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Edge Coloring

A k-edge-coloring:

β : E (G ) −→ {1, . . . , k}

Such that two adjacent edges have different colors.

Minimum number of colors: the chromatic index, χ′(G ) .

χ′(G ) ≥ ∆(G )

Theorem (Vizing, 64)
For any graph G , ∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1, where ∆(G ) is
the maximum degree of G .
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The key ingredient: Kempe Switch
Theorem (Vizing, 64)
For any graph G , ∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1, where ∆(G ) is
the maximum degree of G .

I Start from a k-coloring of G .

I Consider a component of the graph induced by two color
classes: a Kempe chain.

I Swap the two colors in the component.

The component can be an even cycle.
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Edge-coloring reconfiguration

Starting from an edge-coloring β, can we reach an other
edge-coloring β′ using only Kempe-switches?

β is equivalent to β′.

β ! β′ ?

Theorem (Vizing, 64)
For any graph G , any k-coloring (with k > ∆(G ) + 1) is
equivalent to a (∆(G ) + 1)-coloring.
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Conjectures
Theorem (Vizing, 64)
For any graph G , any k-coloring (with k > ∆(G ) + 1) is
equivalent to a (∆(G ) + 1)-coloring.

⇐⇒

Conjecture (Mohar, 06)
For any graph G , all (∆(G ) + 2)-edge-colorings are equivalent.

Conjecture (Vizing, 65)
For any graph G , any k-coloring of G (with k > χ′), is
equivalent to a χ′(G )-coloring of G .

⇐⇒
Conjecture
For every simple graph G , all (χ′(G ) + 1)-edge colorings are
equivalent.

(∆(G ) + 2) ! (∆(G ) + 1) ! (∆(G ) + 2)
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Previous results

Theorem (Mohar, 06)
For any graph G , all (χ′(G ) + 2)-edge-colorings are equivalent.

(χ′(G ) + 2) ! (χ′(G ) + 1) ! (χ′(G ) + 2)

Theorem (Mc Donald, Mohar, Scheide, 12)
If ∆(G ) = 3, then all (χ′(G ) + 1)-colorings are equivalent.

Theorem (Asratian, Casselgren, 16)
If ∆(G ) = 4, then all (χ′(G ) + 1)-colorings are equivalent.

(χ′(G ) + 1) ! χ′(G ) ! (χ′(G ) + 1)
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Our result

Theorem (Bonamy, Defrain, Klimošová, Lagoutte,
N., 20+)
For any triangle-free graph G , any k-coloring of G (with
k > χ′(G )) is equivalent to any χ′(G )-colouring of G .

(χ′(G ) + 1) ! χ′(G ) ! (χ′(G ) + 1)

Corollary
If G is triangle-free, then all (χ′(G ) + 1)-edge-colourings are
equivalent.
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Three key ingredients

I Reduce to the case of χ′- regular graphs.

I Induction on χ′: successively remove color classes.

I Vizing’s fans.
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Simplify our lives
I χ′-regular graph:

I χ′-coloring: color classes are perfect matchings.

I (χ′ + 1)-coloring: every vertex miss one color : control
on Kempe chains.

I induction on χ′: consider only one class of color:
I α a χ′(G )-coloring and β a (χ′(G ) + 1)-coloring.

I Choose a color class of α, which is a perfect matching
M (color 1).

I Apply Kempe switches on β to obtain β′ an equivalent
(χ′(G ) + 1)-coloring where : β′−1(1) = α−1(1)

I Apply the induction on G \M.
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The good, the bad and the ugly
For a (χ′(G ) + 1)-coloring β of G :

I Good edge : e ∈ M and β(e) = 1.

I Bad edge : e ∈ M and β(e) 6= 1.

I Ugly edge : e 6∈ M and β(e) = 1.

1

good

3

bad

1

ugly

We consider β a minimal coloring of G :

I Minimizes the number of bad edges.

I Among them, minimizes the number of ugly edges.

6 1

×1 ×7 ×8
v w
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Fan-Like tool
For every vertex v , we consider the directed graph Dv :
I Each vertex represents an edge vvi incident with v .

I There is an arc between vvi and vvj if m(vi) = β(vvj)

I So every vertex has outdegree 0 or 1.
I A fan starting at vvi is the maximum subgraph reachable

from vvi .

×2

×3

×4×5

×6

×7 ×7
v

1

2

34

5

6
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Paths are nice

6 1

×1 ×7 ×8
v w
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Paths are nice
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Paths are nice
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Paths are nice
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7

Paths are invertible
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Comets are ”almost” invertible
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7(7, 3)
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So double cycle everywhere

6 1

×1 ×7 ×8
v w
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Double cycle are also invertible

×4
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×7 ×8
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4

5

6

5

4

1

We can always reduce the number of bad or

ugly edges.
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Further: triangles are bad

Theorem
For any triangle-free graph G , any k-coloring of G (with
k > χ′(G )) is equivalent to any χ′(G )-colouring of G .
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Open questions

I If G is diamond-free, all (χ′(G ) + 1) are equivalent?

I If G is K1,1,(∆−1)-free ?

I Are all (χ′ + 1)-coloring equivalent?

I Generalizing to multigraphs?
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Merci!
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