A computer-assisted discharging procedure: application to 2-distance coloring

Hoang LA, Petru VALICOV

LIRMM, University of Montpellier

November, 2020

A 2-distance k-coloring (Kramer and Kramer, 1969)

A k-coloring such that no pair of vertices at distance at most 2 is monochromatic.

The 2-distance chromatic number

 $\chi^2(G)$: the smallest integer k so that G has a 2-distance k-coloring.

A 2-distance k-coloring (Kramer and Kramer, 1969)

A k-coloring such that no pair of vertices at distance at most 2 is monochromatic.

The 2-distance chromatic number

 $\chi^2(G)$: the smallest integer k so that G has a 2-distance k-coloring.

A 2-distance k-coloring (Kramer and Kramer, 1969)

A k-coloring such that no pair of vertices at distance at most 2 is monochromatic.

The 2-distance chromatic number

 $\chi^2(G)$: the smallest integer k so that G has a 2-distance k-coloring.

Not a 2-distance coloring.

A 2-distance k-coloring (Kramer and Kramer, 1969)

A k-coloring such that no pair of vertices at distance at most 2 is monochromatic.

The 2-distance chromatic number

 $\chi^2(G)$: the smallest integer k so that G has a 2-distance k-coloring.

Not a 2-distance coloring.

An optimal 2-distance 6-coloring.

 $\chi^{2}(G) = 6.$

Observation

For any graph G with maximum degree Δ , $\Delta + 1 \leq \chi^2(G) \leq \Delta^2 + 1$.

Observation

For any graph G with maximum degree Δ , $\Delta + 1 \leq \chi^2(G) \leq \Delta^2 + 1$.

Wegner's conjecture, 1977

Let G be a planar graph. Then,

$$\chi^{2}(\mathcal{G}) \leq \left\{ egin{array}{ll} 7, & ext{if } \Delta \leq 3, \ \Delta + 5, & ext{if } 4 \leq \Delta \leq 7, \ \lfloor rac{3\Delta}{2}
floor + 1, & ext{if } \Delta \geq 8. \end{array}
ight.$$

Wegner's conjecture, 1977

Let G be a planar graph. Then,

$$\chi^2(\mathcal{G}) \leq \left\{ egin{array}{ll} 7, & ext{if } \Delta \leq 3, \ \Delta + 5, & ext{if } 4 \leq \Delta \leq 7, \ \lfloor rac{3\Delta}{2}
floor + 1, & ext{if } \Delta \geq 8. \end{array}
ight.$$

Results on planar graphs with high girth:

If G is a planar graph with girth

 $g \geq g_0$ and maximum degree

 $\Delta\geq\Delta_0$, then $\chi^2(\mathcal{G})\leq\Delta(\mathcal{G})+c_0.$

Wegner's conjecture, 1977

Let G be a planar graph. Then,

$$\chi^2(\mathcal{G}) \leq \left\{ egin{array}{ll} 7, & ext{if } \Delta \leq 3, \ \Delta + 5, & ext{if } 4 \leq \Delta \leq 7, \ \lfloor rac{3\Delta}{2}
floor + 1, & ext{if } \Delta \geq 8. \end{array}
ight.$$

Results on planar graphs with high girth:

If G is a planar graph with girth

 $g \ge g_0$ and maximum degree

$$\Delta \geq \Delta_0$$
, then $\chi^2(G) \leq \Delta(G) + c_0$.

Cranston and Kim, 2008

If G is a planar graph with $g \ge 9$ and $\Delta = 3$, then $\chi^2(G) \le \Delta + 3$.

Bu et al., 2015

If G is a planar graph with $g \ge 8$ and $\Delta = 5$, then $\chi^2(G) \le \Delta + 3$.

Wegner's conjecture, 1977

Let G be a planar graph. Then,

$$\chi^2(\mathcal{G}) \leq \left\{ egin{array}{ll} 7, & ext{if } \Delta \leq 3, \ \Delta + 5, & ext{if } 4 \leq \Delta \leq 7, \ \lfloor rac{3\Delta}{2}
floor + 1, & ext{if } \Delta \geq 8. \end{array}
ight.$$

Results on planar graphs with high girth:

If G is a planar graph with girth

 $g \ge g_0$ and maximum degree

$$\Delta \geq \Delta_0$$
, then $\chi^2(G) \leq \Delta(G) + c_0$.

Cranston and Kim, 2008

If G is a planar graph with $g \ge 9$ and $\Delta = 3$, then $\chi^2(G) \le \Delta + 3$.

Bu et al., 2015

If G is a planar graph with $g \ge 8$ and $\Delta = 5$, then $\chi^2(G) \le \Delta + 3$.

La and Valicov, 2020

If G is a planar graph with $g \ge 8$ and $\Delta \ge 3$, then $\chi^2(G) \le \Delta + 3$.

$\chi^2(G)$ girth	$\Delta + 1$	$\Delta + 2$	$\Delta + 3$	$\Delta + 4$	$\Delta + 5$	$\Delta + 6$	$\Delta + 7$	$\Delta + 8$
3				$\Delta = 3$				
4								
5		$\Delta \ge 10^7$	$\Delta \geq 339$	$\Delta \ge 312$	$\Delta \ge 15$	$\Delta \ge 12$	$\Delta \neq 7,8$	all Δ
6		$\Delta \ge 17$	$\Delta \ge 9$		all Δ			
7	$\Delta \ge 16$			$\Delta = 4$				
8	$\Delta \geq 9$		$\begin{array}{c} \Delta=5\\ \Delta\geq3 \end{array}$					
9	$\Delta \ge 8$	$\Delta = 5$	$\Delta = 3$					
10	$\Delta \ge 6$							
11		$\Delta = 4$						
12	$\Delta = 5$	$\Delta = 3$						
13								
14	$\Delta \ge 4$							
22	$\Delta = 3$							

Results from almost 20 different papers.

1: Suppose that there exists a counter-example *G* and suppose that *G* has the smallest number of vertices.

- 1: Suppose that there exists a counter-example *G* and suppose that *G* has the smallest number of vertices.
- **2:** Study the structural properties of *G*.

- 1: Suppose that there exists a counter-example *G* and suppose that *G* has the smallest number of vertices.
- **2:** Study the structural properties of *G*.
- **3:** Assign charges to vertices and faces so that the sum of all charges is negative thanks to the Euler's formula (|V| |E| + |F| = 2).

- 1: Suppose that there exists a counter-example *G* and suppose that *G* has the smallest number of vertices.
- **2:** Study the structural properties of *G*.
- **3:** Assign charges to vertices and faces so that the sum of all charges is negative thanks to the Euler's formula (|V| |E| + |F| = 2).
- 4: Redistribute the charges without changing the total sum, and show that we obtain a non-negative final amount, thanks to the structural properties, which is a contradiction.

Theorem

If G is a planar graph with girth $g \geq 8$ and maximum degree $\Delta = 3$, then $\chi^2(G) \leq 6$.

Step 1: Take a minimal counter-example *G*, with $\Delta = 3$, $g \ge 8$, and $\chi^2(G) \ge 7$.

- Some trivial properties:
 - G is connected

- Some trivial properties:
 - G is connected
 - G has no ----•

- Some trivial properties:
 - G is connected
 - G has no ----•
 - G has no

- Some trivial properties:
 - G is connected
 - G has no ----•
 - G has no •
- And almost 50 other complicated reducible configurations...

Step 3: Assign charges to vertices.

Charge assignment

$$\mu: v \mapsto 3.5d(v) - 9$$
 and $\mu: f \mapsto d(f) - 9$

Step 3: Assign charges to vertices.

Charge assignment

$$\mu: \mathbf{v} \mapsto 3.5d(\mathbf{v}) - 9$$
 and $\mu: f \mapsto d(f) - 9$

Since
$$|V| - |E| + |F| = 2$$
,
 $\sum_{v \in V} (3.5d(v) - 9) + \sum_{f \in F} (d(f) - 9) = -18 < 0$

	"Human" proof $g \geq 9$	"Human" proof ? $g \geq 8$	$\begin{array}{c} Our \ proof \\ g \geq 8 \end{array}$
Reducible configurations	Few "local" configs		
Charge distribution	── : −2		
	>•- : 1.5		
	$(face \ge 9)$: ≥ 0		
	$\mu(v) = 3.5d(v)$		
	$\mu(f)=d(f)-9$		

Hoang LA (LIRMM)

A computer-assisted discharging procedure

	"Human" proof	"Human" proof ?	Our proof
	$g \ge 9$	$g \ge 8$	g ≥ 8
Reducible configurations	Few "local" configs	Few "local" configs	
Charge			
distribution	── : −2	── : −2	
	→ : 1.5	>• -: 1	
	$(face \ge 9)$: ≥ 0	$face \ge 8$: ≥ 0	
	$\mu(v) = 3.5 d(v)$	$\mu'(v) = 3d(v)$	
	$\mu(f)=d(f)-9$	$\mu'(f)=d(f)-8$	

	"Human" proof	"Human" proof ?	Our proof
	$g \ge 9$	$g \ge 8$	$g \ge 8$
Reducible	Few "local" configs	Few "local" configs	
configurations		Need "global" configs !	
Charge			
distribution	· _ 2	· _ 2	
	=2		
	· 15	· · 1	
	. 1.5	. 1	
	\frown		
	$(face \geq 9) : \geq 0$	$(face \geq 8) : \geq 0$	
	Ú	Ú	
	$\mu(v) = 3.5 d(v)$	$\mu'(v) = 3d(v)$	
	$\mu(f)=d(f)-9$	$\mu'(f) = d(f) - 8$	

	"Human" proof	"Human" proof ?	Our proof
	$g \ge 9$	$g \ge 8$	$g \ge 8$
Reducible	Few "local" configs	Few "local" configs	
configurations		Need "global" configs !	
Charge			
distribution	• ·2	·2	• · _2
	• . 2	• . 2	• . 2
	→ : 1.5	: 1	: 1.5
	$face \ge 9$: ≥ 0	$face \ge 8$: ≥ 0	$face \ge 9$: ≥ 0
	$\mu(v) = 3.5d(v)$ $\mu(f) = d(f) - 9$	$\mu'(v) = 3d(v)$ $\mu'(f) = d(f) - 8$	

	"Human" proof	"Human" proof ?	Our proof
	$g \ge 9$	$g \ge 8$	$g \ge 8$
Reducible	Few "local" configs	Few "local" configs	
configurations	rew local comigs	Need "global" configs !	
Charge			
distribution			
	── : −2	÷ −2	── : −2
	~		~
	: 1.5	→ : 1	: 1.5
	$face \ge 9$: ≥ 0	$face \ge 8$: ≥ 0	$\left(face \geq 9 ight) : \geq 0$
	$\mu(v) = 3.5d(v)$ $\mu(f) = d(f) - 9$	$\mu'(v) = 3d(v)$ $\mu'(f) = d(f) - 8$	face = 8 : = -1

	"Human" proof $\sigma \geq 9$	"Human" proof ? $\sigma \geq 8$	Our proof $\sigma \geq 8$
Reducible configurations	Few "local" configs	Few "local" configs Need "global" configs !	Lots of "local" configs
Charge distribution	•_·2	2	·2
	· -2		· 2 · - : 1.5
	$face > 9$ $\cdot > 0$	$face > 8$ $\cdot > 0$	$face > 9$ $\therefore > 0$
	$\mu(v) = 3.5 d(v)$	$\mu'(v)=3d(v)$	face = 8 : = -1
	$\mu(f)=d(f)-9$	$\mu'(f) = d(f) - 8$	

$$- \bullet : -2 \qquad \bullet \bullet : 1.5 \qquad \left(face \ge 9 \right) : \ge 0 \quad \left(face = 8 \right) : = -1$$

• Choose rules to assure the vertices have non-negative charges.

• Choose rules to assure the vertices have non-negative charges.

$$- \bullet : -2 \qquad \bullet \bullet : 1.5 \qquad \left(face \ge 9 \right) : \ge 0 \quad \left(face = 8 \right) : = -1$$

• Choose rules to assure the vertices have non-negative charges.

• Here, we can reuse the same rules as Cranston and Kim for $g \ge 9$.

$$- \bullet : -2 \qquad \bullet \bullet : 1.5 \qquad \left(face \ge 9 \right) : \ge 0 \quad \left(face = 8 \right) : = -1$$

• Choose rules to assure the vertices have non-negative charges.

• Here, we can reuse the same rules as Cranston and Kim for $g \ge 9$.

• Choose rules to assure the 8-faces have non-negative charges.

Identify the 3-vertices.

Identify the 3-vertices. Count the 2-vertices in between.

Identify the 3-vertices. Count the 2-vertices in between. Encode the neighborhood of each 3-vertex. We obtain: **1a1a0b0c0a0c**.

Encode a tree from all incident faces

 f_0 Encode a tree from all incident faces

• Generate all possible words on $\{0, 1, a, b, c\}$ corresponding to the 8-faces (more than 10 000 words).

- Generate all possible words on $\{0, 1, a, b, c\}$ corresponding to the 8-faces (more than 10 000 words).
- Filter the list with encoded reducible configurations.

- Generate all possible words on $\{0, 1, a, b, c\}$ corresponding to the 8-faces (more than 10 000 words).
- Filter the list with encoded reducible configurations.
- Calculate the charges of the remaining faces/words.

- Generate all possible words on $\{0, 1, a, b, c\}$ corresponding to the 8-faces (more than 10 000 words).
- Filter the list with encoded reducible configurations.
- Calculate the charges of the remaining faces/words.
 - Define a dictionary of charges for each subword.

- Generate all possible words on $\{0, 1, a, b, c\}$ corresponding to the 8-faces (more than 10 000 words).
- Filter the list with encoded reducible configurations.
- Calculate the charges of the remaining faces/words.
 - Define a dictionary of charges for each subword.
 - Calculate the charge of each word by its subwords.

• Solve the problem of the verifying a huge amount of configurations.

- Solve the problem of the verifying a huge amount of configurations.
- Find problematic configurations (non reducible and non dischargeable) immediately.

- Solve the problem of the verifying a huge amount of configurations.
- Find problematic configurations (non reducible and non dischargeable) immediately.
- Verify a proof quickly.