Comparison between the metric dimension and the zero-forcing number in graphs

Nicolas Bousquet, Quentin Deschamps, Aline Parreau and Ignacio Pelayo

Laboratoire d'Informatique en image et systèmes d'information LIRIS, Lyon Department of Mathematics Universitat Politècnica de Catalunya, Barcelona

JGA, November 2020

Definitions Context

Metric dimension [Harary and Melter, 1975]

Identify a vertex with its distances to some specific vertices.

Definitions Context

Metric dimension [Harary and Melter, 1975]

Identify a vertex with its distances to some specific vertices.

Definitions Context

Metric dimension [Harary and Melter, 1975]

Identify a vertex with its distances to some specific vertices.

Definitions Context

Metric dimension [Harary and Melter, 1975]

Identify a vertex with its distances to some specific vertices.

Resolving set: Subset of vertices S such that all the distance vectors to S are different. Metric dimension: dim(G) Minimal size of a resolving set.

Definitions Context

Zero-forcing number [AIM, 2008]

Definitions Context

Zero-forcing number [AIM, 2008]

Definitions Context

Zero-forcing number [AIM, 2008]

Definitions Context

Zero-forcing number [AIM, 2008]

Definitions Context

Zero-forcing number [AIM, 2008]

Definitions Context

Zero-forcing number [AIM, 2008]

Definitions Context

Zero-forcing number [AIM, 2008]

Definitions Context

Zero-forcing number [AIM, 2008]

Rule : A black vertex forces its last white neighbour to become black

Zero-forcing number: Z(G)Minimum size of a set coloring the whole graph.

Definitions Context

Comparison

Graph	dim	Ζ
Path	1	1
Cycle	2	2
Star	<i>n</i> – 2	<i>n</i> – 2
Petersen	3	5

Definitions Context

Inequality on trees

Inequality on trees Eroh, Kang, Yi, 2017

For any tree T, dim $(T) \leq Z(T)$

Definitions Context

Inequality on trees

Inequality on trees Eroh, Kang, Yi, 2017

For any tree T, $\dim(T) \leq Z(T)$

Definitions Context

Inequality on trees

Inequality on trees Eroh, Kang, Yi, 2017

For any tree T, $\dim(T) \leq Z(T)$

Definitions Context

Inequality on trees

Inequality on trees Eroh, Kang, Yi, 2017

For any tree T, $\dim(T) \leq Z(T)$

A resolving set or a zero-forcing set should contains one vertex in all but one subset.

Definitions Context

Inequality on trees

Inequality on trees Eroh, Kang, Yi, 2017

For any tree T, $\dim(T) \leq Z(T)$

A resolving set or a zero-forcing set should contains one vertex in all but one subset. The condition is sufficient for a resolving set but not for a zero-forcing set.

Definition Context

Conjecture

Conjecture [Eroh et al., 2017]

 $\dim(G) \leq Z(G) + c(G)$ for any graph G.

Cycle-rank : Size of a feedback edge set of G. Equal to |E| - |V| + 1 if G is connected.

Definitions Context

Conjecture

Conjecture [Eroh et al., 2017]

 $\dim(G) \leq Z(G) + c(G)$ for any graph G.

Cycle-rank : Size of a feedback edge set of G. Equal to |E| - |V| + 1 if G is connected.

Definitions Context

Our work

Conjecture [Eroh et al., 2017]

 $\dim(G) \leq Z(G) + c(G)$ for any graph G.

Two results from [Eroh et al., 2017] :

- If c = 1 then dim $(G) \leq Z(G) + 1$.
- If G contains only odd cycles then $\dim(G) \leq Z(G) + 2c$.

Definitions Context

Our work

Conjecture [Eroh et al., 2017]

 $\dim(G) \leq Z(G) + c(G)$ for any graph G.

Two results from [Eroh et al., 2017] :

- If c = 1 then dim $(G) \leq Z(G) + 1$.
- ▶ If G contains only odd cycles then $\dim(G) \leq Z(G) + 2c$.

Our results :

Proof of the conjecture when the cycles are disjoint.

Definitions Context

Our work

Conjecture [Eroh et al., 2017]

 $\dim(G) \leq Z(G) + c(G)$ for any graph G.

Two results from [Eroh et al., 2017] :

- If c = 1 then dim $(G) \leq Z(G) + 1$.
- If G contains only odd cycles then $\dim(G) \leq Z(G) + 2c$.

Our results :

Proof of the conjecture when the cycles are disjoint.

• dim
$$(G) \leq Z(G) + 6c$$
 for any graph G.

Conjecture when the cycles are disjoint

Conjecture when the cycles are disjoint

 $\dim(T+e) \leq \dim(T)+1$

Conjecture when the cycles are disjoint

 $\dim(T+e) \leq \dim(T) + 1 \leq Z(T) + 1$

Conjecture when the cycles are disjoint

 $\dim(T+e) \leq \dim(T) + 1 \leq Z(T) + 1 \leq Z(T+e) + 1$

Conjecture when the cycles are disjoint

 $\dim(T + e) \le \dim(T) + 1 \le Z(T) + 1 \le Z(T + e) + 1$ Conjecture when the cycles are disjoint : by induction.

General bound

General bound

Theorem

For any graph G, $\dim(G) \leq Z(G) + \min(5c + |X|, 3c + 5|X|)$.

|X| : Size of a feedback vertex set of G.

General bound

_ Theorem

For any graph G, $\dim(G) \leq Z(G) + \min(5c(G) + |X|, 3c(G) + 5|X|).$

- Find a tree structure of G.
- Create a resolving set S for G based on this tree structure.
- Bound the size of the intermediate sets.
- Compare the size of S and a minimal zero-forcing set of G.

Tree structure

- Create a set of vertices M such that
 - $G \setminus M$ is a forest.
 - Each connected component T is connected to M by at most two edges.

Tree structure

- Create a set of vertices M such that
 - $G \setminus M$ is a forest.
 - Each connected component T is connected to M by at most two edges.

X : feedback vertex set

Tree structure

- Create a set of vertices M such that
 - $G \setminus M$ is a forest.
 - Each connected component T is connected to M by at most two edges.

Resolving set

Resolving set

Resolving set

Resolving set

$$S = (\bigcup_{T_i} S_{T_i}) \cup P \cup M$$

Link to Zero-forcing number

• Compare the size of S and a minimal zero-forcing set Z of G.

Link to Zero-forcing number

• Compare the size of S and a minimal zero-forcing set Z of G.

$|Z| + |X| \geq \sum_{T_i} Z(T_i)$

Link to Zero-forcing number

• Compare the size of S and a minimal zero-forcing set Z of G.

 $|Z| + |X| \ge \sum_{T_i} Z(T_i)$ $Z(T_i) \ge \dim(T_i)$

Link to Zero-forcing number

• Compare the size of S and a minimal zero-forcing set Z of G.

- $|Z| + |X| \ge \sum_{T_i} Z(T_i)$ $Z(T_i) \ge \dim(T_i)$
- ► $Z(G) + |X| \ge |S| |P| |M|$

Bounds on the sets

- Bound the size of the intermediate sets.
- $|M| \le \min(c+2|X|, 2c)$ $|P| \le c + |M|$ $|X| \le c$

Bounds on the sets

Bound the size of the intermediate sets.

$$|M| \le \min(c+2|X|, 2c)$$

$$|P| \le c + |M|$$

$$|X| \le c$$

 $\dim(G) \le Z(G) + |X| + |P| + |M|$ $\dim(G) \le Z(G) + \min(5c + |X|, 3c + 5|X|)$

Conclusion

Conjecture: $\dim(G) \le Z(G) + c$ Theorem: $\dim(G) \le Z(G) + \min(5c + |X|, 3c + 5|X|)$

Perspectives

- Improve the theorem
 - Improve the bounds on |P|.
 - Modify the set P to reduce its size.
- Get dim(G) $\leq c + Z(G) + f(|X|)$.
- Look at classes of graphs close to trees such chordal graphs or with bounded tree-width.

Conclusion

Conjecture: $\dim(G) \le Z(G) + c$ Theorem: $\dim(G) \le Z(G) + \min(5c + |X|, 3c + 5|X|)$

Perspectives

- Improve the theorem
 - Improve the bounds on |P|.
 - Modify the set P to reduce its size.
- Get dim(G) $\leq c + Z(G) + f(|X|)$.
- Look at classes of graphs close to trees such chordal graphs or with bounded tree-width.

Thank you for your attention

Bibliography

AIM, S. G. W. G. (2008).

Zero forcing sets and the minimum rank of graphs. Linear Algebra and its Applications, 428(7):1628 – 1648.

A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs.

Acta Mathematica Sinica, English Series, 33(6):731-747.

Harary, F. and Melter, R. A. (1975).

On the metric dimension of a graph. *Ars Combinatoria*, 2:191-195.