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Phylogenetics

From Aristotle to Darwin

Since Aristotle, naturalists have always tried to classify the
abundance of creatures that populate the Earth.

Aristote: the scala naturae;

Carl von Linné: classification of living;
Antoine Laurent de Jussieu;

Leclerc de Buffon: the first to evoke the possibility that
specles can evolve;

Jean-Baptiste Lamarck: first theory of evolution:;
Charles Darwin: The Origins of Species (1859).




From The Origin of Species

e [t s a truly wonderful fact that all animals and all plants
throughout all time and space should be related to each

other in groups, subordinate to groups. |[...]

* The affinities of all the beings of the same class have
sometimes been represented by a great tree. [...] The
green and budding twigs may represent existing species;
and those produced during former years may represent
the long succession of extinct species. It

g

D ’ C

/

AL

L —

Charles Darwin, (1872), pp. 170-171. The Origin of Species. Sixth Edition. The Modern Library, New York.



Phylogenetics/phylogenetic trees

 Phylogenetics aims at clarifying, using molecular and
morphological data, the evolutionary relationships that
exist among different species

* These relationships can be represented through
phylogenetic trees or phylogenies, out-branching trees
with no indegree-1 outdegreee-1 nodes, where sinks are
assoclated to a set of species (often binary)

the sinks or taxa represent existing organisms
the only node with indegree-0 is called root
Internal nodes represent hypothetical TIME
ancestors

e cach internal node represents the lowest
common ancestor of all taxa below it (clade)

e nodes and branches can have several kinds of
information associated with them, such as
time or amount of evolution estimates




Phylogenetics

Phylogenetics/phylogenetic trees

 Phylogenetics aims at clarifying, using molecular and
morphological data, the evolutionary relationships that
exist among different species

* These relationships can be represented through
phylogenetic trees or phylogenies, out-branching trees
with no indegree-1 outdegreee-1 nodes, where sinks are
assoclated to a set of species (often binary)
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Applications: the TOL — Tree Of Life

de Vienne DM (2016) Lifemap: Exploring the Entire Tree of Life. PLOS Biology.



Phylogenetics

Applications: character evolution
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Phylogenetics

Applications: co-evolution
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Phylogenetics

Applications: the Noah's Ark Problem

F. Pardi and N. Goldman (2007). Resource aware taxon selection for maximizing phylogenetic diversity. Systematic Biology.



Phylogenetics

Applications: disease evolution and spreading

Phylogeny of SARS-CoV-2 related strains (GISAID, 10/5/2020)

hCoV-19/pangolin/Guangxi/P4L/2017|EPI_ISL_410538|2017

hCoV-19/pangolinGuangxd/P3B8/2017|EPI_ISL_410543|2017
# hCoV-19/pangolin/Guangxi/P1E/2017|EPI_ISL_410539]2017
| hCoV-19/pangolinGuangxi/P5L/2017|EPI_ISL_410540]2017 Red: new bat CoVs
Yunnan 2019

hCoV-19/pangolinGuangxi/PSE/2017|EPI_ISL_410541|2017

hCoV-19/pangolin/Guangxi/P2V/2017|EPI_ISL_410542|2017 L|ght blue: hCoV-19 2019-20
. hCoV-19/pangolin'Guandong/1/2019|EPI_ISL_410721|2019
hCoV-19/pangolin/China/MP789/2019|EPI_ISL_412860|2019-03-19
hCoV-19/pangolin'Guangdong/P2S/2019|EPI_ISL_410544|2019
Blue ... SARS CoV

SARS-CoV-2

————————9 —a4—

hCoV-19/bat’YunnanyRmYNO02/2019|EPI_ISL_412977|2019-06-25
o SARS_coronavirus|NC_004718 -> SARS-CoV-1 Human
SARS_coronavirus_SZ3|AY304486.1 —> Civet

hCoV-19/batYunnaryRmYNO 1/2019|EPI_ISL_412976|2019-06-25

Anna Zhukova et al (2020)Origin, evolution and global spread of SARS-CoV-2 To appear in the Comptes Rendus -
Biologies of the French Academy of Sciences



Phylogenetics

Applications: disease evolution and spreading

Phylogenetic scenario showing the main transmission clusters of SARS-
CoV-2 until April 25, 2020.
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Biologies of the French Academy of Sciences



Phylogenetic networks

Explicit phylogenetic networks

They represent evolutionary history when inheritance is from multiple
ancestors — because of reticulate events, e.g:

 Hybrid speciation
 Lateral gene transfer
* Recombination

5 6 — H. praecox
H. debilis

2> — H. neglectus
H. petiolaris

—H. anomalus 2 : = 14
5 H. annuus '
5 — H. argophyllu\
1 — H. bolanderi

— H. exilis



Explicit phylogenetic networks

Phylogenetic networks

They represent evolutionary history when inheritance is from multiple
ancestors — because of reticulate events, e.g:

Hybrid speciation
 Lateral gene transfer
* Recombination

Antibiotic-
resistance
gene from
E. coli

DNA

Horizontal

gene
transfer to

Antibiotic- - another

resistance J species

gene

Bacterial species, such as
Escherichia coli

Bacterial species, such as
Streptococcus pneumoniae

ﬂ Basidiomycota

Pnaumocystis cannii (11)

Schizasaccharomyces pombe (5)
Schizosaccharomyces japonicus (0)
Sclerotinia sclerotionum (5)

Botrytis cinerea (7)

Magnaporthe grisea (14)

Neurospora crassa (8)
Chasetomium globosurm (9)
Podospora anserina (14)
Trichoderma reesei (26)
Nectria hasmatococca (56)

Fusanium graminearum (36)
Fusarium verticilioides (45)
Fusarium oxysporum (63)
Stagonospora nodorum (23)
Mycosphaereila fiiensis (23)

Histoplasma capsulaturn (4)
Uncinocarpus reesii (6)
Coccidioides immitis (8)
Aspergillus clavatus (11)
Aspergillus furmnigatus (20)
Neasartorya fischeri (20)
Aspergillus nidulans (14)
Aspergillus niger (32)
Aspergillus terreus (26)

Aspergillus flavus (45)
Aspergillus oryzae (38) —

Yarrovaa lipolytica (4)(6)
Candida lusitaniae (2)

Sordariomycetes
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Eurotiomycetes

Candida guiiliermondii (4)
Debaryomyces hansenii (4)(1)
Pichia stipitis (2)
Lodderomyces elongisporus (2)
Candida tropicalis (3)
Candida dubliniensis (2)
Candida albicans (2)
Kiluyveromyces waltii (0)(2)
Saccharomyces kluyveri (6)(3)
Kiuyveromycaes lactis (2)(6)
Ashbya gossypii (1){2)
Kiuyveromyces polysporus (0)
Candida glabrata (1)
Saccharomyces castellii (0)
Saccharomyces bayanus (0)
Saccharomyces kudnavzewi (0)
Saccharomyces mikatae (1)
Saccharomyces paradoxus (0)
Saccharomyces cerevisiae (1)(13)

Key

Fungal-derived HGTs
 Slot and Hibbett 2007
B Slot and Rokas 2010
B Khaidi et al. 2008

B Patron et al. 2007

B Khaldi and Wolfe 2008
B Ssiot and Rokas 2011
Prokaryote-derived HGTs

(#) Marcet-Houben and Gabaldon
2010

(¥) Summarised in Rolland ef al.
2009



Phylogenetic networks

Explicit phylogenetic networks

They represent evolutionary history when inheritance is from multiple
ancestors — because of reticulate events, e.g:

° Hybrid speciation Putative phylogeny of HIV/
j SIV infecting primates

*  Lateral gene transfer (Bailes et al. Science 2003)

e Recombination

H11




Explicit phylogenetic networks (rDAG)




Phylogenomics

genomic

Phylogenomics oo

detection of homology
STEP 1 l (clustering/embedding

problems)
@1 C2 Ck
STEP 2 alignement
problem
\/
- Ak'
STEP 4' combine all STEP 3 construct a tree for
¥ thedata each data set
STEP 3' construct a
unique
tree
STEP 4 combine the trees
>
parsimony
likelihood methods super-tree super-network
bayesian

distance-based



Phylogenomics

genomic

Phylogenomics -

detection of homology
STEP 1 ¢ (clustering/embedding

problems)
@1 C2 Ck
STEP 2 alignement
problem
\/
- Ak'
STEP 4' combine all STEP 3 construct a tree for
¥ thedata each data set
STEP 3' construct a
unique
tree
STEP 4 combine the trees
>
parsimony
likelihood methods super-tree super-network
bayesian

distance-based



Acquiring genomic data

Assembly for next generation sequencing —NGS

 We want to sequence a genome, a chromosome, a portion of a
genome, etc.



Acquiring genomic data

Assembly for next generation sequencing NGS

 We want to sequence a genome, a chromosome, a portion of a
genome, etc

 The portion of genomic data we want to sequence is chopped into
smaller pieces, which can be easily “read”



Acquiring genomic data

Assembly for next generation sequencing —NGS

CCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGA

 We want to sequence a genome, a chromosome, a portion of a
genome, etc

 The portion of genomic data we want to sequence is chopped into
smaller pieces, which can be easily “read”

 The assembly step puts all the reads together, and we obtain the
whole sequence back



Acquiring genomic data

Assembly for next generation sequencing —NGS

CCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGA

 We want to sequence a genome, a chromosome, a portion of a
genome, etc

 The portion of genomic data we want to sequence is chopped into
smaller pieces, which can be easily “read”

 The assembly step puts all the reads together, and we obtain the
whole sequence back

Easier to say than to do



Acquiring genomic data

Assembly for next generation sequencing —NGS

GGTTCTCTA GGTTCTCTA

CCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG|:LI‘AGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGA d

* Parts of the sequence might not be covered by reads
v high coverage



Acquiring genomic data

Assembly for next generation sequencing —NGS

GGTTCTCTA | GGTTCTCTA

CCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAQ

* Parts of the sequence might not be covered by reads
v high coverage

* FErrors are possible
v high coverage
v’ consensus



Acquiring genomic data

Assembly for next generation sequencing —NGS

GGTTCTCTA GGTTCTCTA

CCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGA(Q

* Parts of the sequence might not be covered by reads
v high coverage

* FErrors are possible
v high coverage
v’ consensus

* Repeats (common in DNA) make assembly ambiguous



Acquiring genomic data

Assembly for next generation sequencing —NGS

GGTTCTCTA GGTTCTCTA

CCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAQ

Parts of the sequence might not be covered by reads
v high coverage

* FErrors are possible

v high coverage

v’ consensus

Repeats (common in DNA) make assembly ambiguous

DeBruijn-graph based assembly



DeBruijn-graph based assembly

 chop all reads into “k-mers”
* builds overlap graph (“DeBruijn graph”)
* find Eulerian path



Scaffolding

GGTTCTCTA GGTTCTCTA

CCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAQ




Scaffolding

GGTTCTCTA GGTTCTCTA

CCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGA(Q

Thanks to paired-end information, we can join contigs into
chromosomes. This step is called scaffolding




Scaffolding

e map reads into contigs

& T A AL YT AT A (A YA A
CTGAACTTGGGTTCCATAGGACCCAGA

ACACCTTCACACTAACACATTTAGGACCACCCE
AGAGU CALAGIAACACAL L IAGLAGUALUGULL




Scaffolding

e map reads into contigs
 pair contigs according to read-pairing (weighted)

TTAATG
Orraare Teceagoyy

AAAA(;:TC.,.[,., —

T

(OGTACTGAACTTGGGTTCCATAGGACCCAGAQD)

(FAGCTTGACAGTAACACATTTAGGAGCACG(D)




Acquiring genomic data

Scaffolding

e map reads into contigs

 pair contigs according to read-pairing (weighted)

« cover “scaffold graph” with (heavy) alternating paths, where each
path corresponds to a chromosome




Scaffolding

e map reads into contigs

 pair contigs according to read-pairing (weighted)

« cover “scaffold graph” with (heavy) alternating paths, where each
path corresponds to a chromosome

 Np alternating paths
 Nc alternating cycles



Scaffolding

e map reads into contigs

 pair contigs according to read-pairing (weighted)

« cover “scaffold graph” with (heavy) alternating paths, where each
path corresponds to a chromosome

* Contig Jumps

 Multiplicities

* Linearization of
solutions

 Np alternating paths
 Nc alternating cycles

Thanks to Mathias Weller for the nice blackboard-like pics



Phylogenomics

genomic

Phylogenomics oo

detection of homology
SRS l (clustering/embedding

problems)
@1 C2 Ck
STEP 2 alignement
problem
\/
- Ak'
STEP 4' combine all STEP 3 construct a tree for
¥ thedata each data set
STEP 3' construct a
unique
tree
STEP 4 combine the trees
>
parsimony
likelihood methods super-tree super-network
bayesian

distance-based



Homology

Which sequence to compare?

Homologous genes, e sequences Iinherited in the species of interest

from a common ancestor. Groups of homologous genes form gene
families.

TIME




Homology

Which sequence to compare?

Homologous genes, e sequences Iinherited in the species of interest

from a common ancestor. Groups of homologous genes form gene
families.

But sequences do not come with nice labels on them, telling us to
which gene family they belong

TIME

Pongo Macaca

NG




Homology

Homology inference

We put all the genes in a pool and we cluster them into gene families
using similarity measures

GTTACGA

W

GTTGGA




Homology

Homology inference

After applying a filtering step deleting edges with weights lower than a
certain threshold, we would like to get this kind of scenarios...

Gene family 1

Gene family 2



Homology

Homology inference

... but we don't! We often get unclear scenarios where our
disconnected cliques are not really cliques and not really disconnected




Homology

Homology inference

* cluster algorithm for graphs (e.g. MCL)
» graph editing (adding deleting edges to get disconnected cliques)




Phylogenomics

genomic

Phylogenomics oo

detection of homology
STEP 1 l (clustering/embedding

problems)
@1 C2 Ck
alignement
S S problem
STEP 4' combine all STEP 3 construct a tree for
¥ thedata each data set
STEP 3' construct a
unique
tree
STEP 4 combine the trees
i m m
parsimony
likelihood methods super-tree super-network
bayesian

distance-based



Phylogenomics

Alignment (aka which characters to compare)

Homologous characters, ie characters inherited in the species of
Interest from a common ancestor. We need to align sequences because
no only mutations happen on genomic sequences but also indels
(insertions and deletions)

GTTACGA
GTTGGA

a
—
—
>
(@)
a

O o
— —
— —
o >

(@)
OO
> >

O o
— —
— —
=

(@]
[
O o
> >



Phylogenomics

Alignment (aka which characters to compare)

Homologous characters, ie characters inherited in the species of
Interest from a common ancestor. We need to align sequences because
no only mutations happen on genomic sequences but also indels
(insertions and deletions)

GTTACGA

GTTGGA
* opening of the gaps
* extension of the gaps
GTTACG [Affine functions are often used]

GTTACGA
GTTG G A
GTTAC-GA
GTT - GGA



Phylogenomics

Alignment (aka which characters to compare)

Homologous characters, ie characters inherited in the species of
Interest from a common ancestor. We need to align sequences because
no only mutations happen on genomic sequences but also indels
(insertions and deletions)

GTTACGA

GTTGGA
* opening of the gaps
* extension of the gaps
GTTACG [Affine functions are often used]

A
GTT-GGA  substitutions (between
nucleotides or amino acids)

GTTACGA O
GTTG G A A — (¢
GTTAC-GA u
GTT - G GA

G 1



Phylogenomics

genomic

Phylogenomics oo

detection of homology
STEP 1 l (clustering/embedding

problems)

Ci1 C2 Ck

alignement
- problem

STEP 2

Ak

STEP 4' combine all construct a tree for
Y the data each data set

construct a

unique l

STEP 3'

combine the trees

parsimony

likelihood super-tree super-network

bayesian
distance-based




Phylogenetic inference

Phylogenomics

D_yakuba
RPU74073
RPU74053
PSU74068
TJU74075
LCU74061
OAU74069
ESU74065
ESU84262
GBU74066

D_yakuba
RPU74073
RPU74053
PSU74068
TJU74075
LCU74061
OAU74069
ESU74065
ESUB4262
GBU74066

GGAGCTTGAGCCGGAATAGTAGGAACATCTTTAAGAATTTTAATTCGAGC
GGAATCTGAACAGGCTTAGTAGCCACTAGAATAAGACTTTTAATTCGAGC
GGAATTTGAACAGGTTTAGTAGCCACTAGAATAAGACTCTTAATTCGAGC
GGAATTTGAACCGGCCTCGTAGCAACAAGAATAAGCTTATTAATCCGTGC
GGAATTTGAACCGGCTTAGTAGCCACAAGAATAAGACTATTAATTCGAGC
GGAATCTGAACAGGTCTAGTAGCCACTAGAATAAGACTATTAATTCGAGC
GGAATTTGAACAGGTCTAGTAGCCACTAGAATAAGACTCTTAATTCGAGC
GGAATCTGAACAGGACTAGTAGCCACGAGAATGAGACTCCTAATTCGAGC
GGAATCTGAACAGGACTAGTAGCCACGAGAATGAGACTCCTAATTCGAGC
GGAATTTGAGCAGGAATAATTGCAACTAGAATAAGAATTATTATCCGTCT

AGAATTAGGTCATCCAGGAGCATTAATTGGAGATGATCAAATTTATAATG
TGAACTTGGCCAACCTGGGACTCTTTTAGGTGATGACCAAATCTATAATT
GGAACTAGGACAACCAGGAACTCTTTTAGGAGACGACCAAATTTACAATT
AGAGCTAGGTCAACCTGGTACACTTCTAGGAGATGACCAAATTTATAACT
TGAACTTGGACAACCAGGAACTCTTCTAGGAGATGACCAAATTTATAATT
TGAACTTGGTCAGCCCGGAACACTCTTAGGAGATGACCAAATTTACAATT
TGAACTCGGTCAACCCGGAACTCTTTTAGGCGACGACCAAATTTATAACT
TGAGCTTGGACAACCTGGAACTCTTCTAGGAGACGATCAAATTTATAATT
TGAGCTTGGACAACCTGGAACTCTTCTAGGAGACGATCAAATTTATAATT
CGAACTAGGACAACCAGGATCTTTTCTAGGTGATGATCAAATTTATAATT

......... = L - I < 1 s 1 1




Distance methods

Reconstructing phylogenies

» distance-based methods, which use pairwise distances to quantify
the amount of evolution separating species

e character-based methods, which retrieve similarities comparing the
states taken by species at different characters:

o parsimony methods
o likelihood methods
o bayesian methods



Distance methods

Reconstructing phylogenies

« distance-based methods, which use pairwise distances to quantify
the amount of evolution separating species

e character-based methods, which retrieve similarities comparing the
states taken by species at different characters:

o parsimony methods
o likelihood methods
o bayesian methods



Distance methods

Distance estimation

First thing to do Is to define distances between genomic sequences.
The usual way (no genome rearrangement here) is to compute them

from the alignments

(eI ep)]
— —
— —
b=
G O
(eI ep]
> >
> O



Distance methods

Distance estimation

First thing to do Is to define distances between genomic sequences.
The usual way (no genome rearrangement here) is to compute them
from the alignments, after having removed the gaps

(D]
— —
— —
G O
(D]
> >
> O

e Hamming distance 1+1



Distance methods

Distance estimation

First thing to do Is to define distances between genomic sequences.
The usual way (no genome rearrangement here) is to compute them
from the alignments, after having removed the gaps

(D]
— —
— —
G O
(D]
> >
> O

1. Hamming distance: 1+1
2. Accounting for the biology:
d CC_>G + CC_>A

Q=D
X
ek



Distance methods

Distance estimation

First thing to do Is to define distances between genomic sequences.
The usual way (no genome rearrangement here) is to compute them
from the alignments, after having removed the gaps

GTTCGALC
GTTGGAA
1. Hamming distance: 1+1 Q -— C{)
2. Accounting for the biology:
° CC—>G + CC—>A lI Yl
 accounting for multiple, parallel,
convergent, coincidental and back C};‘_ b

substitutions

GTTCGALZC
GTAGGAA 3 more substitutions!
GTTGGAA



Distance methods

Distance estimation

We correct the Hamming distance (d,) using a substitution model (a
probabilistic model of sequence evolution). The corrected distance
aims at estimating the true distance.

Sequence distance Q ==
- GTTCGALC
A , Expected distance CTTCCARA + “Xﬂ
CARRY
GTTCGAC
Observed distance ¢ T T G G A A

> [IMe

Observed distance: dy(t — o0) = 3/4
Corrected distance: d = —-; In(1 — :-',,d“)



Distance methods

Examples of substitution models

Aka probabilistic models of sequence evolution

—3a Q Qa Qo
Qo —3« Qo Q
JC Q= Q a —3a «
Qo Qo Qo —3«
kop [ —x—28 B a s
0 — 15 —a — 20 15} Q
« 15} —a— 203 15}
5 o B —a — 28
AA mcRac meRac mTRat
GTR 7TARAC )\C 7TGRCG 7TTRCT

TaRac mcRce A¢  TTReT
TaRar mwcRcr m6ReT AT




Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of
substitutions per site, see previous slides)
 Reconstruct a tree that corresponds well to the estimated distances



Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of

substitutions per site)
 Reconstruct a tree that corresponds well to the estimated distances

* An agglomerative algorithm: Neighbor Joining (NJ)

Thanks to Fabio Pardi for the nice pics



Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of

substitutions per site)
 Reconstruct a tree that corresponds well to the estimated distances

* An agglomerative algorithm: Neighbor Joining (NJ)

Selection step: which
PS nodes
to choose

Reduction step: how
to update the
distances




Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of

substitutions per site)
 Reconstruct a tree that corresponds well to the estimated distances

* An agglomerative algorithm: Neighbor Joining (NJ)




Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of

substitutions per site)
 Reconstruct a tree that corresponds well to the estimated distances

* An agglomerative algorithm: Neighbor Joining (NJ)

until the tree
Is binary

UPGMA (1958), WPGMA (1973), ADDTREE (1977), NJ (1987), BIONJ (1997), UNJ (1997), MVR (2000), Weighbor (2000)



Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of
substitutions per site)
 Reconstruct a tree that corresponds well to the estimated distances

* An agglomerative algorithm: Neighbor Joining (NJ)
* Optimization principles

o Least Squares (LS): given the estimated distances ¢, find T s.t
0;; = d;; where d are the distances between the leaves of T

0 |.23/.38|.61|.50 0/.2,4,6|.5
0 |.42|.57|.48 0/ .4|6|.5

0 .41|.29 0| .4|.3

0 .30 0.3

0 0

(9;) T - (d])



Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of

substitutions per site)
 Reconstruct a tree that corresponds well to the estimated distances

* An agglomerative algorithm: Neighbor Joining (NJ)
* Optimization principles

o Least Squares (LS): given the estimated distances ¢, find T s.t

0;; = d;; where d are the distances between the leaves of T

m%n Z Wi 4 (dz; — 57/])
1<J

OLS when w,=1
WLS otherwise, where w,; gives the confidence we have in the distance entry §,;



Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of

substitutions per site)
 Reconstruct a tree that corresponds well to the estimated distances

* An agglomerative algorithm: Neighbor Joining (NJ)

* Optimization principles
o Least Squares (LS): given the estimated distances ¢, find T s.t

0;; = d;; where d are the distances between the leaves of T

. :E : T
m%n Wi 4 (dw — 57/]) SMALL

—t PROBLEM
1<J

OLS when w,=1 O(n?) O(n%)/O(n?)
WLS otherwise, where w,; gives the confidence we have in the distance entry 6,



Distance methods

Distance methods

U
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rees /(X A /(X Heuri'sti(.:s:

* Sequential insertion
* Star decomposition

« Hill-climbing
I%Il E ww 57/])
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Distance methods

Distance methods

» Estimate pairwise distances between sequences (mean number of

substitutions per site)
 Reconstruct a tree that corresponds well to the estimated distances

* An agglomerative algorithm: Neighbor Joining (NJ)

* Optimization principles
o Least Squares (LS): given the estimated distances ¢, find T s.t

0;; = d;; where d are the distances between the leaves of T

o Balanced Minimum Evolution (BME): mzin E b
keE(T)

T 2
q(b) = Z Wij (dij — ij) PR(I)Bé?_EM
1< NP-hard

Heuristics
(such as NJ)



Distance methods

Reconstructing phylogenies

» distance-based methods, which use pairwise distances to quantify
the amount of evolution separating species

* character-based methods, which retrieve similarities comparing
the states taken by species at different characters:

o parsimony methods
o likelihood methods
o bayesian methods



Parsimony

Parsimony methods

= The main hypothesis of parsimony sequence-based methods Is that
character changes are not frequent and thus the phylogenies that
best explain the data are those requiring the fewest evolutionary
changes

= Each character can be analyzed independently from the others

PS(TIA) = 3w, PS(Tas

j=1

0100
0111
1101
0110
1101
1111

S0 Q0 o9
O OO0 Ok




Parsimony

Parsimony methods

= The main hypothesis of parsimony sequence-based methods Is that
character changes are not frequent and thus the phylogenies that
best explain the data are those requiring the fewest evolutionary
changes

= Each character can be analyzed independently from the others

PS(T|ay, ;) = min Z cr(uv)
' uve E(T)

variations of this
definition are possible




Parsimony

Parsimony methods

= The main hypothesis of parsimony sequence-based methods Is that
character changes are not frequent and thus the phylogenies that
best explain the data are those requiring the fewest evolutionary
changes

= Each character can be analyzed independently from the others

PS(T|ay, ;) = min Z cr(uv)

. o uwveE(T)
51 53 S5-T A T T A
> < Ss-T C G T A
S3-C A G T G
S2 Sy S4=C C G T @G
g ¢ 4 4 4 4 PROBLEM
(7] [C] [A] [A] OR [C] [(C]
T e} C e} C c O(nm)
Site 3 Site 4 Site 5

T G T T A
[H] [7] (7] [M]
G G T T A G



Parsimony

Parsimony methods

= The main hypothesis of parsimony sequence-based methods Is that
character changes are not frequent and thus the phylogenies that
best explain the data are those requiring the fewest evolutionary
changes

= Each character can be analyzed independently from the others

PS(A) = mjin PS(T|A)

BIG
PROBLEM
NP-hard

Heuristics
such as hill-climbing




Hardwired parsimony

. . SMALL
Hardwired parsimony score PROBLEM

* find the assignment of states
to internal nodes of the
network such that the total
number of edges that connect
nodes in different states Is
minimized (the same definition
used for trees!)

PShw(Nlay ;) = min Z cr (uv)

-
uveE(N)

e conjectured to be NP-hard



Hardwired parsimony

Hardwired parsimony score - issue

This definition counts a state-
change when a reticulation
node has the same state as one
of Its parents, If the other
parent has a different state, see
for example the reticulation .

Hence, hardwired parsimony
counts more state-changes than
necessary since h could very
well have inherited Its state
from Its same-state parent.




Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a
reticulation, where branches converge to give rise to a new lineage:



Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a
reticulation, where branches converge to give rise to a new lineage:
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In a phylogenetic network, a reticulate event Is represented as a
reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a
composition of those of the parent lineages.

The evolution of each part independently
inherited is described by a “gene” tree



Trees displayed by a network

In a phylogenetic network, a reticulate event Is represented as a
reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a
composition of those of the parent lineages.

The evolution of each part independently
inherited is described by a “gene” tree

|



Trees displayed by a network

In a phylogenetic network, a reticulate event Is represented as a
reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a
composition of those of the parent lineages.

The evolution of each part independently
inherited is described by a “gene” tree



Trees displayed by a network

Trees displayed by a network

In a phylogenetic network, a reticulate event Is represented as a
reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a
composition of those of the parent lineages.

The evolution of each part independently
inherited is described by a “gene” tree

I In the absence of deep
coalescence and

\ llopolyploidy, the gene
trees are displayed by
the network

d
a b ¢ d e f

a b ¢ d

LTR

e f
a e f



Trees displayed by a network

Trees displayed by a network

/A /A

b ¢ d e b ¢ d e Switch on and off

reticulated edges

b ¢ d e b ¢ d e



Trees displayed by a network

Trees displayed by a network

a b ¢ d

€

b ¢ d

€

Delete switched off
edges and unlabelled
leaves and suppress
outdgree-1 indegree-1
nodes



Trees displayed by a network

Trees displayed by a network

/A /A

b ¢ d e b ¢ d e

/A AN

b ¢ d e b ¢ d e

2" possible trees



Softwired parsimony

Softwired parsimony score

We evaluate a candidate network on the basis of how well the trees It
displays fit the data:

PSsw(Nlay ;) = min min cr(uv)

score of a character on a network
= score of the best tree inside
the network

a bcd e f

a bcd e f a bc d e f



Softwired parsimony

. . SMALL
Softwired parsimony score - results PROBLEM

0  NP-hard for tree-child time-
\ consistent networks and binary
1 0 characters
1 ' 0  for any constant&> O, a’n e
0 approximation factor of |X|'7¢ s
¢ el\oh €2 f not possible in poly time (|X|1/3-¢€
for binary networks) unless P =
0 NP
1 0 0 0« hon-FPT in the parsimony score
a ¢ d b (NP-hard to know if PS=1!)

 FPT Inthe level of the network
« fast ILP (simulations)

Fischer et al. On computing the maximum parsimony score of a phylogenetic network, 2015



A modeling problem: the allopolyploidy example

-

The true gene tree i1s not
D1 D2 displayed by the network
N 1 .

because It needs to use
h both edges entering
the hybrid node
| - I -



The multi-labelled tree U*(N)

N U*(N)

a c d b a ¢ d c d b

* nodes are the directed paths in N starting at r(N)

« for each pair of paths p,p’in N, there is an edge in U"(N) from p
to p'if and only If p=p’e for some edge ein N

 each node in U'(N) corresponding to a path in N that starts at
r(N) and ends at z in X is labelled by z



Parental trees

Parental trees

a c d b @ a c d b
/<\\ /(>\a6d6db
a c d b  a d c b

A phylogenetic tree T on X is a parental tree of N if it is displayed by U"(N)



Parental trees

Parental trees

a c d b a c d b
a ¢ d c d b
L
a c d b a d c b




Parental parsimony

Parental parsimony score

PS,i(Nlay ;) = Te%%’I%N) mTin gE:(t) cr(uv)



Parsimony-based methods for phylogenetic networks

The parsimony scores, an example

Hardwired parsimony Softwired Parental
Score =2 parsimony parsimony
Score =2 Score =1

min Z cr(uv) Tén’Tl(nN) min cr (uv) TGI%HTI%N) min cr(uv)

uwv€E(N) uwveE(T) uweE(T)



Parental parsimony

Parental parsimony score - results

* NP-hard even If the
network is tree-child and
has reticulation depth at
most 1 and binary
characters

e FPT In the reticulation
number of the network

* FPT n the level of the
network




Parental parsimony

Lineage functions

A lineage function maps every node in a network to a set of
states. Informally, this is a way of tracking how many branches of
a parental tree travel through each node of the network, and
what states are assigned to each of those branches.

van lersel et al. Improved maximum parsimony models for phylogenetic networks. Syst Biol. 2018



ML phylogenetic network inference

An optimization problem where a
candidate network Is evaluated on the
basis of how well the trees it
(“parentally” ) displays fit the data:

a bcd e f

Uk“/m

Many possible formulations: a bcd e i bede f
Data: .

: GGG GGG
(typically given in blocks) GGG

Goal . .
Find N that maximises  Pr(Ay, As, ..., Ay |N) = [[Pr(4i|N) = ]| ( > Pr(Ai|T)Pr(T|N)>
1=1

i=1 \TET(N)

Jin et al.Maximum likelihood of phylogenetic networks. Bioinformatics 2006.
Yu et al. The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection, 2012
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ML phylogenetic network inference

An optimization problem where a
candidate network Is evaluated on the
basis of how well the trees it
(“parentally” ) displays fit the data:

a bcd e f

Uk“/m

Many possible formulations: a bcd e i bede f
Data: .

: GGG GGG
(typically given in blocks) GGG

Goal . .
Find N that maximises  Pr(Ay, As, ..., Ay |N) = [[Pr(4i|N) = ]| ( > Pr(Ai|T)Pr(T|N)>
1=1

i=1 \TET(N)

Jin et al.Maximum likelihood of phylogenetic networks. Bioinformatics 2006.
Yu et al. The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection, 2012



ML phylogenetic tree inference

An optimization problem where a
candidate network Is evaluated on the
basis of how well the trees it
(“parentally” ) displays fit the data:

N
Many possible formulations: a bcd e f
Data: | mcn con
Sequence alignments: EEE EEE B b G g
(typically given in blocks) Goma =
Al A2 e Am

Goal:

Find N that maximises  Pr(Ay, As, ..., Ay |N) = [ [ Pr(4i|N):
=1



ML under the NMSC

PhyloNet

Data:

Sequence alignments:
(typically given in blocks)

Goal:
Find N that maximises Pr(A;, Ay,..., Ap|N) = [ [ p(Gi|N).

Zhu and Degnan. Displayed trees do not determine distinguishability under the network multispecies coalescent, 2016
Yu et al. Maximum likelihood inference of reticulate evolutionary histories, 2014
Wen el al. PLOS Genetics 2016 (Bayesian method)



The search strategy

The strategy (hill-climbing, MCMC...)

. - - INPUT DATA
|

S rNNI, rSPR, ...

reticulation-0 networks

=N rNNI, rSPR,...

) < reticulation-1 networks

7

7
ﬂ@ rNNI, rSPR,..

reticulation-r networks



Searching the space of phylogenetic networks

Den. Den.

Chimp S.Afr. W.Eur. E.Asi. Aus. Chimp S.Afr. W.Eur. E.Asi. Aus.



Moves

Searching the space of phylogenetic networks (rNNI)

():L:Z X2 (1*)\ { \:‘
oJT-3 @3 -%
Y- @ I-K
(\_..’\_..’



Moves

Searching the space of phylogenetic networks (rSPR)

/ /

X XL XL X
Z \ . \ Z
y w Yy y w Yy
r w x r w
: \ . \ Z
Y Y’ Y Y’



Searching the space of phylogenetic networks

Arc Insertion/deletion

Nl



Phylogenomics

genomic

Phylogenomics oo

detection of homology
STEP 1 l (clustering/embedding

problems)
Ci1 C2 Ck
STEP 2 a'égrgg[‘;;”t
\/
- Ak'
STEP 4' combine all construct a tree for
¥ the data STEP 3 l each data set

construct a
unique
tree

STEP 3'

*

STEP 4 l combine the trees
I A PN
i /(;ng
parsimony
likelihood methods super-tree super-network
bayesian

distance-based



Combining trees

Combining tree
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Combining tree

Combining trees
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The underlying approach

1. e Combinatorial objects such as phylogenetic trees, hierarchical
clusters or triplets or trinets are constructed from the data of the
species under study

2. e These combinatorial objects are combined into a phylogenetic
network. The way they are combined and the parameters to
optimise (e.g. minimizing the hybridization number, i.e. the
number of reticulations of the network, or the level, i.e. the
maximum number of reticulations in each biconnected component)
give a large range of different problems



Consensus methods

Consensus methods

All trees have the same taxa

strict consensus, majority consensus

semistrict consensus

greedy consensus




Consensus methods

Supertree methods

Trees do not have the same taxon sets

m O
|
O O
|
|
> m T O O O




Consensus methods

Supertree methods

Display graph




Consensus methods

Supertree methods

Display graph




Consensus methods

Supertree methods

Display graph

a C
e
b d

The compatibility and the strict compatibility problems for unrooted
phylogenetic trees, strongly related, respectively, to the notions of
containing as a minor and containing as a topological minor, Both
problems are F TP in the number of input trees k, by using

their expressibility in MSOL.

But the dependency on k of these algorithms is prohibitively large.



Consensus methods

Supertree methods

Display graph

b d

We gave the first explicit dynamic programming algorithms for solving
these problems, both runningin time 2 ©&™2) 1, where n is the total size
of the input.

Baste el al (2017) Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees. Bulletin of Mathematical Biology.



Phylogenetic networks

Phylogenetic supernetwork inference

An optimization problem where a N
candidate network Is evaluated on the
basis of how well the trees it displays fit

the data:
a bcd e f
Many possible formulations: //ZN //7%\
a bcd e a b c d e f

Data:
Any trees on the same
taxa:

Goal a cd e f ¢ f abdef
oal:

Find the network N with the lower hybridization number such that the input
trees are " consistent’ with one of the trees displayed by N

subject to constraints on the complexity of N



The HN problem

The hybridization number problem

Given: Two rooted binary trees on the same taxon set but
different topology.

Question: What is the most probable evolutionary history?

Assumptions: Difference 1s caused by hybridizations,
parsimony framework

Answer: Network displaying both trees with a minimal
number of hybridization (reticulation) nodes: hybridization
network



Acyclic agreement forests

Using MAAFs to construct hybridization networks

Tgi
a b ¢ d e f p d b ¢ a f e p

AN AN

e f P a b d

1~
.

|
(o
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O -
A




Reconstruction of hybridization networks

Results

e FPT In the reticulation number r

of the network O(3.18" n)

« FPT inthe level k of the
network O(3.18% n) & &
| | A\ A\

> Reduction steps: » b
o Subtree reduction a bcaefg g bedefa

o Chain reduction
o Cluster reduction : :



Reconstruction of hybridization networks

Using MAAFs to construct hybridization networks

Ty T

l l

Reduction Steps: O(nlogn)

Tree-Pairs

Exhaustive Search(es):

MAAFs

Network Computation: O(nlogn)

R

hybridization networks




Reconstruction of hybridization networks

Results — approx (connection with the DFVS)

e no 1.36-approximation, unless P=NP

* no (2 — g)-approximation, unless the unique games conjecture fails
* O(log(r)loglog(r))- approximation

e d(c+1)-approximation

AAF = AF ¢ + DFVS ''d

Kelk et al. Cycle killer...qu'est-ce que c'est? On the comparative approximability of
hybridization number and directed feedback vertex set 2012

van lersel et al. A practical approximation algorithm for solving massive instances of
hybridization number. 2012



Reconstruction of hybridization networks

Results — approx (connection with the DFVS)

* no 1.36-approximation, unless P=NP

* no (2 — g)-approximation, unless the unique games conjecture fails
* O(log(r)loglog(r))- approximation

* d(c+1)-approximation

AAF = AF ¢ + DFVS ''d

Using the 4-approximation on a normal laptop, we managed to
construct networks with up to 10,000 leaves and up to 10,000
reticulations within 10 minutes!

Kelk et al. Cycle killer...qu'est-ce que c'est? On the comparative approximability of
hybridization number and directed feedback vertex set 2012

van lersel et al. A practical approximation algorithm for solving massive instances of
hybridization number. 2012



Reconstruction of hybridization networks

More than 2 trees




Phylogenetic networks

Phylogenetic supernetwork inference

An optimization problem where a N
candidate network Is evaluated on the
basis of how well the trees it displays fit

the data:

a bcd e f
Many possible formulations: a becd e f a bcde f
Data:

Clusters of taxa: {a,b},{d,e},{d, e, f},{a,b,c,d,e, f},{e, f},{c, d,e, f},...

Goal:
Find the network N with the lower hybridization number such that the input
clusters are ~explained’ by one of the trees displayed by N

subject to constraints on the complexity of N



Clusters

e cluster containment: NP-hard
* minimization NP-hard, APX-hard
* A possible solution ... topological constraints:
o galled trees (level-1 networks)... it does not always exist
o galled networks (if every reticulation in N has a tree cycle)...
still NP-hard
o level-k networks ... still NP-hard



Clusters

Clusters

CASS algorithm : search for the level-k network containing a set of
clusters (exact for level-1 and level-2 networks)

d:
{a,b} {{d 3} {a,b,c,d,efg}
{b,c} fe,f) {9,h,i.j} {ij} hij}
Step 1
X1 = {a,b,c} Xz = {d,e,f} X3 = {a,b,c,d,e,f,g,h,ij} X4 = {if} Xs = {h,ij}
No unseparated No unseparated Unseparated maximal subsets N/A (only one  N/A (only one
maximal subsets maximal subsets are {a,b,c,d,e,f} and {h,i,j} cluster) cluster)
) )

v
abcdef ; hij
g

Build tree from clusters
X4...Xs and {a,b,c,d,e,
and {h,ij}

b4 Add back first
simple network Step 4

2. Add back
second simple
network

h
. [
back third
simple

3. Add

network,
done.

van lersel et al. Phylogenetic networks do not need to be complex: using fewer reticulations
to represent conflicting clusters. 2010



Phylogenetic networks

Phylogenetic network inference

An optimization problem where a N
candidate network Is evaluated on the
basis of how well the trees it displays fit

the data:
a bcd e f
Many possible formulations: a bcd e a bcde f

Data:

Any trinets on the same taxa: a/b>\c /Q\
4 Yy P

(inferred from other data)

Goal:
Find the network N with the lower hybridization number such «

that the input trees are " consistent’ with the N jq ;q

subject to constraints on the complexity of N



Trinets

a

b

Q
o
So—e( » O o=« »
m
. QL

o
~
oQ

X

c e

N displays 7
= N displays A&

Trinets
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DL model

» Speciation (S) are the only possible
events shaping species histories

» Speciation (S), duplication (D) and B
loss (L) are the possible events i mouset (movse)
shaping gene histories

« Each contemporary gene is a leaf rat
of G and Is associated to the rat_1 (rat)
corresponding species of S in which —I:I: rat_2 (rat)
this gene I1s collected A

e Each Sin G happensatSin S Y“f_ dog

 Each S and D event gives birth to dog_1(dog)
exactly two genes 3

* The evolution of G along S goes -
forward in time

* L eventsin G are supposed to =3

happenata Sin$S



DTL model

g (1)

» Speciation (S) are the only possible o
events shaping species histories D—_ L :
* Speciation (S), duplication (D) loss (L)
and transfers (T) between sampled/ || L
unsampled species are the possible Lo
events shaping gene histories S
 Each contemporary gene is a leaf of G — .
and Is associated to the corresponding
species of S in which this gene is
collected | ,
« Each Sin G happens at Sin S o oo
 Each S and D event gives birth to ’ = '
exactly two genes
 The evolution of G along S goes .
forward in time 3 .
« Each | event is happens between two
co-existing species. "0

i3

> k@

|@

|&‘>

i




Applications of reconciliaton methods

Evolution of applications

» Find one of the “good’ scenarios (e.g. to detect homology/
paralogy)

o D TL The best-performing parsimony-based algorithm to date for
ranked species trees (i.e. we suppose to have knowledge of the

relative order in which nodes appear in the tree) O(n® m)
o D TL A modification of the algorithm can be used to reconcile
against undated species trees O(n m)

o DTL Unrooted/non-binary gene trees as input O(m n” (3¢ - 2¢+1))
where d is the maximum out-degree of any node in G

o DTLI A algorithm for ranked species trees  O(m(n” +n n, 2) 2)
where k is the maximum number of ILS branches that are
connected in S and n, is the number of sets of connected ILS
branches of S (e.g., if we have a group of three adjacent ILS
branches, k = 3 while nk = 1)

o DL on networks O(h? m n)
where h is the number of nodes with 2 parents in the network

o DTL on LGT networks O(n m)



Phylogenomics

genomic

Phylogenomics oo

detection of homology
STEP 1 l (clustering/embedding

problems)
@1 C2 Ck
STEP 2 alignement
problem
\/
- Ak'
STEP 4' combine all STEP 3 construct a tree for
¥ thedata each data set
STEP 3' construct a
unique
tree
STEP 4 combine the trees
>
parsimony
likelihood methods super-tree super-network
bayesian

distance-based



| did not have time to talk about...

What | did not even mention

* sequence analyses (recombination detection, genome
rearrangements such as sorting by reversals, or DCJ, orthology
detection)
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| did not have time to talk about...

What | did not even mention

* sequence analyses (recombination detection, genome
rearrangements such as sorting by reversals, or DCJ, orthology
detection)

« comparing trees/networks (edit distances, confidence value... )
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* sequence analyses (recombination detection, genome
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| did not have time to talk about...

* sequence analyses (recombination detection, genome
rearrangements such as sorting by reversals, or DCJ, orthology

detection)

« comparing trees/networks (edit distances, confidence value... )
* generating/counting/studying classes of trees/networks
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What | did not even mention

| did not have time to talk about...

* sequence analyses (recombination detection, genome

rearrangements such as sorting by reversals, or DCJ, orthology

detection)

« comparing trees/networks (edit distances, confidence value... )

* generating trees/networks
e drawing trees and networks
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Thank you! And now, a short commercial
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