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Mixed Dominating Set

Graph G = (V ,E ).

A vertex u ∈ V dominates itself, its incident edges and its neighbors.

An edge e ∈ E dominates itself, its two endpoints, and its adjacent
edges.

Mixed dominating set : Set of vertices D ⊆ V and set of edges
M ⊆ E which dominates all vertices and edges of the graph G .

Goal : A mixed dominating set (mds) of minimum size.
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State of the Art

NP-complete problem (Majumbar, 1992).

2-approximation in polynomial time (Hatami, 2010).

O∗(2n) exact algorithm (and exponential space) (Madathil et al.,
2019).

FPT algorithm parameterized by the solution size in O∗(4.172k)
(Xiao, Sheng, 2019).

FPT algorithm parameterized by the treewidth in O∗(6tw ) and by
the pathwidth in O∗(5pw ) (Jain et al., 2017).
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Our Results

O∗(2n) exact algorithm (and exponential space) (Madathil et al.,
2019).

O∗(1.912n) and polynomial space.

FPT algorithm parameterized by the solution size in O∗(4.172k)
(Xiao, Sheng, 2019).

O∗(3.510k) and polynomial space.

FPT algorithm parameterized by the treewidth in O∗(6tw ) and by
the pathwidth in O∗(5pw ) (Jain et al., 2017).

O∗(5tw ) parameterized by the treewidth.
Under SETH, for any ε > 0, no algorithm in time O∗((5− ε)pw ).
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Accepted Paper

New Algorithms for Mixed Dominating Set, Louis Dublois, Michail
Lampis, Vangelis Th. Paschos.

15th International Symposium on Parmeterized and Exact
Computation (IPEC 2020).
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Definition of nice mds

Definition
A nice mixed dominating set of a graph G = (V ,E ) is a mixed
dominating set D ∪M which satisfies the following :
(i) D ∩ V (M) = ∅ ;
(ii) M is a matching ;
(iii) For all u ∈ D there exists at least two private neighbors of u, that is,

two vertices v1, v2 ∈ V \ (D ∪ V (M)) with
N(v1) ∩ D = N(v2) ∩ D = {u}.
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Existence of nice mds

Lemma
For any graph G = (V ,E ) without isolated vertices, G has an mds
D ∪M of size at most k if and only if G admits a nice mds D′ ∪M ′ of
size at most k.
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Existence of nice mds

Let G = (V ,E ) be a graph without isolated vertices, and D ∪M an
mds of G .

By a result of (Madathil et al., 2019), we know :
If a graph has an mds of size k, then it also has an mds that satisfies
the first two properties (i.e. (i) D ∩ V (M) = ∅ and (ii) M is a
matching).

From this mds D ∪M, we will edit it to obtain the third property.

Let I = V \ (D ∪ V (M)).
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Existence of nice mds

If there exists u ∈ D with exactly one private neighbor v : its other
neighbors are dominated by (D ∪M) \ {u}.

u v u v
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Existence of nice mds

If there exists u ∈ D with no private neighbor : its neighborhood is
dominated by (D ∪M) \ {u}.

If there exists v ∈ N(u) ∩ I.

u v u v
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Existence of nice mds

If there exists u ∈ D with no private neighbor and N(u) ∩ I = ∅ :
N(u) ⊆ D ∪ V (M).

If there exists v ∈ N(u) ∩ D.

u v u v
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Existence of nice mds

If there exists u ∈ D with no private neighbor and
N(u) ∩ (D ∪ I) = ∅ : N(u) ⊆ V (M).

If there exists v ∈ N(u) ∩ V (M) with (v , w) ∈ M such that there
exists z ∈ N(w) ∩ I.

u v w z u v w z
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Existence of nice mds

If there exists u ∈ D with no private neighbor, N(u) ⊆ V (M), and
there does not exist v ∈ N(u) ∩ V (M) with (v ,w) ∈ M such that
there exists z ∈ N(w) ∩ I : for all v ∈ N(u) with (v ,w) ∈ M,
N(w) ⊆ D ∪ V (M).

u v w u v w
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Implications

Speed-up the branching rules on low-degree vertices (a vertex in D
must have two private neighbors).

Faster FPT and exact branching algorithms.
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O∗(5tw) Algorithm
Incidence graph G ′ = (V ′,E ′) of G = (V ,E ) :

V ′ = V ∪ E
E ′ = E ∪ {(u, e), (e, v) : e = (u, v) ∈ E}

Mixed Dominating Set on a graph G is equivalent to
Distance-2-Dominating Set on the incidence graph of G .

The incidence graph of G has the same treewidth as G .

Distance-2-Dominating Set can be solved in time O∗(5tw )
(Borradaile, Le, 2016).

Theorem
There is an O∗(5tw )-time algorithm for Mixed Dominating Set in
graphs of treewidth tw.
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Goal

Theorem
Under SETH, for all ε > 0, no algorithm solves Mixed Dominating
Set in time O∗((5− ε)pw ), where pw is the input graph’s pathwidth.
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Method

Definition
A q-CSP-5 instance ϕ is a Constraint Satisfaction Problem (CSP)
instance with n variables x1, . . . , xn taking values over the {0, 1, 2, 3, 4},
and m constraints c0, . . . , cm−1, each containing exactly q variables and
exactly C = 5q − 1 possible assignments (given as a list) over the q
variables, for j ∈ {0, . . . ,m − 1}.

Lemma (Theorem 2 from (Lampis, 2018))
For any ε > 0, under the SETH, there exists a q such that q-CSP-5
with n variables cannot be solved in time O∗((5− ε)n).
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Method

Reduction from an instance ϕ of q-CSP-5 to an instance
(G = (V ,E ), k) of Mixed Dominating Set such that ϕ is
satisfiable if and only if G admits an mds of size at most k.

The pathwidth pw(G) of G is upper-bounded by n + O(1).

If, for any ε > 0, Mixed Dominating Set can be solved in time
O∗((5− ε)pw ), then q-CSP-5 can be solved in time O∗((5− ε)n),
contradicting the Theorem of (Lampis, 2018) and the SETH.
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Why 5 ?

It corresponds to the base of our target lower bound.

In our reduction, we will represent the 5 different values a variable
can take with a path of 5 vertices in which there is exactly 5 different
ways of selecting one vertex and one edge among these 5 vertices.
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Main Part

The graph G consists of a main part of n paths Pi (1 ≤ i ≤ n) of
5m vertices, each divided into m sections :

Each path represent a variable.
Each section represent a constraint.

An optimal solution in G will verify, for each path, a specific
pattern :

For 5 consecutive vertices, there are exactly 5 ways of taking one
vertex and one edge to dominate the 5 vertices and the edges
between.

These 5 configurations for each path will represent all possible
assignments for the variables.
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Main Part

section j

0

1

2

3

4
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Verification Gadget

For each j ∈ {0, . . . ,m}, we add a verification gadget Hj :
Only connected to the main part to the 5 vertices of all variables xi
appearing in the constraint cj .

An optimal solution in G will verify a specific form in the gadget
Hj :

The solution has this form in Hj if and only if the constraint is
satisfied.
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Verification Gadget

HjHj

Z1,j Z2,j

..

.
ZC ,j

ss
s1s1s2s2

x2
x1
x2
x1

Z1,j Z2,j

..

.
ZC ,j

. . .Wj

. . .

Z1,j Z2,j

..

.
ZC ,j

. . .Wj
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Details

Add consistency gadgets connected to each path and each section in
order to force an optimal solution to follow one of the five
configurations for each path.

Make F = (3n + 1)(2n + 1) copies of G and glue them together one
after the other.

k = 8AFmn + 2Fmn + 2Fmq(C − 1) + n + 1.

pw(G) ≤ n + O(q5q).
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Theorem

Lemma
ϕ is satisfiable if and only if there exists an mds in G of size at most k.

Lemma
The pathwidth of G is at most n + O(1).

Theorem
Under SETH, for all ε > 0, no algorithm solves Mixed Dominating
Set in time O∗((5− ε)pw ), where pw is the input graph’s pathwidth.
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