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Abstract— In this paper we design an interval observer for
the estimation of unmeasured variables of uncertain bioreac-
tors. The observer is based on a bounded error observer, as
proposed in [1], that considered a loose approximation of the
growing rate. We first show how to generate guaranteed upper
and lower bounds on the state, provided that a known interval
for the initial condition and the uncertainties is available. These
so called ”framers” depend on a tuning gain. They can be
run in parallel and the envelope provides the best estimate.
An optimality criterion is introduced leading to the definit ion
of an optimal observer. We show that this criterion provides
straighforwardly a gain set containing the best framers. The
method is applied to the estimation of the total biomass of
an industrial waste water treatment plant, demonstrating its
efficiency.

I. INTRODUCTION

Optimization of biotechnological processes and in partic-
ular of wastewater treatment plants is nowadays receiving an
increasing attention. It motivated the design of new control
strategies [14], [2] that guarantee a better process working
and efficiency. However these controllers often require high
quality measurements or efficient state estimation proce-
dures. On one hand the difficulty to have online reliable
sensors that could provide the key variables is a well known
limitation of biotechnological processes. On the other hand,
robustness of the controller to state uncertainties becomes a
critical requirement in the framework of strong disturbances
and high uncertainties that characterize bioprocesses.
Designing a state estimator robust to large process uncer-
tainties is therefore a central issue, and classical methods
may be hardly directly applicable to bioprocesses [18]. There
was recently many advances on this topic, introducing for
example novel uncertainty structures [4], [5] which have
helped the development of robust estimation schemes.
Several estimation methods that deal with uncertainty can be
found in the current literature. Most of them rely on classical
approaches like estimation through ellipsoidal sets [8], robust
Kalman filtering [17],H∞ or H2 filtering methods [16].

A popular class of observers for mass balance based
models are based on the principle of observers with un-
known inputs [15]. The particular structure associated to
the mass balance modeling is exploited and the biological
kinetics (one of the most critical uncertainties of the system)
are considered as an unknown input and eliminated. This
leads to the formulation of asymptotic observers [6]. As a
consequence, these observers are very robust with respect
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to the unknown or poorly modeled kinetics. However their
convergence rates are fixed and linked to the operating mode
of the system. Recently, a hybrid observer combining an
asymptotic and a high gain observer has been proposed by
[1]. This observer assumes a loose bounding of the bacterial
growth rate function and allows to accelerate the convergence
rate. A gainθ is tuned at a high positive value when the
estimate is far from the real state, and then comes back to
the slow but accurate asymptotic observer once the estimate
achieved an appropriate region.
An alternative approach to manage uncertainty consists in
using interval methods [7]. This approach was mainly devel-
oped for discrete time systems and more recently for con-
tinuous systems, based on properties of positive differential
systems [20], [10], [13]. The idea consists in bounding the
state by solutions of dynamical systems that satisfy some
cooperativity conditions [11]. If the initial condition issure
to lie in a given interval, then the state is guaranteed to be
bounded between an upper and a lower interval.
We propose here an extension of this last approach, in the
framework of the nonlinear observers introduced by [1]. We
take benefit of the possibility to tune the error dynamics
to improve the convergence properties. For this, we run in
parallel a broad set of interval observers that all guarantee
a bounding of the real state. It is then possible to select the
inner envelope of the so calledobserver bundleto obtain
a new observer with much better convergence rate and
much smaller interval predictions [12]. It is worth noting
that among the set of interval observers that are run in
parallel, some may be unstable, but providing however a
better estimate during first transients associated to the fastest
eigenvalues.
Additionally, in this paper we determine a criterion that leads
to an optimal gain for providing the best estimates. We show
that this unique optimal gain cannot be computed without the
state knowledge. However a gain interval which contain the
optimal gain can be determined. This allows us to reduce the
bundle size and increase its accuracy and convergence rate.
This work is organized as follows. In section II we introduce
a bioreactor model and some hypotheses about the system.
Section III recalls a bounded error observer and proposes an
interval observer highlighting some of its main features. In
section IV we explain how to improve the interval estimates
by using a bundle of observers and regular reinitialisation.
In section V we apply a simple criterion in order to obtain
a characterization of the space of gains that performs the
best estimates. The application of the method to an industrial
wastewater treatment plant is shown in section VII.



II. D EFINITIONS AND HYPOTHESES

We consider the following widely used model [6], which
describes the behavior of the concentrations of a biomassx,
a substrates and a productp in a perfectly mixed bioreactor:

ẋ = µ(s)x − ux
ṡ = u(sin − s) − kµ(s)x
ṗ = λµ(s)x − up
y = s

(1)

sin corresponds to the concentration of influent substrate,
u is the dilution input andk and λ are conversion yield
coefficients. The biological activity of the system are featured
by the non negative growth rate functionµ(s) such that
µ(0) = 0, known to be highly uncertain. For the sake of
simplicity µ(s) is assumed to be aC1 function.

Property 1: For any nonnegative initial conditions, trajec-
tories of system (1) remain bounded and positive for any
positive time.

Proof:
1) Positivity of the system is trivial ifµ(0) = 0 andµ(s) ≥ 0,
∀s ≥ 0.
2) Considerz1 = s + kx and z2 = p + λx. It is clear that
limt7→∞ z1 = sin and limt7→∞ z2 = 0, for fixed u and sin,
which proves the boundedness of the state vector.
In the sequel we assume that the following hypotheses are
fulfilled.

Hypothesis 1:The dilution rateu is a persistent input: for
u ≥ 0 there existα andβ positive constants such that:

∫ t+α

t

u(τ)dτ ≥ β > 0 (2)

Hypothesis 2:We assume that the growth rate is bounded
by two known functionsµ(s) and µ(s) and a positive
constanta:

1. 0 ≤ µ(s) ≤ µ(s) ≤ µ(s) ≤ a, ∀s ≥ 0
2. µ(0) = 0

Now our objective is to develop a robust observer based on
interval approach with improved convergence properties in
order to estimate the biomass concentrationx(t) in a reactor,
when monitoring the substrates(t) (the same analysis holds
for the estimation of the variablep, but for the sake of brevity
this case is not developed here).

III. B OUNDED ERROR INTERVAL OBSERVER

A. Bounded error observers

We consider the class of observers introduced in [1]. These
observers do not converge to zero but to a bounded error.

Definition 1: A bounded error observer of system (1) is a
dynamical system

˙̂x = f(x̂, u, y) with lim
t→∞

||x̂ − x|| ≤ r (3)

wherer is positive real constant (depending on the uncer-
tainty onµ) such thatk = 0 if µ(s) is perfectly known.

A bounded error observer for the variablex of system (1)
can be derived, considering that the system dynamics (growth
rate) are poorly known. Let us introduce the transformation:

z = kx + θ(t)s (4)

whereθ(t) ∈ C1(R) is a gain that will be discussed later on.
Considering equation (1), the dynamics ofz can be written
as follows:

ż = (1 − θ)µ(s)(z − θs) + u(θsin − z) + θ̇s (5)

Then, since the influent substratesin is well known, the
following bounded error observer can be derived:

Proposition 1: The following system is a bounded error
observer of (1)

˙̂z = (1 − θ)µ̂(s)(ẑ − θs) + u(θsin − ẑ) + θ̇s
x̂ = (ẑ − θs)/k

(6)

where the function̂µ(s) is such that|µ̂(s)− µ(s)| < a, and
a is a positive real.

Proof: See [1].
One can note that function̂µ(s) can bee.g.any of the known
functionsµ(s) or µ(s) introduced in hypothesis 2, fulfilling
the previously mentioned condition.

Remark 1: If θ = 1 then equation (6) becomes the
classical asymptotic observer (see [6]).

The idea used in [1] was to implement anhybrid observer
based on equation (6). The estimations start with a high
and positive value ofθ which decreases down to one along
the time. From a methodological point of view, the hybrid
approach combines two type of observers: a bounded error
observer with high convergence rate but poor accuracy and
an asymptotic observer with fixed convergence rate but high
accuracy. Even though this observer showed to improve
the properties of asymptotic observers, adjusting the gain
θ seems rather complicated. This last issue can be overcome
using properties of interval estimates, as explained in the
next sections. In what follows we consider the following
hypothesis.

Hypothesis 3:The influent substratesin is an unknown
bounded input of system (1). However, we know bounds for
this input such that:

s−in(t) ≤ sin(t) ≤ s+
in(t) (7)

We denotee−in = sin − s−in, e+
in = s+

in − sin and
ein = s+

in − s−in.

B. Interval observers

The objective of an interval observer is to generate guar-
anteed bounds of the unknown state variables. For this we
will introduce the concept offramer:

Definition 2: A framer for system (1) is a pair of coupled
dynamical systems

ẋ = f(x, x, θ, y), x(0) = x0

ẋ = f(x, x, θ, y), x(0) = x0
(8)



such that, for an initial conditions verifyingx0 ≤ x0 ≤ x0

we havex(t) ≤ x(t) ≤ x(t).
Note that this definition is rather general, highlighting the

fact that a framer is conceived to give an upper and a lower
bound of the unknown state. Stability can be considered
as a second feature of a framer, to guarantee a bounded
interval and obtain an interval observer. This point is more
deeply discussed hereafter.

Let us propose analytical expressions for framers of the
variable x of system (1). These expressions are deduced
from equation (6).

Proposition 2: Given x0, x0 such thatx0 ∈ [x0, x0], then
for a gainθ ∈ C1(R), the following system defines a framer
for system (1). The framer depends on the value ofθ as
follows:

• for θ < 0

żθ = (1 − θ)(µ(s)zθ − θµ(s)s) + u(θs−in − zθ) + sθ̇

żθ = (1 − θ)(µ(s)zθ − θµ(s)s) + u(θs+
in − zθ) + sθ̇

(9)
• for 0 ≤ θ < 1

żθ = (1 − θ)(µ(s)zθ − θµ(s)s) + u(θs+
in − zθ) + sθ̇

żθ = (1 − θ)(µ(s)zθ − θµ(s)s) + u(θs−in − zθ) + sθ̇
(10)

• for θ ≥ 1

żθ = (1 − θ)(µ(s)zθ − θµ(s)s) + u(θs+
in − zθ) + sθ̇

żθ = (1 − θ)(µ(s)zθ − θµ(s)s) + u(θs−in − zθ) + sθ̇
(11)

with

xθ = (z − θs)/k and xθ = (z − θs)/k (12)

Proof: The proof is carried out forθ ≥ 1 (the same
arguments hold for the other framers). Let us consider the
differencee between the upper candidate estimate and the
unknown state, this is:

e = xθ − x = (zθ − z)/k (13)

Its dynamics is:

ė = (1 − θ)((µ(s)zθ − µ(s)z) − θ(µ(s) − µ(s))s)

+u(θe+
in − ke)

(14)
Now we show thate stays positive. We consider the first time
instantt⋆ wheree = 0 i.e. x = x = x⋆ and zθ = z = z⋆,
then:

ė(t⋆) = (1− θ)((µ(s)−µ(s))z⋆ − θ(µ(s)−µ(s))s)+uθe+
in

(15)
Considering thatz⋆ is positive (because of the positivity of
the state and the gainθ) and hypothesis (2), we have:

ė(t⋆) ≥ 0 (16)

which guarantees that the error will stay positive aftert⋆.
Using similar arguments it is possible to show thate(t) ≥ 0
and therefore the interval that contains the state is positive:

e = xθ − xθ = e + e ≥ 0 (17)

These arguments are well known in the field of positive and
monotone differential systems [11].

Let us detail two cases of specific interest.

C. The casesθ = 0 and θ = 1

The framer for θ = 1 is the interval version of the
classical asymptotic observer [6]: it does not depends on
the biological kinetics, however it has a fixed convergence
rate given byu, provided that hypothesis (1) is satisfied.

Property 2: The framer [xθ=1(t), xθ=1(t)] provides a
bounded interval estimation of variablex(t).

Proof: This property is straightforward and relies on
the boundness ofsin.

Property 3: The framerxθ=0 is positive, ifxθ=0(0) ≥ 0.
Proof: The proof is trivial.

Note that this framer may be unstable.
As a consequence, the framers obtained forθ = 0 and

θ = 1 will provide a guaranteed upper and lower bound for
the state.

IV. OBSERVERS BUNDLE AND REINITIALIZATION

One of the key properties related to an interval observers is
that we can compare the solutions generated by two or more
framers. We run therefore several framers in parallel (for
different values of the gainθ), which all provide guaranteed
interval estimates for the state.

Definition 3: An observer bundle is a set of interval
estimates generated by a finite set of framers, using different
values of the gainθ.

B(t) = {xθ(t) : θ(t) ∈ Θ}
B(t) = {xθ(t) : θ(t) ∈ Θ}

(18)

whereΘ is a subset ofC1 : R 7→ R functions.

B is the upper bundle andB is the lower bundle. Each bundle
has an envelope that provides the best bounds:

Binf(t) = min{B(t)} (19)

Bsup(t) = max{B(t)} (20)

That is, we take the inner envelope from all the set of
estimates generated by different gain values. It is worth
noting that we combine transient behavior of some unstable
framers (that may improve transient estimations), with the
asymptotic stability of others (that guarantees the boundness
of the envelope).

Property 4: The intervalI = [Bsup,Binf ] is bounded if
θ(t) ≡ 1 ∈ Θ.

Proof: First, it is worth to point out that if one framer is
bounded, thenBsup andBinf are bounded too. This is the main



advantage of running several guaranteed estimates in parallel.
Boundedness of the intervalI is a direct consequence of
Property 2.

Property 5: The lower bound best valueBsup is positive
if θ ≡ 0 ∈ Θ.

Proof: This is a straight consequence of Property 3,
which provides a lower positive framer∀t.

A. Reinitialisation

A regular reinitialization of the bundle can be performed
to restart all the framers with the best available interval
predicted byBsup and Binf . We consider the time interval
[tk, tk + ∆t] (we denote by∆t the reinitialisation time
interval) where the framers run. Then at the time instanttk
we take the best interval estimates performed by the previous
estimation period to reinitialize the whole bundle.

[x0
θ(tk), x0

θ(tk)] = [Bsup(tk),Binf(tk)] (21)

The objective behind the regular reinitialisation of the
interval estimates is to improve the framer efficiency by
feeding it with the best available estimate, and thus take
benefit of the transients of some of them.

B. Convergence index

One of the advantages of obtaining interval estimates is
that we can assess the observer convergence by comparing
upper and lower bound estimates. This leads to a convergence
index ϑ, which corresponds to a normalized comparison of
the best estimates:

ϑ(t) =
Binf(t) − Bsup(t)

Binf(t) + Bsup(t)
(22)

V. COMPUTING THE OPTIMAL GAIN

Running in parallel a dense enough bundle (i.e. with a
large number of values ofθ) in order to obtain the best
interval[Bsup,Binf] can be time consuming without guarantee
of optimal estimation. Therefore, a characterization of the
gain set that can generate the best solutions is proposed.

A. Definition of an optimality criterion

Let us assume that at timet the best estimate[x0
θ(t), x

0
θ(t)]

is provided. The best upper [resp. lower] framer att will be
the one with the minimal [resp. maximal] slope (see fig.
1). It will thus be given by the value ofθ that minimizes
[resp. maximizes]̇x [resp.ẋ]. The proposed criterion consists
then in finding a pair of gainsθ and θ which respectively
minimizes and maximizeṡx and ẋ at any time instantt.

ẋθ = (żθ − θ(t)ṡ − θ̇(t)s)/k

ẋθ = (żθ − θ(t)ṡ − θ̇(t)s)/k
such that:
ẋθ(s,x) = min

θ
{ẋθ}

ẋθ(s,x) = max
θ

{ẋθ}

(23)

Functions żθ and żθ have a piecewise form given by
equations (9), (10) and (11). Using these expressions, we

Fig. 1. Concept associated to the optimization criterion (23).

can write ẋθ = f(x, x, s, θ) and ẋθ = f(x, x, s, θ) as
polynomials with respect to the gainθ:

f i(x, x, s, θ) = aiθ
2 + biθ + ci

f
i
(x, x, s, θ) = aiθ2 + biθ + ci (24)

where i = 1 for θ < 0, i = 2 for 0 ≤ θ < 1 and i = 3
for θ ≥ 1. See the appendix for a detailed computation of
the coefficients of equation (24). Fig. 2 provides a graph of
function f . It can be easily verified that forθ ≥ 1 there
exists a global nontrivial solution that minimizesẋ [resp.
maximizesẋ] denotedβ [resp. β]. On the other hand, for
θ < 1, the optimal gain value isθ = 0. Thus, there are two
candidates to solve the optimization problem (23) forθ ∈ R,
(see fig. 2):

θ(t) =
{

0, max{1, β}
}

(25)

θ(t) =
{

0, max{1, β}
}

(26)

where

β(t) =
s∆µ − ue−in + k(µ(s)x − µ(s)x)

2s∆µ

β(t) =
s∆µ − ue+

in − k(µ(s)x − µ(s)x)

2s∆µ

(27)

and∆µ = µ(s) − µ(s).

Remark 2:All the framers based on gains which belong to
the setA = {θ ∈]−∞, 1[−{0}} will never provide the best
estimate. As a consequence we eliminate equation (9) and
consider equation (10) only for the caseθ ≡ 0 to compute
the interval observer.

Now it is very important to note that the optimal solution
θ and θ cannot be computed because they depend on the
unknown statex(t). We must therefore try to localize the
region where the optimal values forθ lie, and run as many
framers as possible in this region. Indeed, intervals that
contain the nontrivial optimal solutionβ and β can be
determined on the basis of the present state estimate. Let
us focus on the setθ ≥ 1 (whereβ andβ live) to define the
bounds of this interval.
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Fig. 2. Piecewise functionf(θ).

B. Bounding of the optimal gain at timet

The objective is to compute the sets that contains the
unknown optimal gain values, and run an observer bundle
considering these values, to get as close as possible to the
optimal framer.

The following hypothesis is not mandatory, but it strongly
simplifies the computation of the optimal interval:

Hypothesis 4:The unknown functionµ(s) can be written
as µ(s) = γρ(s), whereρ(s) is a knownC∞ function and
γ = [γ, γ].

Property 6: The setsΩ andΩ ⊂ R defined by:

Ω(t) =
[

1, ϕ(t)
]

and Ω(t) = [1, ϕ(t)] (28)

with

ϕ(t) =
1

2
+

kγ∆B

2(γ − γ)
and ϕ(t) =

1

2
+

kγ∆B

2(γ − γ)
(29)

containβ andβ for any timet, where∆B = Binf − Bsup.
Proof: At time t, we have thatBsup(t) ≤ x(t) ≤ Binf(t).

After some algebraic arrangements on equation (27) the sets
Ω andΩ can be written as:

Ω ⊂

[

−uein

2s∆µ

+
1

2

(

1 − k
Bsup

s

)

,
1

2
+

kµ(s)∆B

2∆µ

]

(30)

Ω ⊂

[

−uein

2s∆µ

+
1

2

(

1 − k
Binf

s

)

,
1

2
+

kµ(s)∆B

2∆µ

]

(31)

Let us focus on the lower bound of these intervals. Given that
Bsup(t), Binf(t) ands(t) are non negative quantities, then:

1

2

(

1 − k
Bsup

s

)

≤
1

2
and

1

2

(

1 − k
Binf

s

)

≤
1

2
(32)

As
−uein

2s∆µ

< 0, it follows that the computed lower bounds

can not be greater than the trivial valueθ = 1. Now,
considering the upper bound of intervals (30), (31) and
hypothesis (4), we have:

µ(s)

2∆µ

=
γ

2(γ − γ)
and

µ(s)

2∆µ

=
γ

2(γ − γ)
(33)

This leads to the intervals given by equation (29).

C. Bounding of the optimal gain on the interval[tk, tk+1]

We have provided an interval where the optimal gain is
sure to lie at timet, now we must be sure that this interval
will still contain the optimal gain for any time in the interval
[tk, tk+1].

We will thus recompute the optimal gain interval on
[tk, tk+1], on the basis of the state estimation provided by
the framers.

Our strategy consists in splitting the interval (28) intoN
parts in order to getN + 1 gain valuesθi.

θi =
i + ϕ(t)(N − i)

N
and

θi =
i + ϕ(t)(N − i)

N
for i ∈ {0, .., N}

(34)

As a consequence, the values ofθi will not be constants
and we need to estimatėθi. The quantityθ̇i involves the
computation ofϕ̇(t) and ϕ̇(t) . The term∆̇B depends on
the output derivativės(t) which cannot be properly online
computed. To solve this problem, we propose a larger bound
for the gain interval whose derivative is independant on
ṡ(t). This is simply achieved considering the state estimate
provided byθ = 0.

Considering the bounds already computed for the non
trivial optimal gain of equations (28) and (29), let us define
the following sets:

Ωθ=0(t) =
[

1, ϕ(t)
]

and Ωθ=0(t) =
[

1, ϕ(t)
]

(35)

where

ϕ(t) =
1

2
+

kγ(xθ=0(t) − xθ=0(t))

2(γ − γ)

ϕ(t) =
1

2
+

kγ(xθ=0(t) − xθ=0(t))

2(γ − γ)

(36)

Property 7: Ω(t) ⊂ Ω(t)θ=0 andΩ(t) ⊂ Ω(t)θ=0.
Proof: It is clear from the properties of an observer

bundle thatBsup(t) ≥ xθ(t) and Binf(t) ≤ xθ(t), for any
θ. In particular for θ = 0 one has straightforwardly that
∆B(t) ≤ xθ=0(t) − xθ=0(t) and then property 7 holds.

Now we can continuously computeϕ(t) and ϕ(t) for

all t ∈ [tk, tk+1], considering thatẋθ=0(t) − ẋθ=0(t) =
g(xθ=0, xθ=0, s) = (µ(s) − u)∆x + ∆µx. The dynamics

of ϕ̇ and ϕ̇ can be expressed by the system:







ϕ̇

ϕ̇






=









kγ

2(γ − γ)
kγ

2(γ − γ)









g(x, x, s),





ϕ(tk)

ϕ(tk)



 =





max{1, ϕ(tk)}

max{1, ϕ(tk)}





(37)

It is worth to remark that the system (37) is initialized
at every reinitialization time instanttk using the values



computed by the instantaneous gain bounds of equation (28).
This becomes critical in order to keep a good gain bounding
and therefore obtain a bundle with framers close to the
optimal unknown gain.

VI. B IASED OUTPUT

Now we consider a bounded noise affecting the system
output.

Hypothesis 5:Online measurements(t) is perturbed by a
noiseδ(t). We assume that this perturbation is of multiplica-
tive nature:y(t) = s(t)(1 + δ(t)).

Moreover, the noise is bounded by∆ ∈ R
+ such that

|δ| ≤ ∆ < 1.
Considering thats(t) is a positive variable, the last hypoth-
esis implies that we know two bounds for this quantity:

y(t)

(1 + ∆)
≤ s(t) ≤

y(t)

(1 − ∆)
(38)

We rewrite the framer equations (11) and (10) (see remark
2) taking into account the output uncertainty:

Proposition 3: Given x0, x0 such thatx0 ∈ [x0, x0], then
the following system is a framer of system (1):

• for θ ≥ 1

żθ = (1 − θ)(ν(y, y)zθ − θν(y, y)y)

+u(θs+
in − zθ) + θ̇(εy + (1 − ε)y)

żθ = (1 − θ)(ν(y, y)zθ − θν(y, y)y)

+u(θs−in − zθ) + θ̇(εy + (1 − ε)y)

xθ = (zθ − θy)/k and xθ = (zθ − θy)/k
(39)

• for θ = 0:

ẋθ=0 = (ν(y, y) − u)xθ=0

ẋθ=0 = (ν(y, y) − u)xθ=0
(40)

This means that forx0 ≤ x0 ≤ x0 ⇒ x(t) ≤ x(t) ≤ x(t).
The functionsν(.) andν(.) are defined such that:

ν(y, y) = min
q∈[y,y]

{µ(q)} and ν(y, y) = max
q∈[y,y]

{µ(q)}

(41)

and ε =

{

1 if θ̇ ≥ 0
0 otherwise

, uses the sign oḟθ in order to

provide the correct bounding.

Proof: The same arguments as proof of proposition 2
can be applied. Considering the upper bound error equation
for θ ≥ 1 at the time instantt⋆ wheree = 0 we have:

ė(t⋆) = (1 − θ)((ν(y, y) − µ(s))z⋆ + θ(ν(y, y)y

−µ(s)s)) + uθe+
in + θ̇(εy + (1 − ε)y − s)

(42)
which under the stated assumptions verifiesė(t⋆) ≥ 0 and
thereforee(t) stays positive aftert⋆ for θ ≥ 1 (the proof for
θ = 0 is trivial).

The same principle to design an observer bundle can now
be applied. The already computed bounds for the optimal

gain (equations (35) and (36)) keep the same expressions, as
far as they do not depend explicitly on the outputs(t).

VII. A PPLICATION AND RESULTS

A. System setup

For the application of the method, we have considered a
real industrial anaerobic digestion wastewater treatmentplant
(ADWTP). It consist in a highly efficient process that remove
a concentrated polluting organic substrate and can recover
energy via methane production. This is performed through
several consecutive biological degradation steps involving
various groups of anaerobic bacteria. Organic compounds
are bioconverted in one hand into biogas (i.e. a mixture
of CO2 and CH4) and, on the other hand, into microbial
biomass and residual organic matter. ADWTP has a lot of
advantages in comparison with traditional methods: it does
not generate too much sludge and produces energy. However,
it is known to be highly unstable: accumulation of interme-
diate acid compounds can lead to the process acidification
with complete loss of biomass activity. Therefore, accurate
monitoring of the system variables is required in order to
ensure the appropriate working of the process.
Bacterial growing rate in AD is often described by a non
monotone function of Haldane type:

µ(s) =
µhs

s + ks + s2/ki

(43)

Then we have considered an industrial ADWTP processing
raw industrial vinasses of20000m3. This plant is owned by
the AGRALCO company located in Stella, Spain [3].

In particular for this application, the parameterµh is
badly known, with an uncertainty of±15% with respect to
a nominal (real) value. Parameters meaning and values are
summarized in table I.

TABLE I

SYSTEM PARAMETERS.

parameter meaning value
uh maximal growing rate 0.9
ks saturation constant 95
ki inhibition constant 243
k yield conversion 19.5

[u−

h
, u+

h
] bounds foruh [0.72,1.08]

The dilution inputu[1/h] as well as the available online
measurements of the chemical oxygen demand (which
represents the substrates[g/l] in the reactor) are shown in
fig. 3 and 4 respectively.
Bounds for the unknown influent substratesin are shown in
fig. 5, known to fluctuate around±30% of the real value.
Noise on the measurements is featured by∆ = 0.03 (see
equation (38)).

B. Observers bundle

The observer was tested considering a reinitialization time
∆t = 1 [days]. The observer initial conditionx0 = 0,
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Fig. 3. Dilution inputu and measured chemical oxygen demand.

x0 = 100 has been chosen very large in order to assess the
convergence properties of the method. For that, the gains
were selected considering a homogeneous partition of 8
framers on the gain interval (in open loop) of equations
(35) and (36), including the gainsθ = 0 and θ = 1 to
guarantee stability and positivity of the predicted intervals.
Fig. 7 shows the observer performance. Estimation results
have been compared with available samples of a biomass
proxy (i.e. correlated measurements) given by the so called
total suspended solids in the reactor.
The estimation performed for the bundle of observers are
compared with the classical asymptotic interval observer
(θ = 1). It is possible to assess the good convergence proper-
ties of the bundle of observers, whose best estimates become
usable much more rapidly than the asymptotic observer. The
lower and upper gain sets are shown in fig. 8. The computed
gain intervals are quite reduced if we consider that any gain
θ ∈ R can provide a valid guaranteed interval of the biomass.

VIII. C ONCLUSION

In this paper we have developed and applied a new interval
observer, extending results obtained in [1]. We introduced
an optimality criterion that exploits the guaranteed interval
nature of the estimates. We showed that the optimal gain
value that generates the best interval estimate depends on
the unknown state and therefore cannot be directly computed.
We proposed an identification of the region where this opti-
mal gain belongs. An observer bundle was considered, with
gain values uniformly distributed on the identified region in
order to be sure to have a framer close enough the unknown
optimal.
The proposed observer considerably increases the properties
of the asymptotic observers. Another advantage of the inter-
val based approach is that we can assess the convergence of
the observer (through the size of the interval) and thus assess
its efficiency. Such an observer can thus be advantageously
used in a robust control framework, where state uncertainties
are taken into account in the control strategy.
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APPENDIX

The coefficients of each polynomial in equation (24) can
be explicitly determined. Denoting∆µ = µ(s) − µ(s) we
have:

• for θ < 0

a1 = 0, a1 = 0

b1 = µ(s)x − µ(s)x − ue−in/k

b1 = µ(s)x − µ(s)x + ue+
in/k

c1 = (µ(s) − u)x
c1 = (µ(s) − u)x

(44)

• for θ ∈ [0, 1[

a2 = −s∆µ/k, a2 = s∆µ/k

b2 = µ(s)x − µ(s)x + (s∆µ + ue+
in)/k

b2 = µ(s)x − µ(s)x − (s∆µ + ue−in)/k
c2 = (µ(s) − u)x
c2 = (µ(s) − u)x

(45)

• for θ ≥ 1

a3 = s∆µ/k, a3 = −s∆µ/k

b
3

= µ(s)x − µ(s)x − (s∆µ − ue+
in)/k

b3 = µ(s)x − µ(s)x + (s∆µ − ue−in)/k
c3 = (µ(s) − u)x
c3 = (µ(s) − u)x

(46)

It is possible to verify that:

1. f2(1) = f3(1) and f1(0) = f2(0).
Then, the piecewise functionf(θ) is a continuous
function for all θ. The same statement holds for the
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Fig. 7. Convergence indexϑ.

function f(θ).

2. For anyθ < 0 we have thatf1(θ) andf1(θ) are straight
lines with positive and negative slopes respectively.
Indeed:

b1 = k(µ(s)x − µ(s)x) − ue−in ≤ 0

b1 = k(µ(s)x − µ(s)x) + ue+
in ≥ 0

(47)

3. For anyθ ∈ [0, 1[, f2(θ) and f2(θ) are convex and
concave parabolas respectively.

4. For anyθ ≥ 1, f(θ) andf(θ) are concave and convex
parabolas respectively.
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[20] J.-L. Gouzé, A. Rapaport and Z. Hadj-Sadok, Interval observers for
uncertain biological systems,Ecological Modelling, vol. 133, 2000,
pp. 45-56.


