Concluding remarks

Further Evidence Towards the Multiplicative 1-2-3 Conjecture

Julien Bensmail¹, Hervé Hocquard², <u>Dimitri Lajou</u>², Éric Sopena²

¹Université Côte d'Azur, Nice.

²LaBRI, Bordeaux.

JGA 2020 16-18 novembre 2020 arXiv:2004.09090

The	1-2-3	Con	jecture		
000000000					

Concluding remarks

Overview

1 The 1-2-3 Conjecture

- Definitions
- Variations

Our main results

- Overview
- Proof for 4-chromatic nice graphs
- Almost p-proper labellings for all graphs

3 Concluding remarks

A new conjecture

The	1-2-3	Con	jecture
•00	0000	00	

Concluding remarks

Overview

The 1-2-3 Conjecture Definitions

Variations

Our main results

- Overview
- Proof for 4-chromatic nice graphs
- Almost p-proper labellings for all graphs

3 Concluding remarks

A new conjecture

Our main results

Concluding remarks

3-Edge-labelling and coloring

Definition

A *k*-edge-labelling is a function

$$\ell: E(G) \rightarrow \{1, 2, \ldots, k\}.$$

Our main results

Concluding remarks

3-Edge-labelling and coloring

Definition

A k-edge-labelling is a function $\ell: E(G) \rightarrow \{1, 2, \dots, k\}.$

$$\sigma_{\ell}(u) = \sum_{uv \in E(G)} \ell(uv)$$

Our main results

Concluding remarks

3-Edge-labelling and coloring

Definition

A k-edge-labelling is a function $\ell: E(G) \rightarrow \{1, 2, \dots, k\}.$

$$\sigma_{\ell}(u) = \sum_{uv \in E(G)} \ell(uv)$$

Our main results

Concluding remarks

3-Edge-labelling and coloring

Definition

A k-edge-labelling is a function $\ell: E(G) \rightarrow \{1, 2, \dots, k\}.$

$$\sigma_{\ell}(u) = \sum_{uv \in E(G)} \ell(uv)$$

Our main results

Concluding remarks

3-Edge-labelling and coloring

Definition

A k-edge-labelling is a function $\ell: \mathcal{E}(\mathcal{G}) \to \{1, 2, \dots, k\}.$

$$\sigma_{\ell}(u) = \sum_{uv \in E(G)} \ell(uv)$$

The function σ_{ℓ} is a proper coloring of *G*.

Our main results

Concluding remarks

Definition

1-2-3-Conjecture

An *s*-proper labelling ℓ of a graph *G* is a labelling such that $\sigma_{\ell} = \sum_{uv \in E(G)} \ell(uv)$ is a proper coloring.

A *nice* graph is a graph with no connected component isomorphic to K_2 .

Conjecture (1-2-3-Conjecture, Karonski, Luczak, and Thomason 2004)

Every nice graph G admits an s-proper 3-labelling.

Our main results

Concluding remarks

Overview of some results

Theorem (Kalkowski, Karoński and Pfender 2010)

Every nice graph G admits an s-proper 5-labelling.

Theorem

Every nice graph G such that

- G has chromatic number at most 3 (Karoński, Łuczak, Thomason 2004), or
- G has chromatic number at most 4 and is 4-edge-connected (Wu, Zhang, Zhu 2017),

admits an *s*-proper 3-labelling.

The	1-2-3	Con	jecture
000	0000	000	

Concluding remarks

Overview

The 1-2-3 Conjecture

- Definitions
- Variations

Our main results

- Overview
- Proof for 4-chromatic nice graphs
- Almost p-proper labellings for all graphs

3 Concluding remarks

A new conjecture

Variations

Our main results

Concluding remarks

$$\pi_{\ell}(u) = \prod_{uv \in E(G)} \ell(uv)$$

The function π_{ℓ} is a proper coloring of *G*.

Our main results

Concluding remarks

Other 1-2-3-Conjectures

Definition

An *p*-proper labelling ℓ of a graph *G* is a labelling such that $\pi_{\ell} = \prod_{uv \in E(G)} \ell(uv)$ is a proper coloring.

Conjecture (Multiplicative 1-2-3-Conjecture, J. Skowronek-Kaziów 2012)

Every nice graph G admits a p-proper 3-labelling.

Our main results

Concluding remarks

Overview of some results

Theorem (Skowronek-Kaziów 2012)

Every nice graph G admits a p-proper 4-labelling.

Theorem (Skowronek-Kaziów 2012)

Every nice graph G of **chromatic number at most** 3 *admits a p***-proper** 3-*labelling.*

Our main results

Other 1-2-3-Conjectures

Definition

For a labelling ℓ of a graph G, let μ_{ℓ} be the function which associates with a vertex u the multiset $\mu_{\ell}(u)$ containing the labels of the edges incident with u. If μ_{ℓ} is a proper coloring of G, we say that ℓ is *m*-proper.

Observation

If ℓ is s-proper or p-proper then it is m-proper.

Theorem (Vučković 2018)

Every nice graph G admits an *m*-proper 3-labelling.

Overview

The 1-2-3 ConjectureDefinitions

Variations

Our main results

- Overview
- Proof for 4-chromatic nice graphs
- Almost p-proper labellings for all graphs

3 Concluding remarks

A new conjecture

Main results

Theorem

Every nice graph G of **chromatic number at most** 4 *admits a p***-proper** 3-*labelling.*

Theorem

Every graph G admits a 3-labelling such that:

- if u and v are adjacent and $\pi_{\ell}(u) = \pi_{\ell}(v)$ then $\pi_{\ell}(u) = \pi_{\ell}(v) = 1$,
- the subgraph of G induced by the vertices u with π_ℓ(u) = 1 contains only connected components with at most two vertices.

We say that ℓ is almost *p*-proper.

Our main results

Regular graphs (Pathological case)

Theorem

Every nice regular graph G admits a p-proper 3-labelling.

Proof. Let ℓ be an *m*-proper 3-labelling of *G*. Suppose

$$\pi_\ell(u) = \pi_\ell(v)$$

 $1^a 2^b 3^c = 1^d 2^e 3^f$

As 2 and 3 are coprime, b = e and c = f. As G is k-regular, k = a + b + c = d + e + f. Hence a = d, a contradiction.

Notation

For a 3-labelling ℓ :

- d₂(u), the 2-degree of a vertex u, is the number of 2-labelled edges incident with u,
- d₃(u), the 3-degree of a vertex u, is the number of 3-labelled edges incident with u.

Notation

For a 3-labelling ℓ :

- d₂(u), the 2-degree of a vertex u, is the number of 2-labelled edges incident with u,
- d₃(u), the 3-degree of a vertex u, is the number of 3-labelled edges incident with u.

Note that a 3-labelling ℓ is *p*-proper if and only if for every pair $\{u, v\}$ of adjacent vertices $d_2(u) \neq d_2(v)$ or $d_3(u) \neq d_3(v)$.

Notation

For a 3-labelling ℓ :

- d₂(u), the 2-degree of a vertex u, is the number of 2-labelled edges incident with u,
- d₃(u), the 3-degree of a vertex u, is the number of 3-labelled edges incident with u.

Note that a 3-labelling ℓ is *p*-proper if and only if for every pair $\{u, v\}$ of adjacent vertices $d_2(u) \neq d_2(v)$ or $d_3(u) \neq d_3(v)$. We say that

- u is 1-monochromatic if $\pi_{\ell}(u) = 1$,
- u is 2-monochromatic if $d_2(u) > 0$ and $d_3(u) = 0$,
- u is 3-monochromatic if $d_2(u) = 0$ and $d_3(u) > 0$, and
- u is bichromatic if $d_2(u) > 0$ and $d_3(u) > 0$.

Our main results

Concluding remarks

Overview

The 1-2-3 Conjecture

- Definitions
- Variations

Our main results

Overview

• Proof for 4-chromatic nice graphs

Almost p-proper labellings for all graphs

3 Concluding remarks

A new conjecture

Step 1: Partition V(G) into four independent sets V_1 , V_2 , V_3 , V_4 such that each $u \in V_i$ has a neighbor in every V_j for j < i.

Step 1: Partition V(G) into four independent sets V_1 , V_2 , V_3 , V_4 such that each $u \in V_i$ has a neighbor in every V_j for j < i. **Objective:** we want to have no conflict between any two V_i 's.

 $d_3 > 0$ even and $d_2 > 0$

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

- Vertices in V_1 are 1-monochromatic or 2-monochromatic.
- Vertices in V_2 are 1-monochromatic or 3-monochromatic.
- Vertices in V_3 are bichromatic with odd 3-degree.
- Vertices in V_4 are bichromatic with even 3-degree.

Our main results

Concluding remarks

Overview

The 1-2-3 Conjecture

- Definitions
- Variations

Our main results

- Overview
- Proof for 4-chromatic nice graphs
- Almost p-proper labellings for all graphs

Concluding remarksA new conjecture

Proof idea for "almost p-proper labellings"

Step 1: Partition V(G) into k independent sets V_1, \ldots, V_k such that each $u \in V_i$ has a neighbor in every V_j for j < i.

Proof idea for "almost p-proper labellings"

Step 1: Partition V(G) into k independent sets V_1, \ldots, V_k such that each $u \in V_i$ has a neighbor in every V_j for j < i. Step 2: Label edges incident with vertices of V_k , V_{k-1} , ..., V_3 .

- $v \in V_1$: 1-monochromatic or 2-monochromatic;
- $v \in V_2$: 1-monochromatic or 3-monochromatic;
- $v \in V_3$: bichromatic, $d_2(v) = 1$, and $d_2(v) + d_3(v)$ even;
- $v \in V_4$: bichromatic, $d_3(v) = 2$, and $d_2(v) + d_3(v)$ odd;
- $v \in V_5$: bichromatic, $d_2(v) = 2$, and $d_2(v) + d_3(v)$ even;
- ...
- $v \in V_{2n}$: bichromatic, $d_3(v) = n$, and $d_2(v) + d_3(v)$ odd;
- $v \in V_{2n+1}$: bichromatic, $d_2(v) = n$, and $d_2(v) + d_3(v)$ even;
- ...

Proof idea for "almost p-proper labellings"

Step 1: Partition V(G) into k independent sets V_1, \ldots, V_k such that each $u \in V_i$ has a neighbor in every V_j for j < i. Step 2: Label edges incident with vertices of V_k , V_{k-1} , ..., V_3 .

- $v \in V_1$: 1-monochromatic or 2-monochromatic;
- $v \in V_2$: 1-monochromatic or 3-monochromatic;
- $v \in V_3$: bichromatic, $d_2(v) = 1$, and $d_2(v) + d_3(v)$ even;
- $v \in V_4$: bichromatic, $d_3(v) = 2$, and $d_2(v) + d_3(v)$ odd;
- $v \in V_5$: bichromatic, $d_2(v) = 2$, and $d_2(v) + d_3(v)$ even;
- ...
- $v \in V_{2n}$: bichromatic, $d_3(v) = n$, and $d_2(v) + d_3(v)$ odd;
- $v \in V_{2n+1}$: bichromatic, $d_2(v) = n$, and $d_2(v) + d_3(v)$ even;
- ...

Step 3: Try to fix conflicts between vertices of V_1 and V_2 .

The	1-2-3	Con	ecture		
00000000					

Overview

The 1-2-3 Conjecture

- Definitions
- Variations
- 2) Our main results
 - Overview
 - Proof for 4-chromatic nice graphs
 - Almost p-proper labellings for all graphs

3 Concluding remarks

A new conjecture

Corollary

Every graph G admits a 3-labelling such that, for every $x \in \mathbb{N}$, the subgraph induced by x-colored vertices is a forest.

Corollary

Every graph G admits a 3-labelling such that, for every $x \in \mathbb{N}$, the subgraph induced by x-colored vertices is a **forest**.

Conjecture

Every graph G admits a 2-labelling such that, for every $x \in \mathbb{N}$, the subgraph induced by x-colored vertices is a **forest**.

Corollary

Every graph G admits a 3-labelling such that, for every $x \in \mathbb{N}$, the subgraph induced by x-colored vertices is a **forest**.

Conjecture

Every graph G admits a 2-labelling such that, for every $x \in \mathbb{N}$, the subgraph induced by x-colored vertices is a **forest**.

Theorem

A graph G admits a 2-labelling such that, for every $x \in \mathbb{N}$, the subgraph induced by x-colored vertices is a **forest**, if

- G is a complete graph, or
- G is bipartite, or
- G is subcubic.

Thank you for your attention.