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Metric dimension [Harary and Melter, 1975]
Identify a vertex with its distances to some specific vertices.

Resolving set: Subset of vertices S such that all the distance
vectors to S are different.
Metric dimension: dim(G ) Minimal size of a resolving set.
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Zero-forcing number [AIM, 2008]

Rule : A black vertex forces its last white neighbour to become black

Zero-forcing number: Z (G )
Minimum size of a set coloring the whole graph.
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Comparison

Graph dim Z

Path 1 1
Cycle 2 2
Star n − 2 n − 2

Petersen 3 5

A
B

C

(1,1,2)

(2,1,2)

(1,2,2)

(2,2,2)

(1,2,1)

(2,2,1)

(2,1,1)

Z(G) = 5 dim(G) = 3
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Inequality on trees

For any tree T , dim(T ) ≤ Z (T )

Inequality on trees Eroh, Kang, Yi, 2017

A resolving set or a
zero-forcing set should
contains one vertex in all but
one subset.
The condition is sufficient for a
resolving set but not for a
zero-forcing set.

Metric dimension and zero-forcing number



5

Introduction
Disjoint cycle graph

General graph
Conclusion

Definitions
Context

Inequality on trees

For any tree T , dim(T ) ≤ Z (T )

Inequality on trees Eroh, Kang, Yi, 2017

A resolving set or a
zero-forcing set should
contains one vertex in all but
one subset.
The condition is sufficient for a
resolving set but not for a
zero-forcing set.

Metric dimension and zero-forcing number



5

Introduction
Disjoint cycle graph

General graph
Conclusion

Definitions
Context

Inequality on trees

For any tree T , dim(T ) ≤ Z (T )

Inequality on trees Eroh, Kang, Yi, 2017

A resolving set or a
zero-forcing set should
contains one vertex in all but
one subset.
The condition is sufficient for a
resolving set but not for a
zero-forcing set.

Metric dimension and zero-forcing number



5

Introduction
Disjoint cycle graph

General graph
Conclusion

Definitions
Context

Inequality on trees

For any tree T , dim(T ) ≤ Z (T )

Inequality on trees Eroh, Kang, Yi, 2017

A resolving set or a
zero-forcing set should
contains one vertex in all but
one subset.

The condition is sufficient for a
resolving set but not for a
zero-forcing set.

Metric dimension and zero-forcing number



5

Introduction
Disjoint cycle graph

General graph
Conclusion

Definitions
Context

Inequality on trees

For any tree T , dim(T ) ≤ Z (T )

Inequality on trees Eroh, Kang, Yi, 2017

A resolving set or a
zero-forcing set should
contains one vertex in all but
one subset.
The condition is sufficient for a
resolving set but not for a
zero-forcing set.

Metric dimension and zero-forcing number



6

Introduction
Disjoint cycle graph

General graph
Conclusion

Definitions
Context

Conjecture

dim(G ) ≤ Z (G ) + c(G ) for any graph G .

Conjecture [Eroh et al., 2017]

Cycle-rank : Size of a feedback edge set of G .
Equal to |E | − |V |+ 1 if G is connected.

Z(G) = c+ 1 dim(G) = 2c+ 1
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Our work

dim(G ) ≤ Z (G ) + c(G ) for any graph G .

Conjecture [Eroh et al., 2017]

Two results from [Eroh et al., 2017] :

I If c = 1 then dim(G ) ≤ Z (G ) + 1.

I If G contains only odd cycles then dim(G ) ≤ Z (G ) + 2c .

Our results :

I Proof of the conjecture when the cycles are disjoint.

I dim(G ) ≤ Z (G ) + 6c for any graph G .
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Conjecture when the cycles are disjoint

dim(T + e) ≤ dim(T ) + 1 ≤ Z (T ) + 1 ≤ Z (T + e) + 1
Conjecture when the cycles are disjoint : by induction.
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General bound

For any graph G , dim(G ) ≤ Z (G ) + 6c .

Theorem

For any graph G , dim(G ) ≤ Z (G ) + min(5c + |X |, 3c + 5|X |).
Theorem

|X | : Size of a feedback vertex set of G .
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General bound

For any graph G ,
dim(G ) ≤ Z (G ) + min(5c(G ) + |X |, 3c(G ) + 5|X |).

Theorem

I Find a tree structure of G .
I Create a resolving set S for G based on this tree structure.
I Bound the size of the intermediate sets.
I Compare the size of S and a minimal zero-forcing set of G .
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Tree structure

I Create a set of vertices M such that
I G \M is a forest.
I Each connected component T is connected to M by at most

two edges.

X

T1

T2

T3

T4

T5

X : feedback vertex set

Ti
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Resolving set
I Create a resolving set S for G containing a resolving set for

each component of G \M.

Ti

S = (
⋃
Ti

STi
) ∪ P ∪M

Metric dimension and zero-forcing number



12

Introduction
Disjoint cycle graph

General graph
Conclusion

Resolving set
I Create a resolving set S for G containing a resolving set for

each component of G \M.

S = (
⋃
Ti

STi
) ∪ P ∪M

Metric dimension and zero-forcing number



12

Introduction
Disjoint cycle graph

General graph
Conclusion

Resolving set
I Create a resolving set S for G containing a resolving set for

each component of G \M.

S = (
⋃
Ti

STi
) ∪ P ∪M

Metric dimension and zero-forcing number



12

Introduction
Disjoint cycle graph

General graph
Conclusion

Resolving set
I Create a resolving set S for G containing a resolving set for

each component of G \M.

S = (
⋃
Ti

STi
) ∪ P ∪M

Metric dimension and zero-forcing number



13

Introduction
Disjoint cycle graph

General graph
Conclusion

Link to Zero-forcing number

I Compare the size of S and a minimal zero-forcing set Z of G .

X

T1

T2

T3

T4

T5

I |Z |+ |X | ≥
∑

Ti
Z (Ti )

I Z (Ti ) ≥ dim(Ti )

I Z (G ) + |X | ≥ |S | − |P| − |M|
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Bounds on the sets

I Bound the size of the intermediate sets.

I |M| ≤ min(c + 2|X |, 2c)
I |P| ≤ c + |M|
I |X | ≤ c

espace
dim(G ) ≤ Z (G ) + |X |+ |P|+ |M|

espace
dim(G ) ≤ Z (G ) + min(5c + |X |, 3c + 5|X |)
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Conclusion

Conjecture: dim(G ) ≤ Z (G ) + c
Theorem: dim(G ) ≤ Z (G ) + min(5c + |X |, 3c + 5|X |)

Perspectives
I Improve the theorem

I Improve the bounds on |P|.
I Modify the set P to reduce its size.

I Get dim(G ) ≤ c + Z (G ) + f (|X |).
I Look at classes of graphs close to trees such chordal graphs or

with bounded tree-width.

Thank you for your attention
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