New Algorithms for MIXED Dominating Set

Louis Dublois

Co-author : Michail Lampis Co-author : Vangelis Th. Paschos

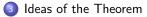
16/11/20

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > 三目目 のQ@

Summary

1 Mixed Dominating Set

2 Nice mds



Construction

Definition State of the Art Our Results Accepted Paper

MIXED DOMINATING SET

- Mixed Dominating Set
 - Definition
 - State of the Art
 - Our Results
 - Accepted Paper

2 Nice mds

Ideas of the Theorem

Construction

MIXED DOMINATING SET Definition

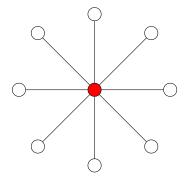
MIXED DOMINATING SET

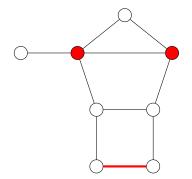
- Graph G = (V, E).
- A vertex $u \in V$ dominates itself, its incident edges and its neighbors.

- An edge $e \in E$ dominates itself, its two endpoints, and its adjacent edges.
- *Mixed dominating set* : Set of vertices $D \subseteq V$ and set of edges $M \subseteq E$ which dominates all vertices and edges of the graph G.
- Goal : A mixed dominating set (*mds*) of minimum size.

Definition State of the Art Our Results Accepted Paper

MIXED DOMINATING SET





MIXED DOMINATING SET Definition Nice mds State of the Art Ideas of the Theorem Our Results Construction Accepted Paper

State of the Art

- NP-complete problem (Majumbar, 1992).
- 2-approximation in polynomial time (Hatami, 2010).
- $O^*(2^n)$ exact algorithm (and exponential space) (Madathil et al., 2019).
- FPT algorithm parameterized by the solution size in $O^*(4.172^k)$ (Xiao, Sheng, 2019).
- FPT algorithm parameterized by the treewidth in $O^*(6^{tw})$ and by the pathwidth in $O^*(5^{pw})$ (Jain et al., 2017).

MIXED DOMINATING SET Definition Nice mds State of the Art Ideas of the Theorem **Our Results** Construction Accepted Paper

Our Results

- $O^*(2^n)$ exact algorithm (and exponential space) (Madathil et al., 2019).
 - $O^*(1.912^n)$ and polynomial space.
- FPT algorithm parameterized by the solution size in $O^*(4.172^k)$ (Xiao, Sheng, 2019).
 - $O^*(3.510^k)$ and polynomial space.
- FPT algorithm parameterized by the treewidth in $O^*(6^{tw})$ and by the pathwidth in $O^*(5^{pw})$ (Jain et al., 2017).
 - $O^*(5^{tw})$ parameterized by the treewidth.
 - Under SETH, for any $\varepsilon > 0$, no algorithm in time $O^*((5 \varepsilon)^{pw})$.

MIXED DOMINATING SET Definition Nice mds State of the Art Ideas of the Theorem Our Results Construction Accepted Paper

Accepted Paper

- New Algorithms for Mixed Dominating Set, Louis Dublois, Michail Lampis, Vangelis Th. Paschos.
- 15th International Symposium on Parmeterized and Exact Computation (IPEC 2020).

Definition of nice mds Existence of nice mds Implications

Nice mds

2 Nice mds

- Definition of nice mds
- Existence of nice mds
- Implications

Construction

Definition of nice mds Existence of nice mds Implications

Definition of nice mds

Definition

A *nice* mixed dominating set of a graph G = (V, E) is a mixed dominating set $D \cup M$ which satisfies the following :

(i)
$$D \cap V(M) = \emptyset$$
;

- (ii) M is a matching;
- (iii) For all $u \in D$ there exists at least two private neighbors of u, that is, two vertices $v_1, v_2 \in V \setminus (D \cup V(M))$ with $N(v_1) \cap D = N(v_2) \cap D = \{u\}.$

Definition of nice mds Existence of nice mds Implications

Existence of nice mds

Lemma

For any graph G = (V, E) without isolated vertices, G has an mds $D \cup M$ of size at most k if and only if G admits a nice mds $D' \cup M'$ of size at most k.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Existence of nice mds

- Let G = (V, E) be a graph without isolated vertices, and $D \cup M$ an mds of G.
- By a result of (Madathil et al., 2019), we know :
 - If a graph has an mds of size k, then it also has an mds that satisfies the first two properties (i.e. (i) D ∩ V(M) = Ø and (ii) M is a matching).
- From this mds $D \cup M$, we will edit it to obtain the third property.

• Let $I = V \setminus (D \cup V(M))$.

Definition of nice mds Existence of nice mds Implications

Existence of nice mds

 If there exists u ∈ D with exactly one private neighbor v : its other neighbors are dominated by (D ∪ M) \ {u}.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Definition of nice mds Existence of nice mds Implications

Existence of nice mds

- If there exists u ∈ D with no private neighbor : its neighborhood is dominated by (D ∪ M) \ {u}.
 - If there exists $v \in N(u) \cap I$.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Definition of nice mds Existence of nice mds Implications

Existence of nice mds

• If there exists $u \in D$ with no private neighbor and $N(u) \cap I = \emptyset$: $N(u) \subseteq D \cup V(M)$.

• If there exists $v \in N(u) \cap D$.

Definition of nice mds Existence of nice mds Implications

Existence of nice mds

- If there exists $u \in D$ with no private neighbor and $N(u) \cap (D \cup I) = \emptyset$: $N(u) \subseteq V(M)$.
 - If there exists $v \in N(u) \cap V(M)$ with $(v, w) \in M$ such that there exists $z \in N(w) \cap I$.

Definition of nice mds Existence of nice mds Implications

Existence of nice mds

• If there exists $u \in D$ with no private neighbor, $N(u) \subseteq V(M)$, and there does not exist $v \in N(u) \cap V(M)$ with $(v, w) \in M$ such that there exists $z \in N(w) \cap I$: for all $v \in N(u)$ with $(v, w) \in M$, $N(w) \subseteq D \cup V(M)$.

Definition of nice mds Existence of nice mds Implications

Implications

- Speed-up the branching rules on low-degree vertices (a vertex in *D* must have two private neighbors).
- Faster FPT and exact branching algorithms.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

MIXED DOMINATING SET O* (5^{TW}) Algorithm Nice mds Goal Ideas of the Theorem Method Construction Why 5 ?

Ideas of the Theorem

- Ideas of the Theorem
 - $O^*(5^{tw})$ Algorithm
 - Goal
 - Method
 - Why 5?

4) Construction

$O^*(5^{tw})$ Algorithm

• Incidence graph G' = (V', E') of G = (V, E):

•
$$V = V \cup E$$

• $E' = E \cup \{(u, e), (e, v) : e = (u, v) \in E\}$

- MIXED DOMINATING SET on a graph *G* is equivalent to DISTANCE-2-DOMINATING SET on the incidence graph of *G*.
- The incidence graph of G has the same treewidth as G.
- DISTANCE-2-DOMINATING SET can be solved in time $O^*(5^{tw})$ (Borradaile, Le, 2016).

Theorem

There is an $O^*(5^{tw})$ -time algorithm for MIXED DOMINATING SET in graphs of treewidth tw.

 MIXED DOMINATING SET
 $O^*(5^{tw})$ Algorithm

 Nice mds
 Goal

 Ideas of the Theorem
 Method

 Construction
 Why 5 ?

Goal

Theorem

Under SETH, for all $\varepsilon > 0$, no algorithm solves MIXED DOMINATING SET in time $O^*((5 - \varepsilon)^{pw})$, where pw is the input graph's pathwidth.

 MIXED DOMINATING SET
 $O^*(5^{tw})$ Algorithm

 Nice mds
 Goal

 Ideas of the Theorem
 Method

 Construction
 Why 5 ?

Method

Definition

A q-CSP-5 instance φ is a Constraint Satisfaction Problem (CSP) instance with n variables x_1, \ldots, x_n taking values over the $\{0, 1, 2, 3, 4\}$, and m constraints c_0, \ldots, c_{m-1} , each containing exactly q variables and exactly $C = 5^q - 1$ possible assignments (given as a list) over the q variables, for $j \in \{0, \ldots, m-1\}$.

Lemma (Theorem 2 from (Lampis, 2018))

For any $\varepsilon > 0$, under the SETH, there exists a q such that q-CSP-5 with n variables cannot be solved in time $O^*((5 - \varepsilon)^n)$.

 MIXED DOMINATING SET
 $O^*(5^{TW})$ Algorithm

 Nice mds
 Goal

 Ideas of the Theorem
 Method

 Construction
 Why 5 ?

Method

- Reduction from an instance φ of q-CSP-5 to an instance (G = (V, E), k) of MIXED DOMINATING SET such that φ is satisfiable if and only if G admits an mds of size at most k.
- The pathwidth pw(G) of G is upper-bounded by n + O(1).
- If, for any $\varepsilon > 0$, MIXED DOMINATING SET can be solved in time $O^*((5-\varepsilon)^{pw})$, then q-CSP-5 can be solved in time $O^*((5-\varepsilon)^n)$, contradicting the Theorem of (Lampis, 2018) and the SETH.

MIXED DOMINATING SET O* (5^{tw}) Algorithm Nice mds Goal Ideas of the Theorem Method Construction Why 5?

Why 5?

- It corresponds to the base of our target lower bound.
- In our reduction, we will represent the 5 different values a variable can take with a path of 5 vertices in which there is exactly 5 different ways of selecting one vertex and one edge among these 5 vertices.

Construction

Nice mds

Ideas of the Theorem

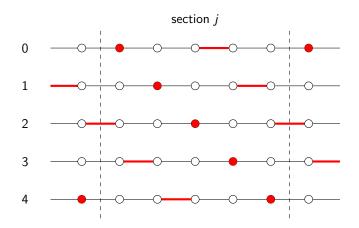
Construction

- Main Part
- Verification Gadget
- Details
- Theorem

Main Part

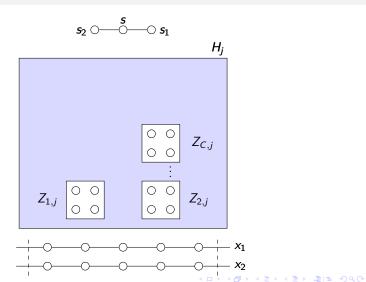
- The graph G consists of a main part of n paths P_i (1 ≤ i ≤ n) of 5m vertices, each divided into m sections :
 - Each path represent a variable.
 - Each section represent a constraint.
- An optimal solution in *G* will verify, for each path, a specific pattern :
 - For 5 consecutive vertices, there are exactly 5 ways of taking one vertex and one edge to dominate the 5 vertices and the edges between.
- These 5 *configurations* for each path will represent all possible assignments for the variables.

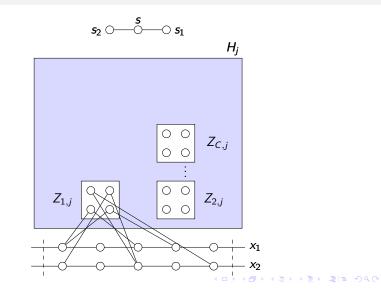
Main Part

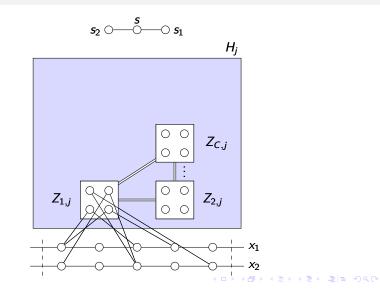


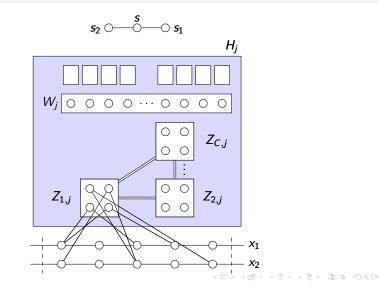
Verification Gadget

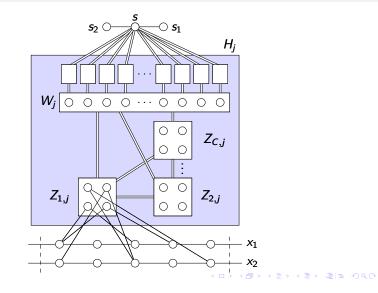
- For each $j \in \{0, \ldots, m\}$, we add a verification gadget H_j :
 - Only connected to the main part to the 5 vertices of all variables x_i appearing in the constraint c_j .
- An optimal solution in G will verify a specific form in the gadget H_j :
 - The solution has this form in H_j if and only if the constraint is satisfied.



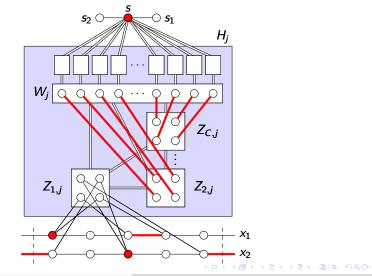








Verification Gadget



Louis Dublois

Details

- Add *consistency* gadgets connected to each path and each section in order to force an optimal solution to follow one of the five configurations for each path.
- Make F = (3n + 1)(2n + 1) copies of G and glue them together one after the other.
- k = 8AFmn + 2Fmn + 2Fmq(C 1) + n + 1.

• $pw(G) \le n + O(q5^q)$.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Theorem

Lemma

 φ is satisfiable if and only if there exists an mds in G of size at most k.

Lemma

The pathwidth of G is at most n + O(1).

Theorem

Under SETH, for all $\varepsilon > 0$, no algorithm solves MIXED DOMINATING SET in time $O^*((5 - \varepsilon)^{pw})$, where pw is the input graph's pathwidth.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Merci

Louis Dublois MIXED DOMINATING SET

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ● ▶ ◆ ● ▶