Giannos Stamoulis

Équipe AIGCo, LIRMM, Université de Montpellier, France.

Joint work with

Archontia C. Giannopoulou¹, Dimitrios M. Thilikos², and Öznur Yaşar Diner³.

- ¹ Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece.
 - ² LIRMM, Université de Montpellier, CNRS, Montpellier, France.
 - ³ Computer Engineering Department, Kadir Has University, Istanbul, Turkey.

JGA2020, 16-18/11/2020 (en distanciel)

 $\mathcal{C}(G) :=$ the set of connected components of G.

$$\operatorname{td}(G) = \begin{cases} \max\{\operatorname{td}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } \underline{E}(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{td}(G \setminus v)\} & \text{ if } G \text{ is connected and } \underline{E}(G) \neq \emptyset, \\ 1 & G \text{ is edgeless} \end{cases}$$

 $\mathcal{C}(G) :=$ the set of connected components of G.

$$\operatorname{td}(G) = \begin{cases} \max\{\operatorname{td}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } \underline{E}(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{td}(G \setminus v)\} & \text{ if } G \text{ is connected and } \underline{E}(G) \neq \emptyset, \\ 1 & G \text{ is edgeless} \end{cases}$$

C(G) := the set of connected components of G.

$$\operatorname{td}(G) = \begin{cases} \max\{\operatorname{td}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } \underline{E}(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{td}(G \setminus v)\} & \text{ if } G \text{ is connected and } \underline{E}(G) \neq \emptyset, \\ 1 & G \text{ is edgeless} \end{cases}$$

C(G) := the set of connected components of G.

$$\operatorname{td}(G) = \begin{cases} \max\{\operatorname{td}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } \underline{E}(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{td}(G \setminus v)\} & \text{ if } G \text{ is connected and } \underline{E}(G) \neq \emptyset, \\ 1 & G \text{ is edgeless} \end{cases}$$

 $\mathcal{C}(G) :=$ the set of connected components of G.

$$\operatorname{td}(G) = \begin{cases} \max\{\operatorname{td}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } \underline{E}(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{td}(G \setminus v)\} & \text{ if } G \text{ is connected and } \underline{E}(G) \neq \emptyset, \\ 1 & G \text{ is edgeless} \end{cases}$$

 $\mathcal{C}(G) :=$ the set of connected components of G.

$$\operatorname{td}(G) = \begin{cases} \max\{\operatorname{td}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } \underline{E}(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{td}(G \setminus v)\} & \text{ if } G \text{ is connected and } \underline{E}(G) \neq \emptyset, \\ 1 & G \text{ is edgeless} \end{cases}$$

 $\mathcal{C}(G) :=$ the set of connected components of G.

$$\operatorname{td}(G) = \begin{cases} \max\{\operatorname{td}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } \underline{E}(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{td}(G \setminus v)\} & \text{ if } G \text{ is connected and } \underline{E}(G) \neq \emptyset, \\ 1 & G \text{ is edgeless} \end{cases}$$

C(G) := the set of connected components of G.

Definition

$$\operatorname{td}(G) = \begin{cases} \max\{\operatorname{td}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } \underline{E}(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{td}(G \setminus v)\} & \text{ if } G \text{ is connected and } \underline{E}(G) \neq \emptyset, \\ 1 & G \text{ is edgeless} \end{cases}$$

 $\operatorname{td}(G) = 4$

$$\begin{aligned} & \mathrm{Definition} \\ & \mathrm{ed}_{\mathcal{G}}(G) = \begin{cases} \max\{\mathrm{ed}_{\mathcal{G}}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\mathrm{ed}_{\mathcal{G}}(G \setminus v)\} & \text{ if } G \text{ is connected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases} \end{aligned}$$

$$\begin{aligned} & \mathrm{Definition} \\ & \mathrm{ed}_{\mathcal{G}}(G) = \begin{cases} \max\{\mathrm{ed}_{\mathcal{G}}(H) \mid H \in \mathcal{C}(G)\} & \text{ if } |\mathcal{C}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\mathrm{ed}_{\mathcal{G}}(G \setminus v)\} & \text{ if } G \text{ is connected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases} \end{aligned}$$

 $td(G) = ed_{\mathcal{E}}(G)$, where \mathcal{E} is the class of edgeless graphs.

Definition $\operatorname{ed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{ed}_{\mathcal{G}}(H) \mid H \in \mathcal{C}(G)\} & \text{if } |\mathcal{C}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{ed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is connected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$

 $td(G) = ed_{\mathcal{E}}(G)$, where \mathcal{E} is the class of edgeless graphs.

Definition $\operatorname{ed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{ed}_{\mathcal{G}}(H) \mid H \in \mathcal{C}(G)\} & \text{if } |\mathcal{C}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{ed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is connected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$

 $td(G) = ed_{\mathcal{E}}(G)$, where \mathcal{E} is the class of edgeless graphs.

Definition $\operatorname{ed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{ed}_{\mathcal{G}}(H) \mid H \in \mathcal{C}(G)\} & \text{if } |\mathcal{C}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{ed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is connected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$

 $td(G) = ed_{\mathcal{E}}(G)$, where \mathcal{E} is the class of edgeless graphs.

$\begin{aligned} & \operatorname{Definition} \\ & \operatorname{ed}_{\mathcal{G}}(\mathcal{G}) = \begin{cases} \max\{\operatorname{ed}_{\mathcal{G}}(\mathcal{H}) \mid \mathcal{H} \in \mathcal{C}(\mathcal{G})\} & \text{ if } |\mathcal{C}(\mathcal{G})| > 1 \text{ and } \mathcal{G} \notin \mathcal{G}, \\ 1 + \min_{v \in V(\mathcal{G})}\{\operatorname{ed}_{\mathcal{G}}(\mathcal{G} \setminus v)\} & \text{ if } \mathcal{G} \text{ is connected and } \mathcal{G} \notin \mathcal{G}, \\ 1 & \mathcal{G} \in \mathcal{G} \end{cases} \end{aligned}$

 $td(G) = ed_{\mathcal{E}}(G)$, where \mathcal{E} is the class of edgeless graphs.

Definition $\operatorname{ed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{ed}_{\mathcal{G}}(H) \mid H \in \mathcal{C}(G)\} & \text{if } |\mathcal{C}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{ed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is connected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$

 $td(G) = ed_{\mathcal{E}}(G)$, where \mathcal{E} is the class of edgeless graphs.

Definition $\operatorname{ed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{ed}_{\mathcal{G}}(H) \mid H \in \mathcal{C}(G)\} & \text{if } |\mathcal{C}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{ed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is connected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$

 $td(G) = ed_{\mathcal{E}}(G)$, where \mathcal{E} is the class of edgeless graphs.

$$\operatorname{ed}_{\mathcal{P}}(G) = 3$$
 _{3/12}

• *H* is a minor of $G \iff$

H is obtained from a subgraph of G by contracting edges.

- ► H is a minor of G ⇐⇒ H is obtained from a subgraph of G by contracting edges.
- \mathcal{G} is *minor-closed* if $\forall G \in \mathcal{G}$ every minor H of G is in \mathcal{G} .

- ► H is a minor of G ⇐⇒ H is obtained from a subgraph of G by contracting edges.
- \mathcal{G} is *minor-closed* if $\forall G \in \mathcal{G}$ every minor H of G is in \mathcal{G} .

• $obs(\mathcal{G})$:= the set of all *minor-minimal* graphs not in \mathcal{G} .

- ► H is a minor of G ⇐⇒ H is obtained from a subgraph of G by contracting edges.
- \mathcal{G} is *minor-closed* if $\forall G \in \mathcal{G}$ every minor H of G is in \mathcal{G} .
- $obs(\mathcal{G})$:= the set of all *minor-minimal* graphs not in \mathcal{G} .

Robertson & Seymour Theorem If \mathcal{G} is minor-closed, then $obs(\mathcal{G})$ is a finite set.

Vertex Deletion:

 $\mathcal{A}_k(\mathcal{G})$:= the set of graphs that are *k* vertices away from \mathcal{G} .

Vertex Deletion:

 $\mathcal{A}_k(\mathcal{G})$:= the set of graphs that are *k* vertices away from \mathcal{G} .

Theorem [Adler, Grohe, & Kreutzer, SODA 2008]

For every minor-closed \mathcal{G} , there is a computable function f that maps $obs(\mathcal{G})$ to $obs(\mathcal{A}_k(\mathcal{G}))$.

Vertex Deletion:

 $\mathcal{A}_k(\mathcal{G})$:= the set of graphs that are *k* vertices away from \mathcal{G} .

Theorem [Adler, Grohe, & Kreutzer, SODA 2008] For every minor-closed \mathcal{G} , there is a computable function f that maps $obs(\mathcal{G})$ to $obs(\mathcal{A}_k(\mathcal{G}))$.

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Vertex Deletion:

 $\mathcal{A}_k(\mathcal{G})$:= the set of graphs that are *k* vertices away from \mathcal{G} .

Theorem [Adler, Grohe, & Kreutzer, SODA 2008] For every minor-closed \mathcal{G} , there is a computable function f that maps $obs(\mathcal{G})$ to $obs(\mathcal{A}_k(\mathcal{G}))$.

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Elimination Distance:

 $\mathcal{Z}_k(\mathcal{G}) := \{ \mathcal{G} \mid \mathrm{ed}_{\mathcal{G}}(\mathcal{G}) \leq \mathbf{k} \}.$

Vertex Deletion:

 $\mathcal{A}_k(\mathcal{G})$:= the set of graphs that are *k* vertices away from \mathcal{G} .

Theorem [Adler, Grohe, & Kreutzer, SODA 2008] For every minor-closed \mathcal{G} , there is a computable function f that maps $obs(\mathcal{G})$ to $obs(\mathcal{A}_k(\mathcal{G}))$.

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Elimination Distance:

 $\mathcal{Z}_k(\mathcal{G}) := \{ \mathcal{G} \mid \mathrm{ed}_{\mathcal{G}}(\mathcal{G}) \leq k \}.$

Theorem [Bulian & Dawar, Algorithmica 2017]

For every minor-closed \mathcal{G} , there is a computable function f that maps $obs(\mathcal{G})$ to $obs(\mathcal{Z}_k(\mathcal{G}))$.

Vertex Deletion:

 $\mathcal{A}_k(\mathcal{G})$:= the set of graphs that are *k* vertices away from \mathcal{G} .

Theorem [Adler, Grohe, & Kreutzer, SODA 2008] For every minor-closed \mathcal{G} , there is a computable function f that maps $obs(\mathcal{G})$ to $obs(\mathcal{A}_k(\mathcal{G}))$.

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Elimination Distance:

 $\mathcal{Z}_k(\mathcal{G}) := \{ \mathcal{G} \mid \mathrm{ed}_{\mathcal{G}}(\mathcal{G}) \leq k \}.$

Theorem [Bulian & Dawar, Algorithmica 2017]

For every minor-closed \mathcal{G} , there is a computable function f that maps $obs(\mathcal{G})$ to $obs(\mathcal{Z}_k(\mathcal{G}))$.

No explicit bound on f.

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition $\operatorname{bed}_{\mathcal{G}}(\mathcal{G}) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(\mathcal{H}) \mid \mathcal{H} \in \mathcal{B}(\mathcal{G})\} & \text{ if } |\mathcal{B}(\mathcal{G})| > 1 \text{ and } \mathcal{G} \notin \mathcal{G}, \\\\ 1 + \min_{v \in V(\mathcal{G})}\{\operatorname{bed}_{\mathcal{G}}(\mathcal{G} \setminus v)\} & \text{ if } \mathcal{G} \text{ is biconnected and } \mathcal{G} \notin \mathcal{G}, \\\\ 1 & \mathcal{G} \in \mathcal{G} \end{cases}$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{ if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{ if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

 $\operatorname{ed}_{\mathcal{P}}(G) =$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

 $\operatorname{ed}_{\mathcal{P}}(G) =$

Definition

$$\operatorname{bed}_{\mathcal{G}}(\mathcal{G}) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(\mathcal{H}) \mid \mathcal{H} \in \mathcal{B}(\mathcal{G})\} & \text{if } |\mathcal{B}(\mathcal{G})| > 1 \text{ and } \mathcal{G} \notin \mathcal{G}, \\ 1 + \min_{v \in V(\mathcal{G})}\{\operatorname{bed}_{\mathcal{G}}(\mathcal{G} \setminus v)\} & \text{if } \mathcal{G} \text{ is biconnected and } \mathcal{G} \notin \mathcal{G}, \\ 1 & \mathcal{G} \in \mathcal{G} \end{cases}$$

 $\operatorname{ed}_{\mathcal{P}}(G) =$

Definition

$$\operatorname{bed}_{\mathcal{G}}(\mathcal{G}) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(\mathcal{H}) \mid \mathcal{H} \in \mathcal{B}(\mathcal{G})\} & \text{if } |\mathcal{B}(\mathcal{G})| > 1 \text{ and } \mathcal{G} \notin \mathcal{G}, \\ 1 + \min_{v \in V(\mathcal{G})}\{\operatorname{bed}_{\mathcal{G}}(\mathcal{G} \setminus v)\} & \text{if } \mathcal{G} \text{ is biconnected and } \mathcal{G} \notin \mathcal{G}, \\ 1 & \mathcal{G} \in \mathcal{G} \end{cases}$$

 $\operatorname{ed}_{\mathcal{P}}(G) =$

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

 $\operatorname{ed}_{\mathcal{P}}(G) =$

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

 $\operatorname{ed}_{\mathcal{P}}(G) =$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition $\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$

 $\operatorname{ed}_{\mathcal{P}}(G) = 4$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{ if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{ if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition

$$\operatorname{bed}_{\mathcal{G}}(\mathcal{G}) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(\mathcal{H}) \mid \mathcal{H} \in \mathcal{B}(\mathcal{G})\} & \text{if } |\mathcal{B}(\mathcal{G})| > 1 \text{ and } \mathcal{G} \notin \mathcal{G}, \\ 1 + \min_{v \in V(\mathcal{G})}\{\operatorname{bed}_{\mathcal{G}}(\mathcal{G} \setminus v)\} & \text{if } \mathcal{G} \text{ is biconnected and } \mathcal{G} \notin \mathcal{G}, \\ 1 & \mathcal{G} \in \mathcal{G} \end{cases}$$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition $\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$

 $\mathcal{B}(G)$:= the set of biconnected components of G.

Definition

$$\operatorname{bed}_{\mathcal{G}}(G) = \begin{cases} \max\{\operatorname{bed}_{\mathcal{G}}(H) \mid H \in \mathcal{B}(G)\} & \text{ if } |\mathcal{B}(G)| > 1 \text{ and } G \notin \mathcal{G}, \\ 1 + \min_{v \in V(G)}\{\operatorname{bed}_{\mathcal{G}}(G \setminus v)\} & \text{ if } G \text{ is biconnected and } G \notin \mathcal{G}, \\ 1 & G \in \mathcal{G} \end{cases}$$

$$\mathcal{G}^{(k)} := \{ G \mid \mathsf{bed}_{\mathcal{G}}(G) \leq k \}.$$

$$\mathcal{G}^{(k)} := \{ G \mid \mathsf{bed}_{\mathcal{G}}(G) \leq k \}.$$

Theorem 1

For every minor-closed \mathcal{G} , there is a computable function that maps $obs(\mathcal{G})$ to $obs(\mathcal{G}^{(k)})$.

$$\mathcal{G}^{(k)} := \{ G \mid \mathsf{bed}_{\mathcal{G}}(G) \leq k \}.$$

Theorem 1

For every minor-closed \mathcal{G} , there is a computable function that maps $obs(\mathcal{G})$ to $obs(\mathcal{G}^{(k)})$.

$$\mathcal{G}^{(k)} := \{ G \mid \mathsf{bed}_{\mathcal{G}}(G) \leq k \}.$$

Theorem 1

For every minor-closed \mathcal{G} , there is a computable function that maps $obs(\mathcal{G})$ to $obs(\mathcal{G}^{(k)})$.

Proof Idea:

Biconnected closure of \mathcal{G} , $bcl(\mathcal{G}) := \{ \mathcal{G} \mid \mathcal{B}(\mathcal{G}) \subseteq \mathcal{G} \}.$

$$\mathcal{G}^{(k)} := \{ G \mid \mathsf{bed}_{\mathcal{G}}(G) \leq k \}.$$

Theorem 1

For every minor-closed \mathcal{G} , there is a computable function that maps $obs(\mathcal{G})$ to $obs(\mathcal{G}^{(k)})$.

Proof Idea:

Biconnected closure of \mathcal{G} , $bcl(\mathcal{G}) := \{ \mathcal{G} \mid \mathcal{B}(\mathcal{G}) \subseteq \mathcal{G} \}.$

We prove the following intermediate result:

Lemma

There is an algorithm that, given $obs(\mathcal{G})$, outputs $obs(bcl(\mathcal{G}))$.

$$\mathcal{G}^{(k)} := \{ G \mid \mathsf{bed}_{\mathcal{G}}(G) \leq k \}.$$

Theorem 1

For every minor-closed \mathcal{G} , there is a computable function that maps $obs(\mathcal{G})$ to $obs(\mathcal{G}^{(k)})$.

Proof Idea:

Biconnected closure of \mathcal{G} , $bcl(\mathcal{G}) := \{ \mathcal{G} \mid \mathcal{B}(\mathcal{G}) \subseteq \mathcal{G} \}.$

We prove the following intermediate result:

Lemma

There is an algorithm that, given $obs(\mathcal{G})$, outputs $obs(bcl(\mathcal{G}))$.

Lemma + algorithm of Adler et al. \rightarrow Theorem 1

"Biconnected analogue" of treedepth.

"Biconnected analogue" of treedepth.

Definition

$$\operatorname{btd}(G) = \begin{cases} \max\{\operatorname{btd}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } E(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{btd}(G \setminus v)\} & \text{if } G \text{ is biconnected and } E(G) \neq \emptyset, \\ 1 & G \text{ is edgeless.} \end{cases}$$

"Biconnected analogue" of treedepth.

Definition

$$\operatorname{btd}(G) = \begin{cases} \max\{\operatorname{btd}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } E(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{btd}(G \setminus v)\} & \text{if } G \text{ is biconnected and } E(G) \neq \emptyset, \\ 1 & G \text{ is edgeless.} \end{cases}$$

$$\operatorname{td}(P_n) = \Theta(\log n)$$

"Biconnected analogue" of treedepth.

Definition

$$\operatorname{btd}(G) = \begin{cases} \max\{\operatorname{btd}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } E(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{btd}(G \setminus v)\} & \text{if } G \text{ is biconnected and } E(G) \neq \emptyset, \\ 1 & G \text{ is edgeless.} \end{cases}$$

$$\operatorname{td}(P_n) = \Theta(\log n)$$

"Biconnected analogue" of treedepth.

Definition

$$\operatorname{btd}(G) = \begin{cases} \max\{\operatorname{btd}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } E(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{btd}(G \setminus v)\} & \text{if } G \text{ is biconnected and } E(G) \neq \emptyset, \\ 1 & G \text{ is edgeless.} \end{cases}$$

$$td(P_n) = \Theta(\log n)$$
$$btd(P_n) = 2$$

"Biconnected analogue" of treedepth.

Definition

$$\operatorname{btd}(G) = \begin{cases} \max\{\operatorname{btd}(H) \mid H \in \mathcal{B}(G)\} & \text{if } |\mathcal{B}(G)| > 1 \text{ and } E(G) \neq \emptyset, \\ 1 + \min_{v \in V(G)}\{\operatorname{btd}(G \setminus v)\} & \text{if } G \text{ is biconnected and } E(G) \neq \emptyset, \\ 1 & G \text{ is edgeless.} \end{cases}$$

 $\operatorname{btd}(G) = \operatorname{bed}_{\mathcal{E}}(G)$, where \mathcal{E} is the class of edgeless graphs.

$$td(P_n) = \Theta(\log n)$$
$$btd(P_n) = 2$$

Observation: $\{G \mid btd(G) \leq 2\} = \mathcal{E}^{(2)} = \{forests\}.$

Obstruction sets for bounded btd

We study the set $obs(\mathcal{E}^{(k)})$ for every $k \in \mathbb{N}$.

We completely identify the outerplanar graphs in $obs(\mathcal{E}^{(k)})$.

We completely identify the outerplanar graphs in $obs(\mathcal{E}^{(k)})$.

We define the following operations:

We completely identify the outerplanar graphs in $obs(\mathcal{E}^{(k)})$.

We define the following operations:

We completely identify the outerplanar graphs in $obs(\mathcal{E}^{(k)})$.

We define the following operations:

Theorem 2

Every outerplanar graph in $obs(\mathcal{E}^{(k)})$ can be obtained by parallel join or triangle gluing of outerplanar graphs in $obs(\mathcal{E}^{(k-1)})$.

Conclusion

Open Problems:

▶ Explicit function f for computing $obs(\mathcal{Z}_k(\mathcal{G}) \text{ and } obs(\mathcal{G}^{(k)})$?

▶ Optimize the parametric dependence (on *k*) of the algorithms.

Thank You!