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Context

Conjecture [Floyd and Warmuth, 1995] :
Every set family of VC-dimension d has a sample compression scheme of
size O(d).

Theorem [Moran and Warmuth, 2016] :
Every ample set family of VC-dimension d has a labeled sample
compression scheme of size d.

Question :
Can any set family of VC-dimension d be completed to an ample set

family of VC-dimension O(d)?

Our result :
Every OM and CUOM of VC-dimension d can be completed to an ample
set family of VC-dimension d.
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Complexes of oriented matroids

U={l,...,m}and L={-1,0,+1}"

(U, £) OM iff ST
(CO)VX,) Y e L, XoY €L (X o) = { Y; otherwise.
(SE) VX,Y € L, and Vi € U with X;Y; = —1,37 € L such that Z; = 0 and
Z;j=(XoY);VjeUwith X;Y; # —1,
(Sym) L=-L={-X: X e L}

(U, £) COM iff
(C), (SE) and (FS) VX,Y € £, X o —Y € L.
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Tope graphs

Topes of L : covectors without zero entries.
Tope graph of L : subgraph induced by its topes in the hypercube {+, —}"".

Proposition [Bandelt et al., 2018]:
COMs are uniquely determined by
their topes.

Remark : tope graphs GG of COMs are isometric subgraphs of hypercube (),
i.e., Yu,v € V(G),dg(u,v) = dg(u,v).
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Gated and antipodal subgraphs

G' C G gated if Vu € V(G) v’ € V(G') s.t. Vo' € V(G') there is a
shortest (u,v’)-path through u'.

gated
o antipodal

gated
not antipodal \ \ *//

G antipodal if Vu € V(G),3dv € V(G) s.t. Yw € V(G), there is a
shortest (u,v)-path through w.

COMs : all antipodal subgraphs are gated.
OMs : antipodal COMs.
AMPs : COMs s.t. all antipodal subgraphs are hypercubes.



pc-minors and VC-dimension

restrictic;n/\ /\:ontraction

o

VC-dim(G) = max{d : Q4 is a pc-minor of G}.
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Classes of partial cubes

COMs = all antipodal subgraphs
are gated

OMs = antipodal COMs

CUOMs = COMs s.t.
all proper antipodal
subgraphs are UOMs

AMPs = COMs s.t.
all antipodal subgraphs
are hypercubes
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UOMs = OMs s.t. all
proper antipodal sub-

graphs are hypercubes




Our result

Theorem 1 [Chepoi, Knauer, and P., 2020]:
Any OM of VC-dimension d can be completed to an ample of the same
VC-dimension.

Theorem 2 [Chepoi, Knauer and P., 2020]:
Any CUOM of VC-dimension d can be completed to an ample of the
same VC-dimension.
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Proof of Theorem 1

Any OM of VC-dimension d can be completed to an ample of the same VC-dimension.

Proposition [Bjorner et al., 1993] :
Any OM can be completed to a UOM of the same VC-dimension.

Proposition :
Any UOM can be completed to an ample of the same VC-dimension.
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Proof of Theorem 2 (1/2)

Any CUOM of VC-dimension d can be completed to an ample of the same VC-dimension.

ldea : 1) Complete independently each facet of G to an ample;
2) Take the union of those facet completions.

Llemma 1 :

G partial cube, H C G gated and H' partial cube s.t. H C H' C C(H)
(i) G’ partial cube;
(i) H' C G’ gated;
(iii)) VC-dim(G') = max{VC-dim(G), VC-dim(H")}.
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Proof of Theorem 2 (2/2)

Any CUOM of VC-dimension d can be completed to an ample of the same VC-dimension.

distance d(A, B) := min{d(a,b) : a € A,b € B}.
mutual projection prgz(A) :={a € A:d(a,B) =d(A, B)}.

Lemma 2 :
A, B facets of a CUOM G = prg(A) = pre(py(C(A)) and
pry(B) = PI“C(A)(C(B))-

C(A)




Conclusion

Can any set family of VC-dimension d be completed to an ample set
family of VC-dimension O(d)?

e Any partial cubes of VC-dimension 2 can be completed to an ample of
VC-dimension 2;

e Any OM and CUOM can be completed to an ample of the same
VC-dimension.
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Thank you for your attention |



