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Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if |C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless
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Elimination distance to a graph class
Definition
max{edg(H) | H € C(G)}  if|C(G)|>1and G ¢,

edg(G) = 1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

td(G) = edg(G), where & is the class of edgeless graphs.

Example for the class P of planar graphs:

edp(G) =3
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Minor-Closed Graph Classes

G H

» His a minor of G <

H is obtained from a subgraph of G by contracting edges.

» (G is minor-closed if VG € G every minor H of G isin §.

» obs(G):= the set of all minor-minimal graphs not in G.

Robertson & Seymour Theorem

If G is minor-closed, then obs(() is a finite set.
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Distance from triviality

Vertex Deletion:
Ak (G):= the set of graphs that are k vertices away from G.

Theorem [Adler, Grohe, & Kreutzer, SODA 2008]

For every minor-closed G, there is a computable function f that maps

obs(G) to obs(Ax(%)).

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Elimination Distance:
Z4(0) = {G | eds(G) < k).

Theorem [Bulian & Dawar, Algorithmica 2017]

For every minor-closed G, there is a computable function f that maps
obs(G) to obs(Zx(79)).

No explicit bound on f.
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For every minor-closed G, there is a computable function that maps
obs(G) to obs(G().

Proof Idea:

Biconnected closure of G, bel(G) := {G | B(G) C G}.

We prove the following intermediate result:

Lemma

There is an algorithm that, given obs(G), outputs obs(bcl(G)).

Lemma + algorithm of Adler et al. — Theorem 1
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Definition
max{btd(H) | H € B(G)}  if |B(G)| > 1 and E(G) # 0,

btd(G) = { 14 min,cv(6){btd(G \ v)} if G is biconnected and E(G) # 0,

1 G is edgeless.

btd(G) = bed:(G), where & is the class of edgeless graphs.

td(P,) = ©(log n)
btd(P,) = 2

Observation: {G | btd(G) < 2} = £@) = {forests}.
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Obstruction sets for bounded btd

We study the set obs(E£(¥) for every k € N.

obs(£(*))

A\
- | AV LD
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Our second result
We completely identify the outerplanar graphs in obs(£(¥)).

A D

We define the following operations:

> Parallel join: % @%

» Triangle gluing: & @ - @
L=

Theorem 2
Every outerplanar graph in obs(é’(k)) can be obtained by parallel join or
triangle gluing of outerplanar graphs in obs(£(+~1).
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Conclusion

Open Problems:
» Explicit function f for computing obs(Zx(G) and obs(G())?

» Optimize the parametric dependence (on k) of the algorithms.
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Thank You!



