : . < 1, the optimal gain value i = 0. Thus, there are two
index 19, which corresponds to a normalized comparison o . S

. ) candidates to solve the optimization problem (23)fa R,
the best estimates:

BBt (see fig. 2):
oty = 2t = Boull) 22) 8(t) = {0, max{1, g} } (25)
Binf (t) + ﬁsup(t) _ _
V. COMPUTING THE OPTIMAL GAIN 0(t) = {0, max{1, 5} } (26)
Running in parallel a dense enough bundle.(with a \where
large number of values of) in order to obtain the best B _
interval [Bg,,, Bint] can be time consuming without guarantee (t) = sAy — uey, + k(p(s)r — fis)z)
of optimal estimation. Therefore, a characterization af th - . 254, 3 27)
gain set that can generate the best solutions is proposed. Bt) = sA, —ue;, — k(u(s)z — p(s)T)
257,

A. Definition of an optimality criterion

Let us assume that at timehe best estimatg)(¢),z) ()] and A, = 7i(s) — p(s).
is provided. The best upper [resp. lower] framet atill be
the one with the minimal [resp. maximal] slope (see fig. Remark 2:All the framers based on gains which belong to
1). It will thus be given by the value of that minimizes the setd = {6 €] — oo, 1[—{0}} will never provide the best
[resp. maximizesf [resp.z]. The proposed criterion consists estimate. As a consequence we eliminate equation (9) and
then in finding a pair of gaind and 9 which respectively consider equation (10) only for the ca8e= 0 to compute
minimizes and maximizes and i at any time instant. the interval observer.
N . S Now it is very important to note that the optimal solution
To = (20 — 0(1)5 — 0(t)s) /K 9 and 6 cannot be computed because they depend on the

g = (29 — 0(t)3 — 0(t)s)/k unknown stater(t). We must therefore try to localize the
EUCh that: oL (23) region where the optimal values férlie, and run as many
Zo(s,x) :m@m{we} framers as possible in this region. Indeed, intervals that
To(s ) :mgx{%} contain the nontrivial optimal solutiors and 3 can be

' determined on the basis of the pres_eﬁt state estimate. Let
Functionsz, and zy have a piecewise form given by us focus on the set > 1 (wheres and g live) to define the
equations (9), (10) and (11). Using these expressions, vie®unds of this interval.



C. Bounding of the optimal gain on the interval, ¢x11]

We have provided an interval where the optimal gain is
sure to lie at time, now we must be sure that this interval
will still contain the optimal gain for any time in the intelv
[tk thsi]-

We will thus recompute the optimal gain interval on
[tk, tr+1], ON the basis of the state estimation provided by
the framers.

f(8)

0 1 B Our strategy consists in splitting the interval (28) ito
4] parts in order to gefV + 1 gain value9,.
Fig. 2. Piecewise functiorf(9). 0, = w and
(34)
0; = FPOWN =) e {0,..,N}
B. Bounding of the optimal gain at tinte N B

The objective is to compute the sets that contains the AS @ consequence, the valuesépiwill not be constants

unknown optimal gain values, and run an observer bundf'd We need to estimaté. The quantityé; involves the
considering these values, to get as close as possible to fifnputation ofp(i) andp(¢) . The termA depends on
optimal framer. the output derivatives(¢t) which cannot be properly online

The following hypothesis is not mandatory, but it strongl)Fomp“ted To solve this problem, we propose a larger bound
simplifies the computation of the optimal interval: or the gain interval whose derivative is independant on

Hypothesis 4:The unknown function:(s) can be written s'( ). This is simply achieved considering the state estimate

as u(s) = yp(s), wherep(s) is a knownC* function and provided by¢ = 0.
v = [y, 7. Considering the bounds already computed for the non

Property 6: The sets and@ c R defined by: :E\éla]}l)ﬁg’t\;mglsgeatlg of equations (28) and (29), let us define

with
oA where
1 kyAp _ 1 TAB 1 k~ (T _
t)=-+—"" and t)==-+——7- (29 _ 4 Y (@o=o(t) — zp—o(t))
contain and 3 for any timet, whereAg = Binf — By 1 y(mao(t) — zg_o(t) (36)
Proof: Attime ¢, we have thaB,(t) < z(t) < Bint(t). () ==+ iZo=0'") ~ Lo=0
After some algebraic arrangements on equation (27) the sets 2 2y -2)
Q and() can be written as: Property 7: Q(t) C Q(t)g—o andSi(t)  T(t)o—o
O —ue;, 1 k&up 1 ku(s)Ag 30 Proof: It is clear from the properties of an observer
2C 25\, o1~ ) 24, (B0)  pundie thatBg,(t) > ,(t) and Bint(t) < Ty(t), for any
. 6. In particular foré = 0 one has straightforwardly that
Q. |Ztemn | 1 | _ Bt 71 + kp(s)As (31) 28() < To=o(t) — z5_o(t) and then property 7 holds.
257, 2 20, u

Let us focus on the lower bound of these intervals. Given thé\low we can continuously comput@() and (1) for

B , B and s(t) are non negative quantities, then: all ¢ € [tx,tr41], considering thattg—o(t) — Lg_o(t) =
Beupl!) Bt () ) 9 a 9(Zp—g, To=0,5) = (p(s) — u)A; + A,Z. The dynamics

% <1 _ k%’) < % and % <1 _ k%) < % (32) of @ and® can be expressed by the system:
S

- kv
As — < 0, it follows that the computed lower bounds £ 2(y —9) _
2s A . k’}/ Q(LIaS)a

can not be greater than the trivial valde = 1. Now, Z —
considering the upper bound of intervals (30), (31) and - 20y - 2) (37)
hypothesis (4), we have: o(tx) max{1, p(tx)}

we) 2 i) 7 Bt max{1,B(t)}

%, - ey -

It is worth to remark that the system (37) is initialized
This leads to the intervals given by equation (29). W at every reinitialization time instant; using the values



computed by the instantaneous gain bounds of equation (28gin (equations (35) and (36)) keep the same expressions, as
This becomes critical in order to keep a good gain boundinfgr as they do not depend explicitly on the outp(t).
and therefore obtain a bundle with framers close to the

optimal unknown gain.

VI. BIASED OUTPUT

Now we consider a bounded noise affecting the syste

output.

Hypothesis 5:0nline measurement{t) is perturbed by a
noised(t). We assume that this perturbation is of multiplica

tive nature:y(t) = s(¢)(1 + 6(t)).
Moreover, the noise is bounded hy¥ € R* such that
0] < A< 1.

Considering that(¢) is a positive variable, the last hypoth-

esis implies that we know two bounds for this quantity:

y(t) y(t)
(1+A) 1-A) (38)

< st) <

VII. APPLICATION AND RESULTS
A. System setup

m For the application of the method, we have considered a
real industrial anaerobic digestion wastewater treatmplemit
(ADWTP). It consist in a highly efficient process that remove

a concentrated polluting organic substrate and can recover

energy via methane production. This is performed through
several consecutive biological degradation steps inkglvi
various groups of anaerobic bacteria. Organic compounds
are bioconverted in one hand into biogas.(a mixture

of CO; and CH,) and, on the other hand, into microbial
biomass and residual organic matter. ADWTP has a lot of
advantages in comparison with traditional methods: it does
not generate too much sludge and produces energy. However,

We rewrite the framer equations (11) and (10) (see remafkis known to be highly unstable: accumulation of interme-

2) taking into account the output uncertainty:

Proposition 3: Given z,,, Ty such thatz € [z, Tol, then
the following system is a framer of system (1):
o foro>1

Zo = (1-0)(u(y,7)ze — 0v(y,y)y)
+u(st, —Zg) + 0(cy + (1 — €)y)

29 = (1 - 9) (D(ga ?)&9 N 92(% @)E)
+u(0s;, — z) +0(cy + (1 — €)y)

To = (Zo — Oy)/k and z, = (2o — 07)/k
(39)
o for 6 =0:
To—o = (7(y,7) — w)To=0
To—g = (z(y, ) — U)Eezo
This means that for, < zo < Ty = z(t) < z(t) < Z(t).
The functionsy(.) and7(.) are defined such that:

< <

(40)

v(y,y) = min {u(q)} and 7(y,y) = max {7(q)}
q€[y,7] q€[y,7]
(41)

1 ifd>0 o
0 otherwise’ uses the sign ofl in order to

provide the correct bounding.

ande =

Proof: The same arguments as proof of proposition
can be applied. Considering the upper bound error equati9

for § > 1 at the time instant* wheree = 0 we have:

et) = (1-0)(((y,y) —uls)2" +0@(y, 17
—u(s)s)) + ube;, +0(ey + (1 — £)y — s)
(42)
which under the stated assumptions verifiés’) > 0 and
thereforee(¢) stays positive aftet* for > 1 (the proof for
6 = 0 is trivial).
[ |

diate acid compounds can lead to the process acidification
with complete loss of biomass activity. Therefore, acairat
monitoring of the system variables is required in order to
ensure the appropriate working of the process.

Bacterial growing rate in AD is often described by a non
monotone function of Haldane type:

u(s) = Y .
s+ ks + s2/k;

Then we have considered an industrial ADWTP processing

raw industrial vinasses af0000m?. This plant is owned by

the AGRALCO company located in Stella, Spain [3].

In particular for this application, the parametgy, is

badly known, with an uncertainty a£15% with respect to

a nominal (real) value. Parameters meaning and values are

summarized in table I.

(43)

TABLE |
SYSTEM PARAMETERS

parameter| meaning value
up maximal growing rate 0.9
ks saturation constant 95
ki inhibition constant 243
k yield conversion 195
[u;, ,u)] | bounds foruy [0.72,1.08]

The dilution inputu[1/h] as well as the available online

%neasurements of the chemical oxygen demand (which

gpresents the substratfg/l] in the reactor) are shown in
fig. 3 and 4 respectively.

Bounds for the unknown influent substratg are shown in

fig. 5, known to fluctuate around:30% of the real value.
Noise on the measurements is featuredby= 0.03 (see

equation (38)).

B. Observers bundle

The same principle to design an observer bundle can nowThe observer was tested considering a reinitializatiom tim

be applied. The already computed bounds for the optimadl; =

1 [days]. The observer initial conditiom, = 0,
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Fig. 3. Dilution inputu and measured chemical oxygen demand. Fig. 4. Measured chemical oxygen demand.
Tp = 100 has been chosen very large in order to assess the =45 — 1
convergence properties of the method. For that, the gains &
were selected considering a homogeneous partition of 8 ¢
framers on the gain interval (in open loop) of equations 235, 1
(35) and (36), including the gaing = 0 andfd = 1 to o N T
guarantee stability and positivity of the predicted intdsv € ]
Fig. 7 shows the observer performance. Estimation results  5g |
have been compared with available sgmples of a biomass 0 10 20 _3‘0 20 50 60 7C
proxy (.e. correlated measurements) given by the so called time [days]

total suspended solids in the reactor.

The estimation performed for the bundle of observers are
compared with the classical asymptotic interval observer
(8 = 1). It is possible to assess the good convergence proper-
ties of the bundle of observers, whose best estimates become APPENDIX

usable much more rapidly than the asymptotic observer. Thetne coefficients of each polynomial in equation (24) can

lower and upper gain sets are shown in fig. 8. The computgg, explicitly determined. Denoting\, = 7i(s) — yu(s) we
gain intervals are quite reduced if we consider that any gajg, =

ve:
f € R can provide a valid guaranteed interval of the biomass.

Fig. 5. Influent substrate and its bounds.

o« ford <0
VIIl. CONCLUSION a1=0, a'=0
In this paper we have developed and applied a new interval by = p(s)z — B(s)T — ue;, /k
observer, extending results obtained in [1]. We introduced bt = p(s)z — p(s)z + uef, /k (44)
an optimality criterion that exploits the guaranteed abr ¢ = (a(s) —u)z
nature of the estimates. We showed that the optimal gain ch = (p(s) —u)z
value that generates the best interval estimate depends on f
. o for 0 e[0,1]
the unknown state and therefore cannot be directly computed
We proposed an identification of the region where this opti- Gy = —sA,/k, a®=sA,/k
mal gain belongs. An observer bundle was considered, with by = p(s)x — (8T + (sA, + ue;,)/k
gain values uniformly distributed on the identified region i b = p(s)r — p(s)z — (sA, + uey,)/k (45)
order to be sure to have a framer close enough the unknown Ty = (f(s) — u)T
optimal. 22 e (lu(s) — u)g
The proposed observer considerably increases the preperti o
of the asymptotic observers. Another advantage of the-inter ° for 6 > 1
val based approach is that we can assess the convergence of as = sA,/k, a®=—-sA,/k
the observer (through the size of the interval) and thussasse 7= 1(s)

its efficiency. Such an observer can thus be advantageously
used in a robust control framework, where state uncerésinti = _
are taken into account in the control strategy.

T(s)z + (sA, —ue;,)/k (46)

& = (@ils) —w)z
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Fig. 7. Convergence inde#. [7]

(8]
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N El
For anyd < 0 we have thai1 (6) and f, () are straight
lines with positive and negative slopes respectively10]

Indeed:

—wue, <0 [11]

(8)T) — ue;, <
(8)Z) +ue >0
For anyf € [0,1], f*(9) and f,(9) are convex and [12]

concave parabolas respectively.

(47)

[13]
For anyd > 1, f(¢) and f(¢) are concave and convex

parabolas respectively. [14]
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