EXTENDING BROOKS' THEOREM TO DIRECTED GRAPHS

JOINT WORK WITH PIERRE ABOULKER

Guillaume Aubian

TALGO/IRIF

18 NOVEMBER 2020

TALG

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

BACKGROUND AND CONTEXT

(V, E) with $E \subseteq \{\{u, v\}, u, v \in V\}$

(V, E) with $E \subseteq \{\{u, v\}, u, v \in V\}$

(V, E) with $E \subseteq V \times V$

(DI)CHROMATIC NUMBER

Definition

$$G = (V, E)$$
 k-colorable iff
 $V = \bigcup_{i=1}^{k} V_i$ and $G[V_i]$ are edgeless.

$$\chi(G) = \min_{k} \{ k | G k \text{-colorable} \} = 3$$

(DI)CHROMATIC NUMBER

Definition

$$G = (V, E) k$$
-colorable iff
$$V = \bigcup_{i=1}^{k} V_i \text{ and } G[V_i] \text{ are edgeless}$$

Definition

$$G = (V, E) k$$
-colorable iff
$$V = \bigcup_{i=1}^{k} V_i \text{ and } G[V_i] \text{ are acyclic.}$$

 $\chi(G) = \min_{k} \{k | G k \text{-colorable}\} = 3$ $\vec{\chi}(G) = \min_{k} \{k | G k \text{-colorable}\} = 2$

Theorem

$$\chi(\mathbf{G}) = \vec{\chi}(\overleftarrow{\mathbf{G}})$$

Generalize to directed graphs results that apply to graphs

$\{\emptyset, in, out\}$ degree

$$d(u) = \{v | uv \in E\} = 2$$
$$\Delta(G) = max_{v \in V}d(v) = 3$$

$\{\emptyset, IN, OUT\}$ degree

$$d(u) = \{v | uv \in E\} = 2$$
$$\Delta(G) = max_{v \in V}d(v) = 3$$

 $d^{-}(u) = \{v | vu \in E\} = 3$ $d^{+}(u) = \{v | uv \in E\} = 1$ $\Delta_{MAX}(G) = max_{v \in V} d_{MAX}(v) = 3$ $\Delta_{MIN}(G) = max_{v \in V} d_{MIN}(v) = 1$

BROOKS' THEOREM ON NON-ORIENTED GRAPHS

Theorem

Let G be a connected graph. $\chi(G) \leq \Delta(G) + 1$ and equality occurs if and only if G is :

- a cycle on an odd number of vertices or
- a complete graph on $\Delta(G) + 1$ vertices.

6

LOVASZ' PROOF

$\chi(G) \leq \Delta(G) + 1$

LOVASZ' PROOF

Theorem

$ec{\chi}(G) \leq \Delta_{MIN}(G) + 1 \leq \Delta_{MAX}(G) + 1$

Proof : Consider a vertex of minimum indegree/outdegree. Color the rest of the graph, and color it with a color not assigned to any of its in/outneighbours **Also :** *G* connected and not regular $\implies \vec{\chi}(G) \le \Delta_{MAX}(G)$

BROOKS' THEOREM FOR Δ_{MIN}

BROOKS' THEOREM FOR Δ_{MIN} ?

Theorem

Let $k \ge 2$. The problem : **Input:** a digraph G with $\Delta_{MIN}(G) = k$. **Output:** Does there exist a k-dicoloring of G. is NP-complete.

Proof

Proof

Proof

BROOKS' THEOREM FOR Δ_{MAX}

Theorem (Mohar-Ararat, 2010)

Let G be a connected digraph. $\vec{\chi}(G) \leq \Delta_{MAX}(G) + 1$ and equality occurs if and only if G is :

- a directed cycle or
- a symmetric cycle of odd length or
- a complete digraph on $\Delta_{MAX}(G) + 1$ vertices.

MULTIPLE PROOFS

- Adaptation of Lovasz' proof
- Adaptation of Rabern's proof
- Proof using "k-trees"
- Proof by smart partition

MULTIPLE PROOFS

- Adaptation of Lovasz' proof
- Adaptation of Rabern's proof
- Proof using "k-trees"
- Proof by smart partition

Sketch of proof for $\Delta_{MAX}(G) \geq 3$

Let G a minimum counterexample

THIS SITUATION CANNOT HAPPEN

NO INDUCED $\overleftarrow{K}_{\Delta_{MAX}(G)+1}$ LESS AN ARC

NO INDUCED $\overleftarrow{K}_{\Delta_{MAX}(G)+1}$ LESS AN ARC

NO INDUCED $\overleftarrow{K}_{\Delta_{MAX}(G)+1}$ LESS AN ARC

NO INDUCED $\overleftarrow{K}_{\Delta_{MAX}(G)+1}$ LESS A DIGON

Corollary : Borodin–Kostochka on digraphs

Could we get a similar result when $\vec{\chi}(G) = \Delta_{MAX}(G)$?

Could we get a similar result when $\vec{\chi}(G) = \Delta_{MAX}(G)$? Somehow, yes.

Theorem

If
$$\vec{\chi}(\mathsf{G}) \geq \Delta_{\mathsf{MAX}}(\mathsf{G}) \geq$$
 9, then $\omega(\mathsf{G}) \geq \lceil \frac{\Delta_{\mathsf{MAX}}(\mathsf{G})+1}{2} \rceil$.

PARTITION

Definition

A (r_1, r_2) -partition of a digraph *G* is a partition (V_1, V_2) of *V* which minimizes $r_1|E(G[V_2]| + r_2|E(G[V_1])|$.

Theorem

If
$$r_1 + r_2 \geq 2\Delta_{MAX}(G) - 1$$
, then for $i \in \{1,2\}$:

$$\forall v \in V_i, d^-_{G[V_i]}(v) + d^+_{G[V_i]}(v) \leq r_i$$

PARTITION

Definition

A (r_1, r_2) -partition of a digraph *G* is a partition (V_1, V_2) of *V* which minimizes $r_1|E(G[V_2]| + r_2|E(G[V_1])|$.

Theorem

If
$$r_1 + r_2 \ge 2\Delta_{MAX}(G) - 1$$
, then for $i \in \{1, 2\}$:

$$\forall \mathbf{v} \in V_i, d^-_{G[V_i]}(\mathbf{v}) + d^+_{G[V_i]}(\mathbf{v}) \leq r_i$$

20

PROOF : BORODIN-KOSTOCHKA ON DIGRAPHS

Theorem

If
$$ec{\chi}(\mathsf{G}) \geq \Delta_{\mathsf{MAX}}(\mathsf{G}) \geq$$
 9, then $\omega(\mathsf{G}) \geq \lceil rac{\Delta_{\mathsf{MAX}}(\mathsf{G})+1}{2} \rceil$.

Let
$$r_1 = \lceil \frac{\Delta_{MAX}(G) - 1}{2} \rceil$$
 and $r_2 = \lfloor \frac{\Delta_{MAX}(G) - 1}{2} \rfloor$

22

PROOF : BORODIN-KOSTOCHKA ON DIGRAPHS

Theorem

If
$$ec{\chi}({\sf G}) \geq \Delta_{\sf MAX}({\sf G}) \geq$$
 9, then $\omega({\sf G}) \geq \lceil rac{\Delta_{\sf MAX}({\sf G})+1}{2}
ceil$

PROOF: BORODIN-KOSTOCHKA ON DIGRAPHS

Theorem

If
$$ec{\chi}({\sf G}) \geq \Delta_{\sf MAX}({\sf G}) \geq$$
 9, then $\omega({\sf G}) \geq \lceil rac{\Delta_{\sf MAX}({\sf G})+1}{2}
ceil$

22

- **Borodin–Kostochka** : $\vec{\chi}(G) \ge \Delta_{MAX}(G) \ge 9 \implies \vec{\chi}(G) = \omega(G)$
- Reed : $\vec{\chi}(G) \leq \lceil \frac{\omega + \Delta_{MAX}(G) + 1}{2} \rceil$
- Using other invariants instead of $\Delta_{MIN}/\Delta_{MAX}$

THANKS FOR YOUR ATTENTION!