On the k shortest simple paths : A faster algorithm with low memory consumption

Ali Al Zoobi, David Coudert and Nicolas Nisse Université Côte d'Azur, Inria, CNRS, I3S

November 13, 2020

k shortest simple paths

Introduction

- k shortest simple paths problem
- **(a)** k shortest simple paths algorithms :
 - Yen's algorithm
 - Postponed Node Classification algorithm
- Evaluations and conclusions

Motivation

A shortest path is not enough!

- A shortest path may be affected
- Some constraints can be added
 - Bounded delay, cost ...
 - A user may prefer the coast road ...
- User likes diversity!

Give the user a set of 'good' choices

< 47 ▶

Motivation

Sometimes, it is hard to specify constraints that a path should satisfy

Applications:

- bioinformatics: biological sequence alignment
- natural language processing
- list decoding
- parsing
- network routing
- many more ...

Figure: aligning two DNA sequences

k shortest paths problem

Definition

Input:

- Directed weighted graph D = (V, A) with $w : A \rightarrow \mathbb{R}^+$,
- Two terminals s and t and an integer k

Output:

• k paths $P_1, P_2, ..., P_k$ from s to t such that $w(P_i) \leq w(P_{i+1})$, $1 \leq i < k$ and $w(P_k) \leq w(Q)$ for all other s-t paths Q

where $w(P) = \sum_{e \in A(P)} w(e)$

< □ > < 同 > < 三 > < 三 >

simple vs not simple

Figure: P is simple, Q is not simple

Definition (simple path)

a path is simple if and only if it has no repeated vertices

Al Zoobi, Coudert and Nisse

k shortest simple paths

November 13, 2020 6 / 17

< /□ > < 三

Complexity of the problem

Theorem (Eppstein '97)

The problem of finding k shortest paths can be solved in time $O(m + n \log n + k)$

- 4 回 ト - 4 三 ト

Complexity of the problem

Theorem (Eppstein '97)

The problem of finding k shortest paths can be solved in time $O(m + n \log n + k)$

Theorem (Yen '71)

The problem of finding k shortest simple paths can be solved in time $O(kn(m + n \log n))$

- 4 回 ト - 4 回 ト

Complexity of the problem

Theorem (Eppstein '97)

The problem of finding k shortest paths can be solved in time $O(m + n \log n + k)$

Theorem (Yen '71)

The problem of finding k shortest simple paths can be solved in time $O(kn(m + n \log n))$

Theorem (Williams and Williams '10)

All-Pairs-Shortest-Paths (APSP) $\prec_{(m,n)}$ 2-SSP ($\Leftrightarrow \tilde{O}(n.m)$ for 2-SSP)

< □ > < □ > < □ > < □ > < □ > < □ >

Yen's algorithm (the algorithm)

Yen's idea:

• A second shortest simple path is a shortest simple detour from a shortest path

Complexity:
$$O(kn \underbrace{(m + nlogn)}_{\text{Complexity of finding one SP}})$$

< □ > < □ > < □ > < □ > < □ > < □ >

э

イロト イヨト イヨト イヨト

э

э

э

э

э

э

3

э

э

3

3

3

3

э

э

э

э

э

э

э

э

э

э

э

э

э

Algorithm engineering

On Road networks:

- 9th DIMAC'S implementation challenge followed by a set of improvements
- (NC) by Feng 2014 (speed up the detours computation)
- (SB*) by Kurz and Mutzel 2016, followed by Al Zoobi et al. 2019 (larger memory consumption)

Algorithm	time (ms)
Yen	11,316
NC	823
SB* (large memory)	117

Table: DC network ($n \approx 10,000$; $m \approx 15,000$ and k = 1,000)

• We proposed the PNC

• The fastest algorithm with low memory consumption

Al Zoobi, Coudert and Nisse

k shortest simple paths

Postponed Node Classification (PNC) aglorithm

Figure: A shortest path P_0 from s to t

- So many calls of SP algorithm
- Can we skip some ?

Ib(*u_i*) = *c* s.t. a shortest simple detour of *P*₀ at *u_i* is bigger than *c LB* answers in a pivot step

Al Zoobi, Coudert and Nisse

k shortest simple paths

November 13, 2020 12 / 17

• After applying LB on each vertex of P_0

Al Zoobi, Coudert and Nisse

k shortest simple paths

4 E b November 13, 2020 12/17

э

w(P) = 90

If a shortest simple detour P of P_0 has length less $lb(u_i)$ for each $u_i \in P_0$

What can we deduce?

Al Zoobi, Coudert and Nisse

k shortest simple paths

A B A A B A November 13, 2020

э

12/17

w(P) = 90

If $w(P) \leq lb(u_i)$ for each $u_i \in P_0$

• Then P is a second shortest path

Otherwise

• continue until P' (with $w(P') \leq lb(u_i)$ for each $u_i \in P_0$) is found

12/17

While computing P_0 , the reversed shortest path tree T rooted at t is kept

For each vertex u_i , each vertex v in T is colored:

- Yellow if the path from v to t in T cross u_i
- Green Otherwise

Classification of Feng 2014

For each arc $e_j = (u_i, v)$ tailing at u_i :

• $\delta(e_i) = w(s, \dots, u_i) + w(e_j) + w(P_{v-t}^T)$: the cost of the shortest detour at e_j

Let $e_{min} = (u_i, v_{min})$ be the arc with minimum $\delta(\delta_{min})$

inspired by Kurz and Mutzel (2016)

Let $e_{min} = (u_i, v_{min})$ be the arc with minimum $\delta(\delta_{min})$ Claim: $\delta_{min} = lb(u_i)$

 δ_{min} is the length of a shortest detour (not necessarily simple) at u_i

Al Zoobi, Coudert and Nisse

NC algorithm calls an SP algorithm at u_i

• (PNC) postpone such call so it may be skipped

PNC : The algorithm

Algorithm 1 PNC(G, s, t)

- 1: $C \leftarrow \{P_0\}$
- 2: while C is not empty do
- 3: $P \leftarrow extractMin(C)$
- 4: **if** *P* is simple **then**
- 5: add P to the output
- 6: using the LB procedure, add the shortest detours of P to C
- 7: **else**
- 8: repair P into a simple path and add it to C

< □ > < □ > < □ > < □ > < □ > < □ >

PNC : The algorithm

Algorithm 2 PNC(G, s, t)

1:	$C \leftarrow \{P_0\}$
2:	while C is not empty do
3:	$P \leftarrow extractMin(C)$
4:	if P is simple then
5:	add <i>P</i> to the output
6:	using the LB procedure, add the shortest detours of P to C
7:	else
8:	repair P into a simple path and add it to C

Remarque:

• Low memory consumption: only one shortest path is kept in the memroy (+ candidate paths)

イロト イヨト イヨト イヨト

PNC : Evalutation

Figure: The average running time of the *kSSP* algorithms with respect to *k* on DC road networks ($n \approx 10,000$; $m \approx 15,000$)

PNC : Evalutation

Figure: The average running time of the *kSSP* algorithms with respect to *k* on COL road networks ($n \approx 500,000$; $m \approx 1,000,000$)

16/17

Ongoing - future work

- Evaluate these algorithms on complex networks
- Study the impact of these improvements on others problems
 - Path with resource constraints, bioinformatics problems ...
- Study the problem when the arcs may have negative weights

Questions ?