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Treedepth

C(G ) := the set of connected components of G .

Definition

td(G ) =


max{td(H) | H ∈ C(G )} if |C(G )| > 1 and E (G ) 6= ∅,
1 + minv∈V (G){td(G \ v)} if G is connected and E (G ) 6= ∅,
1 G is edgeless

td(G ) = 4
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Elimination distance to a graph class

Definition

edG(G ) =


max{edG(H) | H ∈ C(G )} if |C(G )| > 1 and G /∈ G,

1 + minv∈V (G){edG(G \ v)} if G is connected and G /∈ G,

1 G ∈ G

td(G ) = edE(G ), where E is the class of edgeless graphs.

Example for the class P of planar graphs:

edP(G ) = 3
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Minor-Closed Graph Classes

G H

I H is a minor of G ⇐⇒
H is obtained from a subgraph of G by contracting edges.

I G is minor-closed if ∀G ∈ G every minor H of G is in G.

I obs(G):= the set of all minor-minimal graphs not in G.

Robertson & Seymour Theorem

If G is minor-closed, then obs(G) is a finite set.
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Distance from triviality

Vertex Deletion:

Ak(G):= the set of graphs that are k vertices away from G.

Theorem [Adler, Grohe, & Kreutzer, SODA 2008]

For every minor-closed G, there is a computable function f that maps
obs(G) to obs(Ak(G)).

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Elimination Distance:

Zk(G) := {G | edG(G ) ≤ k}.

Theorem [Bulian & Dawar, Algorithmica 2017]

For every minor-closed G, there is a computable function f that maps
obs(G) to obs(Zk(G)).

No explicit bound on f .
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Block elimination distance

B(G ):= the set of biconnected components of G .

Definition

bedG(G) =


max{bedG(H) | H ∈ B(G)} if |B(G)| > 1 and G /∈ G,

1 + minv∈V (G){bedG(G \ v)} if G is biconnected and G /∈ G,

1 G ∈ G

edP(G ) =

4

bedP(G ) =

3
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Our first result

G(k) := {G | bedG(G ) ≤ k}.

Theorem 1
For every minor-closed G, there is a computable function that maps
obs(G) to obs(G(k)).

Proof Idea:

Biconnected closure of G, bcl(G) := {G | B(G ) ⊆ G}.

We prove the following intermediate result:

Lemma
There is an algorithm that, given obs(G), outputs obs(bcl(G)).

Lemma + algorithm of Adler et al. → Theorem 1
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Block elimination distance to edgeless graphs

“Biconnected analogue” of treedepth.

Definition

btd(G) =


max{btd(H) | H ∈ B(G)} if |B(G)| > 1 and E(G) 6= ∅,

1 + minv∈V (G){btd(G \ v)} if G is biconnected and E(G) 6= ∅,

1 G is edgeless.

btd(G ) = bedE(G ), where E is the class of edgeless graphs.

td(Pn) = Θ(log n)

btd(Pn) = 2

Observation: {G | btd(G ) ≤ 2} = E (2) = {forests}.
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Obstruction sets for bounded btd

We study the set obs(E (k)) for every k ∈ N.

k = 1

k = 2

k = 3

obs(E(k))
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Our second result

We completely identify the outerplanar graphs in obs(E (k)).

We define the following operations:

I Parallel join:

u2

v2

u1

v1

u2

v2

u1

v1

I Triangle gluing:

Theorem 2
Every outerplanar graph in obs(E (k)) can be obtained by parallel join or
triangle gluing of outerplanar graphs in obs(E (k−1)).
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Conclusion

Open Problems:

I Explicit function f for computing obs(Zk(G) and obs(G(k))?

I Optimize the parametric dependence (on k) of the algorithms.
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Thank You!
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