Reachability in arborescence packings

Florian Hoersch

Équipe Optimisation Combinatoire, G-SCOP Grenoble, France

18th november, 2020

Joint work with:

Zoltán Szigeti (GSCOP, Grenoble)

Arborescences

Definition

A digraph B is called an r-arborescence for some vertex $r \in V(B)$ if the underlying graph of B is a tree and all arcs are directed away from r.

Arborescences

Definition

Given a digraph D and a subgraph B of D which is an r-arborescence for some $r \in V(D)$, we say that B spans V(B).

Rooted digraphs

Definition

• In a digraph D = (V, A), a vertex r is called a root if $d_A^-(r) = 0$.

Rooted digraphs

Definition

- In a digraph D = (V, A), a vertex r is called a root if $d_A^-(r) = 0$.
- A rooted digraph is a digraph $(V \cup R, A)$ with R being a set of roots.

Spanning arborescences

Theorem[Edmonds' strong theorem(1973)]

Let $D = (V \cup R, A)$ be a rooted digraph. Then there is a packing of r-arborescences $\{B_r : r \in R\}$ spanning V if and only if $d_A^-(X) \ge |R - X|$ for all $X \subseteq V \cup R$ with $X - R \ne \emptyset$.

Reachability

Problem

Little information is obtained when some $v \in V$ is not reachable from some $r \in R$.

Reachability arborescences

Definition

For some rooted digraph $D = (V \cup R, A)$ and $r \in R$, an r-arborescence spanning all vertices reachable from r in D is a reachability r-arborescence.

Reachability arborescences

Definition

For some rooted digraph $D = (V \cup R, A)$ and $r \in R$, an r-arborescence spanning all vertices reachable from r in D is a reachability r-arborescence.

Definition

For $X \subseteq V \cup R$, P_D^X is the set of vertices in R from which X is reachable.

Theorem[Kamiyama, Katoh, Takizawa(2009)]

Let $D = (V \cup R, A)$ be a rooted digraph. Then there is a packing of reachability r-arborescences $\{B_r : r \in R\}$ if and only if $d_A^-(X) \ge |P_D^X| - |X \cap R|$ for all $X \subseteq V \cup R$.

Proofs

 The original proof of Kamiyama, Katoh and Takizawa was based on submodular optimization and rather long and technical.

Proofs

- The original proof of Kamiyama, Katoh and Takizawa was based on submodular optimization and rather long and technical.
- Certain simplifications were found by Frank.

Proofs

- The original proof of Kamiyama, Katoh and Takizawa was based on submodular optimization and rather long and technical.
- Certain simplifications were found by Frank.
- We give a simpler inductive proof.

Proofs

- The original proof of Kamiyama, Katoh and Takizawa was based on submodular optimization and rather long and technical.
- Certain simplifications were found by Frank.
- We give a simpler inductive proof.
- It uses Edmonds' strong theorem and is self-contained otherwise.

Proof setup

• We choose a minimum counterexample $D = (V \cup R, A)$.

Proof setup

- We choose a minimum counterexample $D = (V \cup R, A)$.
- We choose a a strongly connected component $C \subseteq V$ which has no arc leaving.

Applying induction

• Consider D - C.

Applying induction

- Consider D C.
- \bullet D C satisfies the conditions of the theorem and is smaller than D.

Applying induction

- Consider D C.
- \bullet D C satisfies the conditions of the theorem and is smaller than D.
- We may therefore apply induction.

Applying induction

- Consider D C.
- D-C satisfies the conditions of the theorem and is smaller than D.
- We may therefore apply induction.
- This yields a packing of reachability r-arborescences $\{B_r^1: r \in R\}$ in D-C .

Construction of auxiliary digraph D'

• We start from D[C].

- We start from D[C].
- We add one vertex t_a for every arc a entering C.

- We start from D[C].
- We add one vertex t_a for every arc a entering C.
- We add one arc from t_a to the head of a for every a entering C.

- We start from D[C].
- We add one vertex t_a for every arc a entering C.
- We add one arc from t_a to the head of a for every a entering C.
- We add all roots in R', the roots in R from which C is reachable.

- We start from D[C].
- We add one vertex t_a for every arc a entering C.
- We add one arc from t_a to the head of a for every a entering C.
- We add all roots in R', the roots in R from which C is reachable.
- We add an arc from r to t_a if the tail of a is spanned by B_r^1 .

- We start from D[C].
- We add one vertex t_a for every arc a entering C.
- We add one arc from t_a to the head of a for every a entering C.
- We add all roots in R', the roots in R from which C is reachable.
- We add an arc from r to t_a if the tail of a is spanned by B_r^1 .
- We add |R'| arcs from the head of a to t_a for every a entering C.

Merging

• We can show that D' satisfies the conditions for Edmonds' strong theorem.

- We can show that D' satisfies the conditions for Edmonds' strong theorem.
- We obtain a packing of r-arborescences $\{B_r^2 : r \in R'\}$ spanning V' R' in D'.

- We can show that D' satisfies the conditions for Edmonds' strong theorem.
- We obtain a packing of r-arborescences $\{B_r^2 : r \in R'\}$ spanning V' R' in D'.
- Recall the packing $\{B_r^1 : r \in R_1\}$ in D_1 .

- We can show that D' satisfies the conditions for Edmonds' strong theorem.
- We obtain a packing of r-arborescences $\{B_r^2 : r \in R'\}$ spanning V' R' in D'.
- Recall the packing $\{B_r^1 : r \in R_1\}$ in D_1 .
- We merge them to obtain a packing $\{B_r : r \in R\}$ in D.

- We can show that D' satisfies the conditions for Edmonds' strong theorem.
- We obtain a packing of r-arborescences $\{B_r^2 : r \in R'\}$ spanning V' R' in D'.
- Recall the packing $\{B_r^1 : r \in R_1\}$ in D_1 .
- We merge them to obtain a packing $\{B_r : r \in R\}$ in D.
- This is a desired packing of reachability *r*-arborescences.

- We can show that D' satisfies the conditions for Edmonds' strong theorem.
- We obtain a packing of r-arborescences $\{B_r^2 : r \in R'\}$ spanning V' R' in D'.
- Recall the packing $\{B_r^1 : r \in R_1\}$ in D_1 .
- We merge them to obtain a packing $\{B_r : r \in R\}$ in D.
- This is a desired packing of reachability *r*-arborescences.
- This finishes the proof.

The proof of the theorem of Kamiyama, Katoh and Takizawa

• We reprove the theorem using a new technique.

The proof of the theorem of Kamiyama, Katoh and Takizawa

- We reprove the theorem using a new technique.
- It avoids the use of submodular optimization.

The proof of the theorem of Kamiyama, Katoh and Takizawa

- We reprove the theorem using a new technique.
- It avoids the use of submodular optimization.
- It uses Edmonds' strong theorem and is self-contained otherwise.

The proof of the theorem of Kamiyama, Katoh and Takizawa

- We reprove the theorem using a new technique.
- It avoids the use of submodular optimization.
- It uses Edmonds' strong theorem and is self-contained otherwise.

Generalizations

 The theorem of Kamiyama, Katoh and Takizawa can be generalized in several ways.

The proof of the theorem of Kamiyama, Katoh and Takizawa

- We reprove the theorem using a new technique.
- It avoids the use of submodular optimization.
- It uses Edmonds' strong theorem and is self-contained otherwise.

- The theorem of Kamiyama, Katoh and Takizawa can be generalized in several ways.
- The requirements on the packing can be generalized.

The proof of the theorem of Kamiyama, Katoh and Takizawa

- We reprove the theorem using a new technique.
- It avoids the use of submodular optimization.
- It uses Edmonds' strong theorem and is self-contained otherwise.

- The theorem of Kamiyama, Katoh and Takizawa can be generalized in several ways.
- The requirements on the packing can be generalized.
- Our technique allows to conclude a theorem of Király from a theorem of Durand de Gevigney, Nguyen and Szigeti.

The proof of the theorem of Kamiyama, Katoh and Takizawa

- We reprove the theorem using a new technique.
- It avoids the use of submodular optimization.
- It uses Edmonds' strong theorem and is self-contained otherwise.

- The theorem of Kamiyama, Katoh and Takizawa can be generalized in several ways.
- The requirements on the packing can be generalized.
- Our technique allows to conclude a theorem of Király from a theorem of Durand de Gevigney, Nguyen and Szigeti.
- The objects considered can be generalized from digraphs to mixed hypergraphs.

The proof of the theorem of Kamiyama, Katoh and Takizawa

- We reprove the theorem using a new technique.
- It avoids the use of submodular optimization.
- It uses Edmonds' strong theorem and is self-contained otherwise.

- The theorem of Kamiyama, Katoh and Takizawa can be generalized in several ways.
- The requirements on the packing can be generalized.
- Our technique allows to conclude a theorem of Király from a theorem of Durand de Gevigney, Nguyen and Szigeti.
- The objects considered can be generalized from digraphs to mixed hypergraphs.
- We prove a theorem combining all these generalizations.

