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A k-edge-coloring:
g: E(G) — {1,...,k}

Such that two adjacent edges have different colors.

Minimum number of colors: the chromatic index, \'(G) .
X'(G) = A(G)

Theorem (Vizing, 64)

For any graph G, A(G) < x'(G) < A(G) + 1, where A(G) is
the maximum degree of G.
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Edge-coloring reconfiguration

Starting from an edge-coloring 3, can we reach an other
edge-coloring 3’ using only Kempe-switches?

B is equivalent to 3’
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Edge-coloring reconfiguration

Starting from an edge-coloring 3, can we reach an other
edge-coloring 3’ using only Kempe-switches?

B is equivalent to 3’

B e 17
Theorem (Vizing, 64)

For any graph G, any k-coloring (with k > A(G) + 1) is
equivalent to a (A(G) + 1)-coloring.
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Conjectures
Theorem (Vizing, 64)

For any graph G, any k-coloring (with k > A(G) + 1) is
equivalent to a (A(G) + 1)-coloring.

Conjecture (Mohar, 06)
For any graph G, all (A(G) + 2)-edge-colorings are equivalent.
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Our result

Theorem (Bonamy, Defrain, KlimoSova, Lagoutte,
N., 20+)

For any triangle-free graph G, any k-coloring of G (with
k > x'(G)) is equivalent to any x'(G)-colouring of G.
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Our result

Theorem (Bonamy, Defrain, KlimoSova, Lagoutte,
N., 20+)

For any triangle-free graph G, any k-coloring of G (with
k > x'(G)) is equivalent to any x'(G)-colouring of G.

(X'(G) +1) e~ X(G) & (X(G) +1)
Corollary

If G is triangle-free, then all (x'(G) + 1)-edge-colourings are
equivalent.
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Three key ingredients

» Reduce to the case of Y- regular graphs.
» Induction on x’: successively remove color classes.

» Vizing's fans.
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» Choose a color class of «, which is a perfect matching
M (color 1).

> Apply Kempe switches on 3 to obtain 3’ an equivalent
(xX'(G) + 1)-coloring where : 3~1(1) = a~1(1)

» Apply the induction on G \ M.
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The good, the bad and the ugly

For a (X'(G) + 1)-coloring 8 of G :
» Good edge : e € M and fS(e) = 1.

good
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» Minimizes the number of bad edges.
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Fan-Like tool

For every vertex v, we consider the directed graph D, :
» Each vertex represents an edge vv; incident with v.

» There is an arc between vv; and vy; if m(v;) = (vv;)

» So every vertex has outdegree 0 or 1.
» A fan starting at vv; is the maximum subgraph reachable

from wvv;.
x4
x6@ X3
2
7 X 2
<o 6 X7 1 i
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Comets are "almost” invertible
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Comets are "almost” invertible
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x1 7 %8 x1 x 1 x1
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So double cycle everywhere
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Double cycle are also invertible

We can always reduce the number of bad or
ugly edges.
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Further: triangles are bad

Theorem
For any triangle-free graph G, any k-coloring of G (with
k > X'(G)) is equivalent to any x'(G)-colouring of G.
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Open questions

» If G is diamond-free, all (x/(G) + 1) are equivalent?
> If Gis KLL(A,l)—free 7
» Are all (x' + 1)-coloring equivalent?

» Generalizing to multigraphs?

17 /18



Merci!
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