Block elimination distance

Giannos Stamoulis

Equipe AlGCo, LIRMM, Université de Montpellier, France.

Joint work with

Archontia C. Giannopoulou®, Dimitrios M. Thilikos?, and
Oznur Yasar Diner3.

1 Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, Athens, Greece.
2 LIRMM, Université de Montpellier, CNRS, Montpellier, France.
3 Computer Engineering Department, Kadir Has University, Istanbul, Turkey.

JGA2020, 16-18/11/2020 (en distanciel)

1/12



Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if |C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless

2/12



Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if|C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless

2/12



Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if|C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless

2/12



Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if|C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless

2/12



Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if|C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless

ZANV/\NANA

2/12



Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if|C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless

ANV/\N

2/12



Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if|C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless

2/12



Treedepth

C(G) := the set of connected components of G.

Definition
max{td(H) | H € C(G)}  if|C(G)| >1and E(G) # 0,
td(G) = ¢ 1+ min,cy(c){td(G \ v)} if G is connected and E(G) # 0,
1 G is edgeless

2/12



Elimination distance to a graph class

Definition
max{edg(H) | H€ C(G)}  if |C(G)|>1and G ¢ G,
edg(G) = ¢ 1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

3/12



Elimination distance to a graph class

Definition
max{edg(H) | H€ C(G)}  if |C(G)|>1and G ¢ G,
edg(G) = 1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

td(G) = edg(G), where & is the class of edgeless graphs.

3/12



Elimination distance to a graph class
Definition
max{edg(H) | H € C(G)}  if|C(G)|>1and G ¢,
edg(G) =

1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

td(G) = edg(G), where & is the class of edgeless graphs.

Example for the class P of planar graphs:

3/12



Elimination distance to a graph class
Definition
max{edg(H) | H € C(G)}  if|C(G)|>1and G ¢,
edg(G) =

1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

td(G) = edg(G), where & is the class of edgeless graphs.

Example for the class P of planar graphs:

3/12



Elimination distance to a graph class
Definition
max{edg(H) | H € C(G)}  if|C(G)|>1and G ¢,

edg(G) = 1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

td(G) = edg(G), where & is the class of edgeless graphs.

Example for the class P of planar graphs:

3/12



Elimination distance to a graph class
Definition
max{edg(H) | H € C(G)}  if|C(G)|>1and G ¢,

edg(G) = 1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

td(G) = edg(G), where & is the class of edgeless graphs.

Example for the class P of planar graphs:

3/12



Elimination distance to a graph class

Definition
max{edg(H) | H€ C(G)} if|C(G)|>1and G ¢ G,
edg(G) = 1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

td(G) = edg(G), where & is the class of edgeless graphs.

Example for the class P of planar graphs:

T < A K-

3/12



Elimination distance to a graph class
Definition
max{edg(H) | H € C(G)}  if|C(G)|>1and G ¢,

edg(G) = 1+ min,cy(g){edg(G \ v)} if G is connected and G ¢ G,
1 Geg

td(G) = edg(G), where & is the class of edgeless graphs.

Example for the class P of planar graphs:

edp(G) =3

3/12



Minor-Closed Graph Classes

4/12



Minor-Closed Graph Classes

G H

» His a minor of G <

H is obtained from a subgraph of G by contracting edges.

4/12



Minor-Closed Graph Classes

G H

» His a minor of G <=
H is obtained from a subgraph of G by contracting edges.

» (G is minor-closed if VG € G every minor H of G isin §.

4/12



Minor-Closed Graph Classes

G H

» H is a minor of G <
H is obtained from a subgraph of G by contracting edges.

» (G is minor-closed if VG € G every minor H of G isin §.

» obs(G):= the set of all minor-minimal graphs not in G.

4/12



Minor-Closed Graph Classes

G H

» His a minor of G <

H is obtained from a subgraph of G by contracting edges.

» (G is minor-closed if VG € G every minor H of G isin §.

» obs(G):= the set of all minor-minimal graphs not in G.

Robertson & Seymour Theorem

If G is minor-closed, then obs(() is a finite set.

4/12



Distance from triviality

5/12



Distance from triviality

Vertex Deletion:

Ak (G):= the set of graphs that are k vertices away from G.

5/12



Distance from triviality

Vertex Deletion:
Ak (G):= the set of graphs that are k vertices away from G.

Theorem [Adler, Grohe, & Kreutzer, SODA 2008]

For every minor-closed G, there is a computable function f that maps

obs(G) to obs(Ax(%)).

5/12



Distance from triviality

Vertex Deletion:
Ak (G):= the set of graphs that are k vertices away from G.

Theorem [Adler, Grohe, & Kreutzer, SODA 2008]

For every minor-closed G, there is a computable function f that maps

obs(G) to obs(Ax(%)).

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

5/12



Distance from triviality

Vertex Deletion:

Ak (G):= the set of graphs that are k vertices away from G.

Theorem [Adler, Grohe, & Kreutzer, SODA 2008]

For every minor-closed G, there is a computable function f that maps

obs(G) to obs(Ax(%)).

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Elimination Distance:

2,(0) = {G | eds(G) < K}.

5/12



Distance from triviality

Vertex Deletion:

Ak (G):= the set of graphs that are k vertices away from G.

Theorem [Adler, Grohe, & Kreutzer, SODA 2008]

For every minor-closed G, there is a computable function f that maps

obs(G) to obs(Ax(%)).

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Elimination Distance:
Z4(0) = {G | eds(G) < k).

Theorem [Bulian & Dawar, Algorithmica 2017]

For every minor-closed G, there is a computable function f that maps
obs(G) to obs(Zx(79)).

5/12



Distance from triviality

Vertex Deletion:
Ak (G):= the set of graphs that are k vertices away from G.

Theorem [Adler, Grohe, & Kreutzer, SODA 2008]

For every minor-closed G, there is a computable function f that maps

obs(G) to obs(Ax(%)).

Explicit bound on f [Sau, Stamoulis, & Thilikos, ICALP 2020].

Elimination Distance:
Z4(0) = {G | eds(G) < k).

Theorem [Bulian & Dawar, Algorithmica 2017]

For every minor-closed G, there is a computable function f that maps
obs(G) to obs(Zx(79)).

No explicit bound on f.

5/12



Block elimination distance

B(G):= the set of biconnected components of G.

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedo(H) | H € B(G)} if [B(G)|>1and G ¢ G,

bedg(G) = { 1+ min,cv(c){bedg(G \ v)} if G is biconnected and G ¢ G,

1 Geg

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)]>1and G ¢ G,
bedg(G) = { 1+ min,cv(c){bedg(G \ v)} if G is biconnected and G ¢ G,
1 Geg

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,
bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,
bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

edp(G)

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,
bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

edp(G)

6/12



Block elimination distance
B(G):= the set of biconnected components of G.
Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,

bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

M&%

edp(G)

6/12



Block elimination distance
B(G):= the set of biconnected components of G.
Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,

bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

M&%

edp(G)

6/12



Block elimination distance
B(G):= the set of biconnected components of G.
Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,

bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

T A=, K

edp(G) =4

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)]>1and G ¢ G,
bedg(G) = { 1+ min,cv(c){bedg(G \ v)} if G is biconnected and G ¢ G,
1 Geg

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,
bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,
bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

edp(G) =4
bedp(G) =

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{beds(H) | H € B(G)}  if |B(G)| >1and G ¢ G,
bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

edp(G) =4
bedp(G) =

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,
bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

edp(G) =4
bedp(G) =

6/12



Block elimination distance
B(G):= the set of biconnected components of G.
Definition
max{bedg(H) | H € B(G)} if |B(G)| >1and G ¢ G,

bedg(G) = 14 min,cv(e){beds(G \ v)} if G is biconnected and G ¢ G,
1 Geg

T A=, K

edp(G) =4
bedp(G) = 3

6/12



Block elimination distance
B(G):= the set of biconnected components of G.

Definition
max{bedg(H) | H € B(G)} if |B(G)]>1and G ¢ G,
bedg(G) = { 1+ min,cv(c){bedg(G \ v)} if G is biconnected and G ¢ G,
1 Geg

6/12



Our first result

G .= {G | beds(G) < k}.

7/12



Our first result
G .= {G | bed(G) < k}.

Theorem 1

For every minor-closed G, there is a computable function that maps
obs(G) to obs(G().

7/12



Our first result
G .= {G | bed(G) < k}.

Theorem 1

For every minor-closed G, there is a computable function that maps
obs(G) to obs(G().

Proof Idea:

7/12



Our first result
G .= {G | bed(G) < k}.

Theorem 1

For every minor-closed G, there is a computable function that maps
obs(G) to obs(G().

Proof Idea:
Biconnected closure of G, bel(G) := {G | B(G) C G}.

7/12



Our first result
G .= {G | bed;(G) < k}.

Theorem 1
For every minor-closed G, there is a computable function that maps
obs(G) to obs(G().

Proof Idea:
Biconnected closure of G, bel(G) := {G | B(G) C G}.
We prove the following intermediate result:

Lemma
There is an algorithm that, given obs(G), outputs obs(bcl(G)).

7/12



Our first result
G .= {G | bed;(G) < k}.

Theorem 1
For every minor-closed G, there is a computable function that maps
obs(G) to obs(G().

Proof Idea:

Biconnected closure of G, bel(G) := {G | B(G) C G}.

We prove the following intermediate result:

Lemma

There is an algorithm that, given obs(G), outputs obs(bcl(G)).

Lemma + algorithm of Adler et al. — Theorem 1

7/12



Block elimination distance to edgeless graphs

“Biconnected analogue” of treedepth.

8/12



Block elimination distance to edgeless graphs

“Biconnected analogue” of treedepth.

Definition
max{btd(H) | H € B(G)}  if |B(G)| > 1 and E(G) # 0,

btd(G) = { 14 min,cv(6){btd(G \ v)} if G is biconnected and E(G) # 0,

1 G is edgeless.

btd(G) = bed:(G), where & is the class of edgeless graphs.

8/12



Block elimination distance to edgeless graphs
“Biconnected analogue” of treedepth.
Definition
max{btd(H) | H € B(G)}  if |B(G)| > 1 and E(G) # 0,

btd(G) = { 14 min,cv(6){btd(G \ v)} if G is biconnected and E(G) # 0,
1 G is edgeless.

btd(G) = bed:(G), where & is the class of edgeless graphs.

td(P,) = ©(log n)

8/12



Block elimination distance to edgeless graphs
“Biconnected analogue” of treedepth.
Definition
max{btd(H) | H € B(G)}  if |B(G)| > 1 and E(G) # 0,

btd(G) = { 14 min,cv(6){btd(G \ v)} if G is biconnected and E(G) # 0,
1 G is edgeless.

btd(G) = bed:(G), where & is the class of edgeless graphs.

td(P,) = ©(log n)

8/12



Block elimination distance to edgeless graphs
“Biconnected analogue” of treedepth.
Definition
max{btd(H) | H € B(G)}  if |B(G)| > 1 and E(G) # 0,

btd(G) = { 14 min,cv(6){btd(G \ v)} if G is biconnected and E(G) # 0,
1 G is edgeless.

btd(G) = bed:(G), where & is the class of edgeless graphs.

td(P,) = ©(log n)
btd(P,) = 2

8/12



Block elimination distance to edgeless graphs

“Biconnected analogue” of treedepth.

Definition
max{btd(H) | H € B(G)}  if |B(G)| > 1 and E(G) # 0,

btd(G) = { 14 min,cv(6){btd(G \ v)} if G is biconnected and E(G) # 0,

1 G is edgeless.

btd(G) = bed:(G), where & is the class of edgeless graphs.

td(P,) = ©(log n)
btd(P,) = 2

Observation: {G | btd(G) < 2} = £@) = {forests}.

8/12



Obstruction sets for bounded btd

We study the set obs(E£(¥) for every k € N.

obs(£(*))

A\
- | AV LD

9/12



Our second result

We completely identify the outerplanar graphs in obs(£(¥)).

A D

10/12



Our second result

We completely identify the outerplanar graphs in obs(£(¥)).

A D

We define the following operations:

> Parallel join: % @H

10/12



Our second result

We completely identify the outerplanar graphs in obs(£(¥)).

A D

We define the following operations:

> Parallel join: % @H

= =

» Triangle gluing:

10/12



Our second result
We completely identify the outerplanar graphs in obs(£(¥)).

A D

We define the following operations:

> Parallel join: % @%

» Triangle gluing: & @ - @
L=

Theorem 2
Every outerplanar graph in obs(é’(k)) can be obtained by parallel join or
triangle gluing of outerplanar graphs in obs(£(+~1).

10/12



Conclusion

Open Problems:
» Explicit function f for computing obs(Zx(G) and obs(G())?

» Optimize the parametric dependence (on k) of the algorithms.

11/12



Thank You!



