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Enumeration problems

Typical question:

Given input I , list all objects of type X in I .

Examples:

• cycles, cliques, stable sets, dominating sets of a graph
• transversals of a hypergraph
• antichains of a partial order
• variable assignments satisfying a formula
• answers to a query
• trains to Paris leaving tomorrow before 10:00
• . . .

Remark: possibly many objects! . . .
3n/3 ≈ 1.4422n
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Two perspectives about complexity

Input-sensitive: in terms of input size

Theorem (Fomin, Grandoni, Pyatkin, and Stepanov, 2008)

There is an O (1.7159n)-time algorithm enumerating all minimal
dominating sets in n-vertex graphs.

→ basically upper-bounds the number of objects

Output-sensitive: in terms of input+output size

Theorem (Fredman and Khachiyan, 1996)

There is a No(logN)-time algorithm enumerating all minimal
dominating sets in n-vertex graphs, where N = n + |D(G )|.

→ many techniques (reverse search, flashlight search,
ordered generation, proximity search, etc.)
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“Fast” output-sensitive algorithms

Let n be input size, e.g., number of vertices of a graph G

Let d be output size, e.g., number of maximal cliques in G

solution output

︷ ︸︸ ︷execution time

output-polynomial
algo. stops in poly(n + d)-time
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output-polynomial
algo. stops in poly(n + d)-time

incremental-polynomial
outputs i th solution in poly(n + i)-time

polynomial-delay
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Minimal dominating sets

• N(v): neighborhood of vertex v , N[v ] = N(v) ∪ {v}}
• dominating set (DS): D ⊆ V (G ) s.t. V (G ) = D ∪ N(D)

“D can see everybody else”
• minimal dominating set: inclusion-wise minimal DS
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Private neighbors & Irredundant sets

1
2 3

4

5
6

• N(S) =
⋃

v∈S N(v) \ S : neighborhood of vertex set S
• dominating set (DS): D ⊆ V (G ) s.t. V (G ) = D ∪ N(D)

“D can see everybody else”
• minimal dominating set: inclusion-wise minimal DS
• private neighbors Priv(D, v) of v ∈ D:

vertices that are
{

dominated by v , and
not dominated by D \ {v}

(possibly v)

• irredundant set: S ⊆ V (G ) s.t. every x ∈ S has a priv. neighbor

Observation F

A DS is minimal if and only if it is irredundant.
if all its vertices have a private neighbor.
if Priv(D, v) 6= ∅ for all v ∈ D
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Minimal DS enumeration (Dom-Enum)

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, etc.

Oscar Defrain Minimal DS enumeration in incomparability graphs 6 / 15



Minimal DS enumeration (Dom-Enum)

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, etc.

Oscar Defrain Minimal DS enumeration in incomparability graphs 6 / 15



Minimal DS enumeration (Dom-Enum)

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, etc.

Oscar Defrain Minimal DS enumeration in incomparability graphs 6 / 15



Minimal DS enumeration (Dom-Enum)

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, etc.

Oscar Defrain Minimal DS enumeration in incomparability graphs 6 / 15



Minimal DS enumeration (Dom-Enum)

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs

• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, etc.

Oscar Defrain Minimal DS enumeration in incomparability graphs 6 / 15



Minimal DS enumeration (Dom-Enum)

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs

• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, etc.

Oscar Defrain Minimal DS enumeration in incomparability graphs 6 / 15



Minimal DS enumeration (Dom-Enum)

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs

• linear delay: permutation and interval graphs, etc.

Oscar Defrain Minimal DS enumeration in incomparability graphs 6 / 15



Minimal DS enumeration (Dom-Enum)

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, etc.

Oscar Defrain Minimal DS enumeration in incomparability graphs 6 / 15



Posets & (In)comparability graphs

x1

x5

x2

x3

x4

x6x1

x5

x2

x3

x4

x6 x1

x5

x2

x3

x4

x6

P = (V ,≤) comp(P) incomp(P)

• poset P = (V ,≤): refl., trans., antisymmetric relation ≤ on V

x ≤ x x ≤ y ∧ y ≤ x =⇒ x = y

• comp(P): graph on V s.t. uv ∈ E if u ≤ v or v ≤ u

• incomp(P): complementary of comp(P)
i.e., an edge for every incomparable pair of elements
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Minimal DS enumeration (Dom-Enum): incomparability graphs

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Hard case: co-bipartite graphs, hence incomparability graphs

Known cases:

• output poly.: log(n)-degenerate graphs, Kt-free graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, etc.

"
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Posets & Dimension

x1

x2

x3

P = (V ,≤)

x4

x5

1 2 3 4 5

1

2

4

3

5
x5

x2

x1

x3

x4

Poset dimension of P = (V ,≤):

Least integer d such that elements of P can be embedded into Rd

in such a way that x ≤ y in P if and only if the point of x is below
the point of y with respect to the product order of Rd
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Geometrical representation of incomparability graphs

L1

L2

L3

L4

1 2 3 4 5 6

12 53 64

21

34
5

6

21

34
5

6

P G

Theorem (Golumbic, Rotem, and Urrutia, 1983)
A graph G is the incomparability graph of a poset of dimension d

if and only if it is the intersection graph of the concatenation of d
permutation diagrams.
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General idea of the algorithm

L1

L2

L3

L4

. . .

Observation F

A DS is minimal if and only if it is irredundant.
if all its vertices have a private neighbor.

• make grow irredundant sets to minimal dominating sets
• ensure that each constructed partial set leads to a solution

→ from left to right!

Definition of “right”:

• R(I ) = {v ∈ V \I :
∃j , ∀u ∈ I , u <j v}
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Extension problem: the bounded case

Right-Extension Problem:
Given I ⊆ V (G ), decide whether I can be extended to the right into
a min DS, i.e., whether ∃D ∈ D(G ) s.t. I ⊆ D and D \ I ⊆ R(I )

Observation ♦
Set I = {u1, . . . , up} can be extended to the right iff
∃v1, . . . , vp ∈ Priv(I , u1)× · · · × Priv(I , up)

s.t. R(I ) \ N[v1, . . . , vp] dominates G − N[I ]
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Extension problem: the unbounded case I ≥ 3d

L1

L2

L3

<1

<2

<3

. . . . . .

.. ..

• 1st layer of I : A(I ) = (a1, . . . , ad) so that a1 = Max<1(I ),
and ∀i ∈ {2, . . . , d}, ai = Max<i (I \ {a1, . . . , ai−1})

• B(I ) = A(I \ A(I )) • C(I ) = A(I \ (A(I ) ∪ B(I )))

Theorem ♦
Set I , |I | ≥ 3d with A ∪ B ∪ C = {u1, . . . , u3d} can be ext. iff
∃v1, . . . , v3d ∈ Priv(I , u1)× · · · × Priv(I , u3d)

s.t. R(I ) \ N[v1, . . . , v3d ] dominates G − N[I ]
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The algorithm

I

• start with I = ∅

• for every v ∈ R(I ), check if I ′ = I ∪ {v} extends to the right into
a min DS, i.e., whether ∃D ∈ D(G ) s.t. I ′ ⊆ D and D \ I ′ ⊆ R(I ′)

• explore if it is the case, AND, if I = Parent(I ′)= I ′ \Max<1(I
′)

Oscar Defrain Minimal DS enumeration in incomparability graphs 14 / 15



The algorithm

I

I ∪{ }v1

• start with I = ∅
• for every v ∈ R(I ), check if I ′ = I ∪ {v} extends to the right into

a min DS, i.e., whether ∃D ∈ D(G ) s.t. I ′ ⊆ D and D \ I ′ ⊆ R(I ′)

• explore if it is the case, AND, if I = Parent(I ′)= I ′ \Max<1(I
′)

Oscar Defrain Minimal DS enumeration in incomparability graphs 14 / 15



The algorithm

I

I ∪{ }v1 I ∪{ }v2

• start with I = ∅
• for every v ∈ R(I ), check if I ′ = I ∪ {v} extends to the right into

a min DS, i.e., whether ∃D ∈ D(G ) s.t. I ′ ⊆ D and D \ I ′ ⊆ R(I ′)

• explore if it is the case, AND, if I = Parent(I ′)= I ′ \Max<1(I
′)

Oscar Defrain Minimal DS enumeration in incomparability graphs 14 / 15



The algorithm

I

I ∪{ }v1 I ∪{ }v2 I ∪{ }vi

• start with I = ∅
• for every v ∈ R(I ), check if I ′ = I ∪ {v} extends to the right into

a min DS, i.e., whether ∃D ∈ D(G ) s.t. I ′ ⊆ D and D \ I ′ ⊆ R(I ′)

• explore if it is the case, AND, if I = Parent(I ′)= I ′ \Max<1(I
′)

Oscar Defrain Minimal DS enumeration in incomparability graphs 14 / 15



The algorithm

I

I ∪{ }v1v5, I ∪{ }v1v2, I ∪{ }vi vj,

I ∪{ }v1 I ∪{ }v2 I ∪{ }vi

• start with I = ∅
• for every v ∈ R(I ), check if I ′ = I ∪ {v} extends to the right into

a min DS, i.e., whether ∃D ∈ D(G ) s.t. I ′ ⊆ D and D \ I ′ ⊆ R(I ′)

• explore if it is the case, AND, if I = Parent(I ′)= I ′ \Max<1(I
′)

Oscar Defrain Minimal DS enumeration in incomparability graphs 14 / 15



The algorithm

. . .

I

I ∪{ }v1v5, I ∪{ }v1v2, I ∪{ }vi vj,

I ∪{ }v1 I ∪{ }v2 I ∪{ }vi

. . .

. . .

I ∪{ }v3

I ∪{ }v2v3,

|I |+ 1

• start with I = ∅
• for every v ∈ R(I ), check if I ′ = I ∪ {v} extends to the right into

a min DS, i.e., whether ∃D ∈ D(G ) s.t. I ′ ⊆ D and D \ I ′ ⊆ R(I ′)
• explore if it is the case,

AND, if I = Parent(I ′)= I ′ \Max<1(I
′)

Oscar Defrain Minimal DS enumeration in incomparability graphs 14 / 15



The algorithm

. . .

I

I ∪{ }v1v5, I ∪{ }v1v2, I ∪{ }vi vj,

I ∪{ }v1 I ∪{ }v2 I ∪{ }vi

. . .

. . .

I ∪{ }v3

I ∪{ }v2v3,

|I |+ 1

• start with I = ∅
• for every v ∈ R(I ), check if I ′ = I ∪ {v} extends to the right into

a min DS, i.e., whether ∃D ∈ D(G ) s.t. I ′ ⊆ D and D \ I ′ ⊆ R(I ′)
• explore if it is the case, AND, if I = Parent(I ′)= I ′ \Max<1(I

′)

Oscar Defrain Minimal DS enumeration in incomparability graphs 14 / 15



Main theorem and future work

Theorem (Bonamy, D., Micek, and Nourine)

The set D(G ) of minimal DS of incomp. graphs of posets of
dimension d can be enumerated in time O(n3d+4) and poly. space.

• complexity improvements? can we get f (d) · nO(1) delay?
• what about comparability graphs of bounded dimension?

Theorem (Bonamy, D., Micek, and Nourine)
Minimal DS of comp. graphs of posets of dimension d can be
enumerated in incremental-polynomial time and poly. space.

• remaining important cases:
C4-free ? 7

(general) comparability graphs? 7

unit disk? 7

Thank you!
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