On Vizing's edge-colouring question

M. Bonamy, O. Defrain, T. Klimošová, A. Lagoutte, J. Narboni

> JGA, Novembre 2020

A *k*-edge-coloring:

$$\beta: E(G) \longrightarrow \{1,\ldots,k\}$$

Such that two adjacent edges have different colors.

A *k*-edge-coloring:

$$\beta: E(G) \longrightarrow \{1,\ldots,k\}$$

Such that two adjacent edges have different colors.

Minimum number of colors: the chromatic index, $\chi'(G)$.

A *k*-edge-coloring:

$$\beta: E(G) \longrightarrow \{1,\ldots,k\}$$

Such that two adjacent edges have different colors.

Minimum number of colors: the chromatic index, $\chi'(G)$.

$$\chi'(G) \ge \Delta(G)$$

A *k*-edge-coloring:

$$\beta: E(G) \longrightarrow \{1,\ldots,k\}$$

Such that two adjacent edges have different colors.

Minimum number of colors: the chromatic index, $\chi'(G)$.

$$\chi'(G) \ge \Delta(G)$$

Theorem (Vizing, 64) For any graph G, $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G. The key ingredient: Kempe Switch Theorem (Vizing, 64) For any graph G, $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

The key ingredient: Kempe Switch Theorem (Vizing, 64) For any graph G, $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$, where $\Delta(G)$ is

the maximum degree of G.

Start from a *k*-coloring of *G*.

Theorem (Vizing, 64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

- Start from a *k*-coloring of *G*.
- Consider a component of the graph induced by two color classes: a Kempe chain.

Theorem (Vizing, 64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

- Start from a *k*-coloring of *G*.
- Consider a component of the graph induced by two color classes: a Kempe chain.
- Swap the two colors in the component.

Theorem (Vizing, 64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

- Start from a *k*-coloring of *G*.
- Consider a component of the graph induced by two color classes: a Kempe chain.
- Swap the two colors in the component.

The component can be an even cycle.

Theorem (Vizing, 64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

- Start from a *k*-coloring of *G*.
- Consider a component of the graph induced by two color classes: a Kempe chain.
- Swap the two colors in the component.

The component can be an even cycle.

Theorem (Vizing, 64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

- Start from a *k*-coloring of *G*.
- Consider a component of the graph induced by two color classes: a Kempe chain.
- Swap the two colors in the component.

The component can be a path.

Theorem (Vizing, 64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

- Start from a *k*-coloring of *G*.
- Consider a component of the graph induced by two color classes: a Kempe chain.
- Swap the two colors in the component.

The component can be a path.

Theorem (Vizing, 64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

- Start from a *k*-coloring of *G*.
- Consider a component of the graph induced by two color classes: a Kempe chain.
- Swap the two colors in the component.

The component can be a single edge.

Theorem (Vizing, 64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

- Start from a *k*-coloring of *G*.
- Consider a component of the graph induced by two color classes: a Kempe chain.
- Swap the two colors in the component.

The component can be a single edge.

Edge-coloring reconfiguration

Starting from an edge-coloring β , can we reach an other edge-coloring β' using only Kempe-switches?

 β is equivalent to β' .

 $\beta \iff \beta'$?

Edge-coloring reconfiguration

Starting from an edge-coloring β , can we reach an other edge-coloring β' using only Kempe-switches?

 β is equivalent to β' .

$$\beta \nleftrightarrow \beta' ?$$

Theorem (Vizing, 64) For any graph G, any k-coloring (with $k > \Delta(G) + 1$) is equivalent to a $(\Delta(G) + 1)$ -coloring.

Theorem (Vizing, 64)

For any graph G, any k-coloring (with $k > \Delta(G) + 1$) is equivalent to a $(\Delta(G) + 1)$ -coloring.

Conjecture (Mohar, 06)

For any graph G, all $(\Delta(G) + 2)$ -edge-colorings are equivalent.

Conjecture

For any graph G, any k-coloring (with $k > \Delta(G) + 1$) is equivalent to any $(\Delta(G) + 1)$ -coloring.

Conjecture (Mohar, 06)

For any graph G, all $(\Delta(G) + 2)$ -edge-colorings are equivalent.

$$(\Delta(G)+2) \leftrightsquigarrow (\Delta(G)+1) \leftrightsquigarrow (\Delta(G)+2)$$

Conjecture

For any graph G, any k-coloring (with $k > \Delta(G) + 1$) is equivalent to any $(\Delta(G) + 1)$ -coloring.

Conjecture (Mohar, 06)

For any graph G, all $(\Delta(G) + 2)$ -edge-colorings are equivalent.

Conjecture (Vizing, 65)

$$(\Delta(G)+2) \iff (\Delta(G)+1) \iff (\Delta(G)+2)_{_{5/18}}$$

Conjecture

For any graph G, any k-coloring (with $k > \Delta(G) + 1$) is equivalent to any $(\Delta(G) + 1)$ -coloring.

Conjecture (Mohar, 06)

For any graph G, all $(\Delta(G) + 2)$ -edge-colorings are equivalent.

Conjecture

$$(\Delta(G)+2) \leftrightsquigarrow (\Delta(G)+1) \leftrightsquigarrow (\Delta(G)+2)$$

Conjecture

For any graph G, any k-coloring (with $k > \Delta(G) + 1$) is equivalent to any $(\Delta(G) + 1)$ -coloring.

Conjecture (Mohar, 06)

For any graph G, all $(\Delta(G) + 2)$ -edge-colorings are equivalent. Conjecture

For any graph G, any k-coloring of G (with $k > \chi'$), is equivalent to any $\chi'(G)$ -coloring of G.

Conjecture

For every simple graph G, all $(\chi'(G) + 1)$ -edge colorings are equivalent.

$$(\Delta(G)+2) \leftrightsquigarrow (\Delta(G)+1) \leftrightsquigarrow (\Delta(G)+2)$$

Conjecture

For any graph G, any k-coloring (with $k > \Delta(G) + 1$) is equivalent to any $(\Delta(G) + 1)$ -coloring.

Conjecture (Mohar, 06)

For any graph G, all $(\Delta(G) + 2)$ -edge-colorings are equivalent. Conjecture

For any graph G, any k-coloring of G (with $k > \chi'$), is equivalent to any $\chi'(G)$ -coloring of G.

Conjecture

For every simple graph G, all $(\chi'(G) + 1)$ -edge colorings are equivalent.

$$(\chi'(G)+1) \leftrightsquigarrow \chi'(G) \nleftrightarrow (\chi'(G)+1)$$

Theorem (Mohar, 06) For any graph G, all $(\chi'(G) + 2)$ -edge-colorings are equivalent.

Theorem (Mohar, 06) For any graph G, all $(\chi'(G) + 2)$ -edge-colorings are equivalent.

$$(\chi'({\sf G})+2) \leftrightsquigarrow (\chi'({\sf G})+1) \leftrightsquigarrow (\chi'({\sf G})+2)$$

Theorem (Mohar, 06) For any graph G, all $(\chi'(G) + 2)$ -edge-colorings are equivalent.

$$(\chi'(G)+2) \iff (\chi'(G)+1) \iff (\chi'(G)+2)$$

Theorem (Mc Donald, Mohar, Scheide, 12) If $\Delta(G) = 3$, then all $(\chi'(G) + 1)$ -colorings are equivalent.

Theorem (Asratian, Casselgren, 16) If $\Delta(G) = 4$, then all $(\chi'(G) + 1)$ -colorings are equivalent.

Theorem (Mohar, 06) For any graph G, all $(\chi'(G) + 2)$ -edge-colorings are equivalent.

$$(\chi'({{\mathcal G}})+2) \leftrightsquigarrow (\chi'({{\mathcal G}})+1) \leftrightsquigarrow (\chi'({{\mathcal G}})+2)$$

Theorem (Mc Donald, Mohar, Scheide, 12) If $\Delta(G) = 3$, then all $(\chi'(G) + 1)$ -colorings are equivalent.

Theorem (Asratian, Casselgren, 16) If $\Delta(G) = 4$, then all $(\chi'(G) + 1)$ -colorings are equivalent.

$$(\chi'(G)+1) \leftrightsquigarrow \chi'(G) \nleftrightarrow (\chi'(G)+1)$$

Our result

Theorem (Bonamy, Defrain, Klimošová, Lagoutte, N., 20+)

Our result

Theorem (Bonamy, Defrain, Klimošová, Lagoutte, N., 20+)

$$(\chi'(G)+1) \leftrightsquigarrow \chi'(G) \leftrightsquigarrow (\chi'(G)+1)$$

Our result

Theorem (Bonamy, Defrain, Klimošová, Lagoutte, N., 20+)

For any triangle-free graph G, any k-coloring of G (with $k > \chi'(G)$) is equivalent to any $\chi'(G)$ -colouring of G.

$$(\chi'(G)+1) \leadsto \chi'(G) \leadsto (\chi'(G)+1)$$

Corollary

If G is triangle-free, then all $(\chi'(G) + 1)$ -edge-colourings are equivalent.

Three key ingredients

- Reduce to the case of χ' regular graphs.
- lnduction on χ' : successively remove color classes.
- Vizing's fans.

- χ' -regular graph:
 - χ' -coloring: color classes are perfect matchings.

- χ' -regular graph:
 - χ' -coloring: color classes are perfect matchings.
 - $(\chi' + 1)$ -coloring: every vertex miss one color : control on Kempe chains.

- χ' -regular graph:
 - χ' -coloring: color classes are perfect matchings.
 - $(\chi' + 1)$ -coloring: every vertex miss one color : control on Kempe chains.
- induction on χ' : consider only one class of color:

- χ' -regular graph:
 - χ' -coloring: color classes are perfect matchings.
 - $(\chi' + 1)$ -coloring: every vertex miss one color : control on Kempe chains.
- induction on χ': consider only one class of color:

 α a χ'(G)-coloring and β a (χ'(G) + 1)-coloring.

- χ' -regular graph:
 - χ' -coloring: color classes are perfect matchings.
 - $(\chi' + 1)$ -coloring: every vertex miss one color : control on Kempe chains.
- induction on χ': consider only one class of color:

 α a χ'(G)-coloring and β a (χ'(G) + 1)-coloring.
 - Choose a color class of α, which is a perfect matching M (color 1).

- χ' -regular graph:
 - χ' -coloring: color classes are perfect matchings.
 - (χ' + 1)-coloring: every vertex miss one color : control on Kempe chains.
- induction on χ': consider only one class of color:

 α a χ'(G)-coloring and β a (χ'(G) + 1)-coloring.
 - Choose a color class of α, which is a perfect matching M (color 1).
 - Apply Kempe switches on β to obtain β' an equivalent (χ'(G) + 1)-coloring where : β'⁻¹(1) = α⁻¹(1)

- χ' -regular graph:
 - χ' -coloring: color classes are perfect matchings.
 - $(\chi' + 1)$ -coloring: every vertex miss one color : control on Kempe chains.
- induction on χ': consider only one class of color:

 α a χ'(G)-coloring and β a (χ'(G) + 1)-coloring.
 - Choose a color class of α, which is a perfect matching M (color 1).
 - Apply Kempe switches on β to obtain β' an equivalent (χ'(G) + 1)-coloring where : β'⁻¹(1) = α⁻¹(1)
 - Apply the induction on $G \setminus M$.

For a $(\chi'(G) + 1)$ -coloring β of G :

• Good edge : $e \in M$ and $\beta(e) = 1$.

For a $(\chi'(G) + 1)$ -coloring β of G :

- Good edge : $e \in M$ and $\beta(e) = 1$.
- ▶ Bad edge : $e \in M$ and $\beta(e) \neq 1$.

For a $(\chi'(G) + 1)$ -coloring β of G :

- Good edge : $e \in M$ and $\beta(e) = 1$.
- ▶ Bad edge : $e \in M$ and $\beta(e) \neq 1$.

• Ugly edge : $e \notin M$ and $\beta(e) = 1$.

For a $(\chi'(G) + 1)$ -coloring β of G :

- Good edge : $e \in M$ and $\beta(e) = 1$.
- ▶ Bad edge : $e \in M$ and $\beta(e) \neq 1$.

• Ugly edge : $e \notin M$ and $\beta(e) = 1$.

We consider β a minimal coloring of G:

- Minimizes the number of bad edges.
- Among them, minimizes the number of ugly edges.

For a $(\chi'(G) + 1)$ -coloring β of G :

- Good edge : $e \in M$ and $\beta(e) = 1$.
- ▶ Bad edge : $e \in M$ and $\beta(e) \neq 1$.

• Ugly edge : $e \notin M$ and $\beta(e) = 1$.

We consider β a minimal coloring of G:

Minimizes the number of bad edges.

Among them, minimizes the number of ugly edges.

Fan-Like tool

For every vertex v, we consider the directed graph D_v :

- Each vertex represents an edge vv_i incident with v.
- There is an arc between vv_i and vv_j if $m(v_i) = \beta(vv_j)$
- So every vertex has outdegree 0 or 1.
- A fan starting at vv_i is the maximum subgraph reachable from vv_i.

Fan-Like tool

For every vertex v, we consider the directed graph D_v :

- Each vertex represents an edge vv_i incident with v.
- There is an arc between vv_i and vv_j if $m(v_i) = \beta(vv_j)$
- So every vertex has outdegree 0 or 1.
- A fan starting at vv_i is the maximum subgraph reachable from vv_i.

Paths are invertible

Paths are invertible

Comets are "almost" invertible

Comets are "almost" invertible

So double cycle everywhere

Double cycle are also invertible

We can always reduce the number of bad or ugly edges.

Theorem

Theorem

Theorem

Theorem

Open questions

- ▶ If G is diamond-free, all $(\chi'(G) + 1)$ are equivalent?
- ► If G is $K_{1,1,(\Delta-1)}$ -free ?
- Are all $(\chi' + 1)$ -coloring equivalent?
- Generalizing to multigraphs?

Merci!