Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC(T)-graphs Journées Graphes et Algorithmes 2020

Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi and Yann Vaxès

LIS, Aix-Marseille Université

16-18 Novembre 2020

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The median function

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The median function

Distance : d(u, v) : Number of edges on a shortest (u, v)-path

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The median function

Distance : d(u, v) : Number of edges on a shortest (u, v)-path

Profile : Sequence of vertices $\pi = (v_1, v_2, ..., v_k)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The median function

Distance : d(u, v) : Number of edges on a shortest (u, v)-path

Profile : Sequence of vertices $\pi = (v_1, v_2, ..., v_k)$

Total distance sum : $F_{\pi}(u) = \sum_{v \in \pi} d(u, v)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The median function

Distance : d(u, v) : Number of edges on a shortest (u, v)-path

Profile : Sequence of vertices $\pi = (v_1, v_2, ..., v_k)$

Total distance sum : $F_{\pi}(u) = \sum_{v \in \pi} d(u, v)$

Median set : argmin F_{π}

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The median function

Distance : d(u, v) : Number of edges on a shortest (u, v)-path

Profile : Sequence of vertices $\pi = (v_1, v_2, ..., v_k)$

Total distance sum : $F_{\pi}(u) = \sum_{v \in \pi} d(u, v)$

Median set : argmin F_{π}

Median function : Med (π) : π -> argmin F_{π}

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The median function

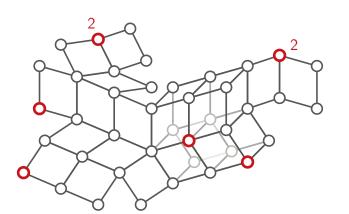
Distance : d(u, v) : Number of edges on a shortest (u, v)-path

Profile : Sequence of vertices $\pi = (v_1, v_2, ..., v_k)$

Total distance sum : $F_{\pi}(u) = \sum_{v \in \pi} d(u, v)$

Median set : argmin F_{π}

Median function : Med (π) : π -> argmin F_{π}



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The median function

Distance : d(u, v) : Number of edges on a shortest (u, v)-path

Profile : Sequence of vertices $\pi = (v_1, v_2, ..., v_k)$

Total distance sum : $F_{\pi}(u) = \sum_{v \in \pi} d(u, v)$

Median set : argmin F_{π}

Median function : Med (π) : π -> argmin F_{π}

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Consensus functions on graphs

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Consensus functions on graphs

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Consensus functions on graphs

Graphs with connected medians are ABCT-graphs

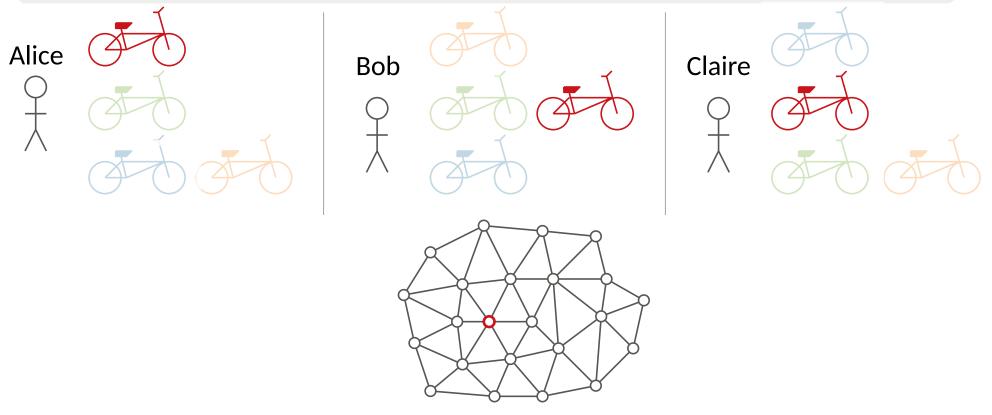
Modular graphs with G²-connected medians are ABC-graphs

Consensus functions on graphs

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

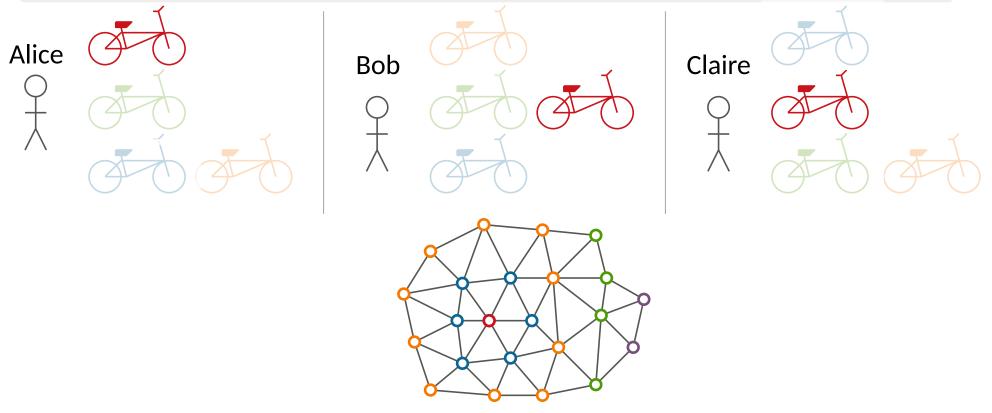
Consensus functions on graphs



Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Consensus functions on graphs



Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Consensus functions on graphs

Consensus Theory : Problem where several individual preferences must be merged into some consensus decision that represent them at best according to some criteria.

Profile : Sequence of vertices $\pi = (v_1, v_2, ..., v_k)$

V^{*} : The set of all profiles of finite length

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Consensus functions on graphs

Consensus Theory : Problem where several individual preferences must be merged into some consensus decision that represent them at best according to some criteria.

Profile : Sequence of vertices $\pi = (v_1, v_2, ..., v_k)$

V^{*} : The set of all profiles of finite length

Consensus function on graphs : $L: V^* \to 2^V \setminus \emptyset$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

Anonymity (A) :

For any permutation π^{σ} of π , $L(\pi^{\sigma}) = L(\pi)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

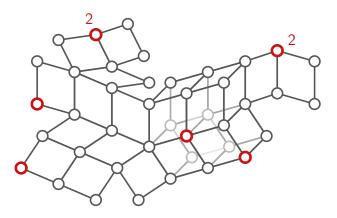
Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

Anonymity (A) :

For any permutation π^{σ} of π , $L(\pi^{\sigma}) = L(\pi)$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

Anonymity (A) :

For any permutation π^{σ} of π , $L(\pi^{\sigma}) = L(\pi)$

Betweenness (B) : L(u, v) = I(u, v)

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

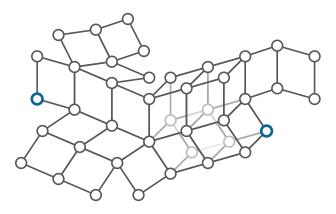
Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

Anonymity (A) : For any permutation π^{σ} of π , $L(\pi^{\sigma}) = L(\pi)$

Betweenness (B) : L(u, v) = I(u, v) $\{x : d(u, v) = d(u, x) + d(v, x)\}$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

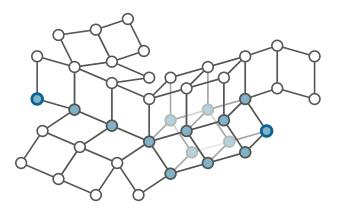
Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

Anonymity (A) : For any permutation π^{σ} of π , $L(\pi^{\sigma}) = L(\pi)$

Betweenness (B) : L(u, v) = I(u, v) $\{x : d(u, v) = d(u, x) + d(v, x)\}$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

```
Anonymity (A) :
For any permutation \pi^{\sigma} of \pi,
L(\pi^{\sigma}) = L(\pi)
```

```
Betweenness (B) :
L(u, v) = I(u, v)
```

Consistency (C) : if $L(\pi) \cap L(\rho) \neq \emptyset$, then $L(\pi\rho) = L(\pi) \cap L(\rho)$.

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

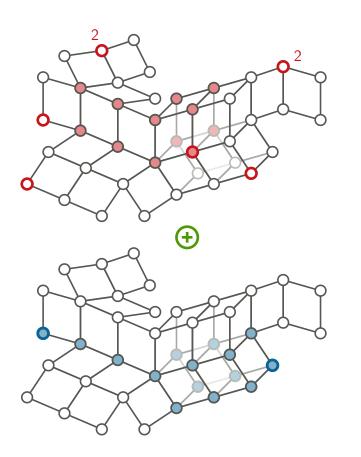
Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

```
Anonymity (A) :
For any permutation \pi^{\sigma} of \pi,
L(\pi^{\sigma}) = L(\pi)
```

```
Betweenness (B) :
L(u, v) = I(u, v)
```

Consistency (C) : if $L(\pi) \cap L(\rho) \neq \emptyset$, then $L(\pi\rho) = L(\pi) \cap L(\rho)$.



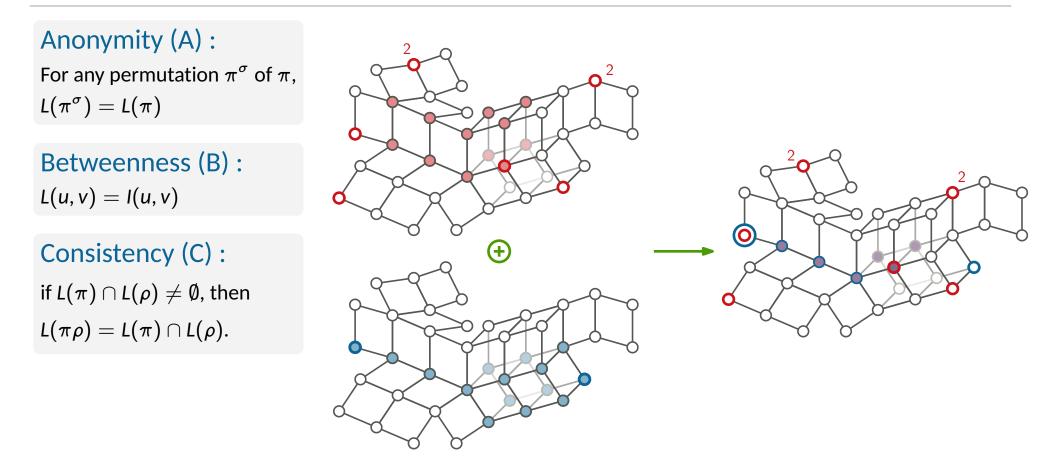
Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

```
Anonymity (A) :
For any permutation \pi^{\sigma} of \pi,
L(\pi^{\sigma}) = L(\pi)
```

Betweenness (B) : L(u, v) = I(u, v)

Consistency (C) : if $L(\pi) \cap L(\rho) \neq \emptyset$, then $L(\pi\rho) = L(\pi) \cap L(\rho)$.

Triangle (T) :

For any triangle uvw $L(u, v, w) = \{u, v, w\}$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

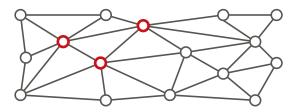
Anonymity (A) : For any permutation π^{σ} of π , $L(\pi^{\sigma}) = L(\pi)$

Betweenness (B) : L(u, v) = I(u, v)

Consistency (C) : if $L(\pi) \cap L(\rho) \neq \emptyset$, then $L(\pi\rho) = L(\pi) \cap L(\rho)$.

Triangle (T) :

For any triangle uvw $L(u, v, w) = \{u, v, w\}$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Axioms (A) (B) (C) (T)

Proposition : The median function verifies the axioms ABCT

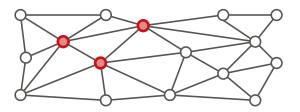
Anonymity (A) : For any permutation π^{σ} of π , $L(\pi^{\sigma}) = L(\pi)$

Betweenness (B) : L(u, v) = I(u, v)

Consistency (C) : if $L(\pi) \cap L(\rho) \neq \emptyset$, then $L(\pi\rho) = L(\pi) \cap L(\rho)$.

Triangle (T) :

For any triangle uvw $L(u, v, w) = \{u, v, w\}$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The ABC(T)-problem

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The ABC(T)-problem

ABC(T)-graphs : Graphs such that the axioms ABC(T) characterize exactly the median function

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The ABC(T)-problem

ABC(T)-graphs : Graphs such that the axioms ABC(T) characterize exactly the median function

ABC-Problem : McMorris, Mulder and Novick, 2016 What are the ABC-graphs ?

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The ABC(T)-problem

ABC(T)-graphs : Graphs such that the axioms ABC(T) characterize exactly the median function

ABC-Problem : McMorris, Mulder and Novick, 2016 What are the ABC-graphs ?

Known ABC-graphs :

Median graphs Mulder and Novick, 2013

Graphs with intersecting-intervals property

McMorris, Mulder and Novick, 2016

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The ABC(T)-problem

ABC(T)-graphs : Graphs such that the axioms ABC(T) characterize exactly the median function

ABC-Problem : McMorris, Mulder and Novick, 2016 What are the ABC-graphs ?

Known ABC-graphs :

Median graphs Mulder and Novick, 2013

Graphs with intersecting-intervals property

McMorris, Mulder and Novick, 2016

Known non ABC-graphs :

Complete graphs $K_n \forall n \ge 3$ McMorris, Mulder and Novick, 2016

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

The ABC(T)-problem

ABC(T)-graphs : Graphs such that the axioms ABC(T) characterize exactly the median function

ABC-Problem : McMorris, Mulder and Novick, 2016 What are the ABC-graphs ?

Known ABC-graphs :

Median graphs Mulder and Novick, 2013

Graphs with intersecting-intervals property McMorris, Mulder and Novick, 2016

ABCT-Problem : What are the ABCT-graphs ?

Known non ABC-graphs :

Complete graphs $K_n \forall n \ge 3$ McMorris, Mulder and Novick, 2016

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with connected medians

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^{p} connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with connected medians

Graphs with connected medians : Graphs s.t the median sets induce connected subgraphs for every π

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with connected medians

Graphs with connected medians : Graphs s.t the median sets induce connected subgraphs for every π

Locally Median set $Med^{loc}(\pi)$: $u \text{ s.t } \forall v \sim u, F_{\pi}(u) \leq F_{\pi}(v)$

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with connected medians

Graphs with connected medians : Graphs s.t the median sets induce connected subgraphs for every π

Locally Median set $Med^{loc}(\pi)$: u s.t $\forall v \sim u, F_{\pi}(u) \leq F_{\pi}(v)$

Proposition:

Bandelt and Chepoi, 2002

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}^{\operatorname{loc}}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected
- 2. The problem to decide whether a graph have connected medians can be solved in polynomial time

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with connected medians

Graphs with connected medians : Graphs s.t the median sets induce connected subgraphs for every π

Locally Median set $Med^{loc}(\pi)$: u s.t $\forall v \sim u, F_{\pi}(u) \leq F_{\pi}(v)$

Proposition:

Bandelt and Chepoi, 2002

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}^{\operatorname{loc}}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected
- 2. The problem to decide whether a graph have connected medians can be solved in polynomial time

Examples :

Helly graphs Matroid bases graphs Median graphs Weakly median graphs

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with connected medians

Graphs with connected medians : Graphs s.t the median sets induce connected subgraphs for every π

Locally Median set $Med^{loc}(\pi)$: u s.t $\forall v \sim u, F_{\pi}(u) \leq F_{\pi}(v)$

Proposition:

Bandelt and Chepoi, 2002

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}^{\operatorname{loc}}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected
- 2. The problem to decide whether a graph have connected medians can be solved in polynomial time

Corollary : If $u \notin Med(\pi)$, $\exists v \sim u$ s.t $F_{\pi}(v) < F_{\pi}(u)$

Examples :

Helly graphs Matroid bases graphs Median graphs Weakly median graphs

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with connected medians

Graphs with connected medians : Graphs s.t the median sets induce connected subgraphs for every π

Locally Median set $Med^{loc}(\pi)$: $u \text{ s.t } \forall v \sim u, F_{\pi}(u) \leq F_{\pi}(v)$

Proposition:

Bandelt and Chepoi, 2002

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}^{\operatorname{loc}}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected
- 2. The problem to decide whether a graph have connected medians can be solved in polynomial time

Corollary : If $u \notin Med(\pi)$, $\exists v \sim u$ s.t $F_{\pi}(v) < F_{\pi}(u)$

Theorem A: Graphs with connected medians are ABCT graphs

Examples :

Helly graphs Matroid bases graphs Median graphs Weakly median graphs

ABC(T)-graphs

Graphs with G^{p} connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^{p} connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

 $\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

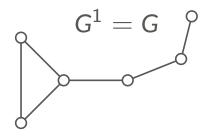
Graphs with G^{p} connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with *G*^{*p*}-connected medians

 $\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$



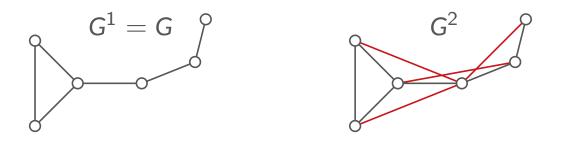
Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

 $\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$



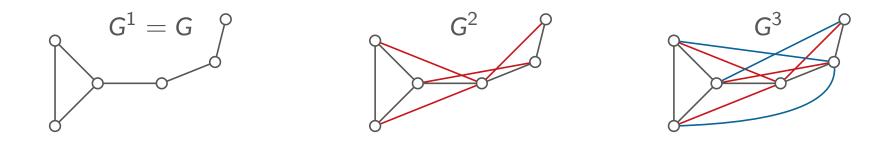
Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

 $\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$



L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

 $\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

 $\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Graphs with connected medians are ABCT-graphs

Graphs with G^p-connected medians

 $\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathit{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Graphs with connected medians are ABCT-graphs

Graphs with G^p-connected medians

$\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Theorem: The following classes of graphs have G^2 -connected medians :

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

$\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Theorem: The following classes of graphs have G^2 -connected medians :

Chordal graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

$\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Theorem: The following classes of graphs have G^2 -connected medians :

- Chordal graphs
- Bridged graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

$\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Theorem: The following classes of graphs have G²-connected medians : Chordal graphs Bridged graphs Bipartite absolute retracts

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

$\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Theorem: The following classes of graphs have G²-connected medians : Chordal graphs Bridged graphs Bipartite absolute retracts Benzenoid systems

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

$\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Corollary : If $u \notin Med(\pi)$, $\exists v \text{ with } d(u, v) \leq p \text{ s.t } F_{\pi}(v) < F_{\pi}(u)$

Theorem: The following classes of graphs have G²-connected medians : Chordal graphs Bridged graphs Bipartite absolute retracts Benzenoid systems

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

$\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Corollary: If $u \notin Med(\pi)$, $\exists v$ with $d(u, v) \leq p$ s.t $F_{\pi}(v) < F_{\pi}(u)$

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Theorem: The following classes of graphs have G²-connected medians : Chordal graphs Bridged graphs Bipartite absolute retracts Benzenoid systems

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p-connected medians

$\mathbf{G}^{p}: (V, E \cup \{uv: d_{G}(u, v) \leq p\})$

Graphs with G^p -connected medians : G s.t median sets induce connected subgraphs in G^p for every π

 $\mathsf{Med}_{G^p}^{\mathsf{loc}} : u \text{ s.t } \forall v \text{ s.t } d(u, v) \leq p, F_{\pi}(u) \leq F_{\pi}(v)$

Theorem:

- 1. The following conditions are equivalent:
 - (i) $\operatorname{Med}_{G^{p}}^{loc}(\pi) = \operatorname{Med}(\pi)$
 - (ii) F_{π} is p-step weakly-convex
 - (iii) all median sets $Med(\pi)$ are connected in G^p
- 2. The problem to decide whether a graph have G^p connected medians can be solved in polynomial time

Theorem: The following classes of graphs have G²-connected medians : Chordal graphs Bridged graphs Bipartite absolute retracts Benzenoid systems

Corollary : If $u \notin Med(\pi)$, $\exists v \text{ with } d(u, v) \leq p \text{ s.t } F_{\pi}(v) < F_{\pi}(u)$

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Theorem B: Modular graphs with G²-connected medians are ABC-graphs

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Main Results

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^{p} connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Main Results

Theorem A: Graphs with connected medians are ABCT-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Main Results

Theorem A: Graphs with connected medians are ABCT-graphs

Theorem B: Modular graphs with G²-connected medians are ABC-graphs

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Let *L* be a consensus function that respects the ABCT axioms

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Let *L* be a consensus function that respects the ABCT axioms $L(\pi) \subseteq Med(\pi)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Let *L* be a consensus function that respects the ABCT axioms $L(\pi) \subseteq Med(\pi)$ If $u \notin Med(\pi) \Rightarrow \exists v \sim u \text{ s.t } F_{\pi}(v) < F_{\pi}(u)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Let *L* be a consensus function that respects the ABCT axioms

```
L(\pi) \subseteq \mathsf{Med}(\pi)
If u \notin \mathsf{Med}(\pi) \Rightarrow \exists v \sim u \text{ s.t } F_{\pi}(v) < F_{\pi}(u)\overset{(1)}{\Rightarrow} u \notin L(\pi)
```

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Let *L* be a consensus function that respects the ABCT axioms

```
L(\pi) \subseteq \operatorname{Med}(\pi)
If u \notin \operatorname{Med}(\pi) \Rightarrow \exists v \sim u \text{ s.t } F_{\pi}(v) < F_{\pi}(u)\overset{(1)}{\Rightarrow} u \notin L(\pi)
```

If $L(\pi) \subsetneq \mathsf{Med}(\pi)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

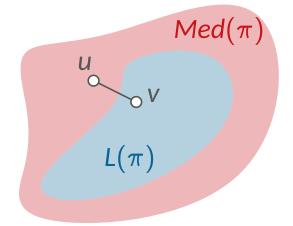
(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Let *L* be a consensus function that respects the ABCT axioms

```
L(\pi) \subseteq \mathsf{Med}(\pi)
If u \notin \mathsf{Med}(\pi) \Rightarrow \exists v \sim u \text{ s.t } F_{\pi}(v) < F_{\pi}(u)\overset{(1)}{\Rightarrow} u \notin L(\pi)
```

If $L(\pi) \subsetneq Med(\pi)$ $\exists u \sim v \in Med(\pi), u \notin L(\pi), v \in L(\pi)$



L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Let *L* be a consensus function that respects the ABCT axioms

```
L(\pi) \subseteq Med(\pi)

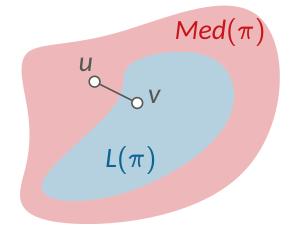
If u \notin Med(\pi) \Rightarrow \exists v \sim u \text{ s.t } F_{\pi}(v) < F_{\pi}(u)

\stackrel{(1)}{\Rightarrow} u \notin L(\pi)

If L(\pi) \subseteq Med(\pi)

\exists u \sim v \in Med(\pi), u \notin L(\pi), v \in L(\pi)

\stackrel{(2)}{\Rightarrow} \text{ contradiction}
```



L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (1)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Theorem A: Graphs with connected medians are ABCT-graphs

Let *L* be a consensus function that respects the ABCT axioms

```
L(\pi) \subseteq Med(\pi)

If u \notin Med(\pi) \Rightarrow \exists v \sim u \text{ s.t } F_{\pi}(v) < F_{\pi}(u)

\stackrel{(1)}{\Rightarrow} u \notin L(\pi)

If L(\pi) \subseteq Med(\pi)

\exists u \sim v \in Med(\pi), u \notin L(\pi), v \in L(\pi)

\stackrel{(2)}{\Rightarrow} \text{ contradiction}

L(\pi) = Med(\pi)
```

 $Med(\pi)$

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

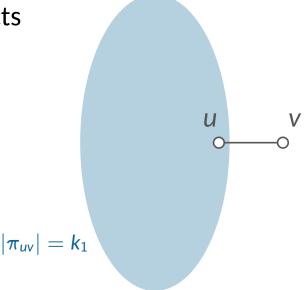
Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

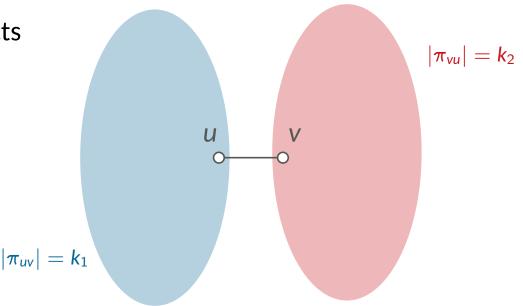
Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

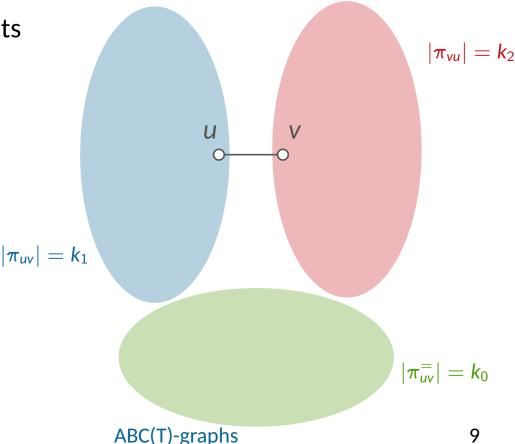
ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

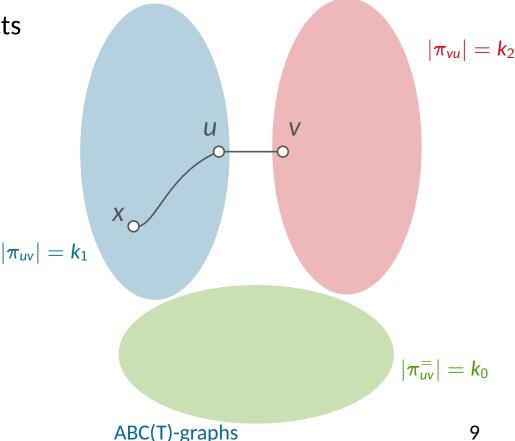
ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

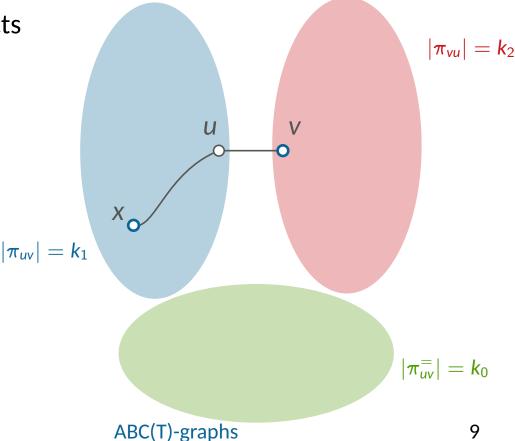
ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

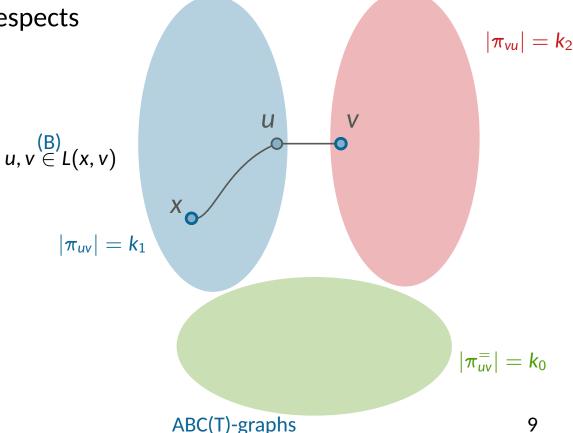
ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

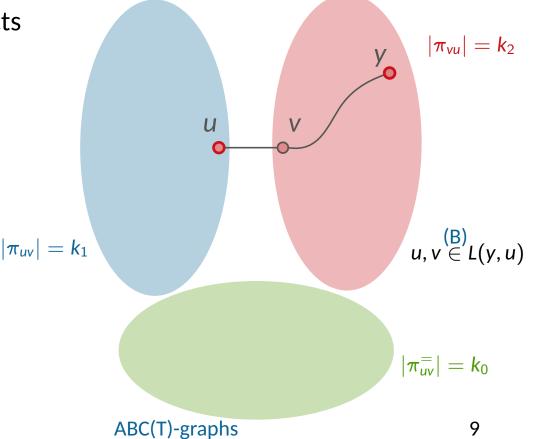
ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

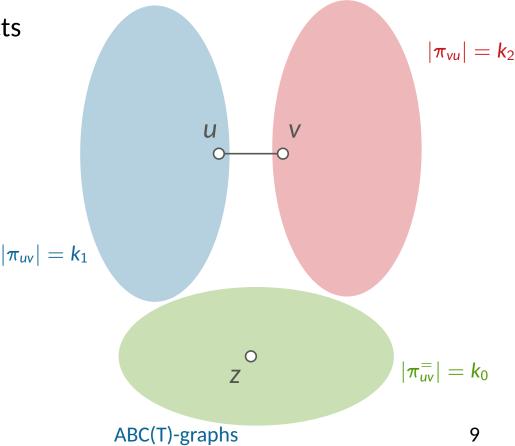
ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

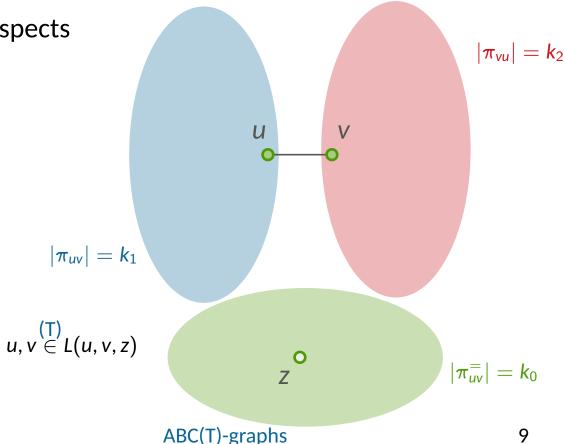
ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

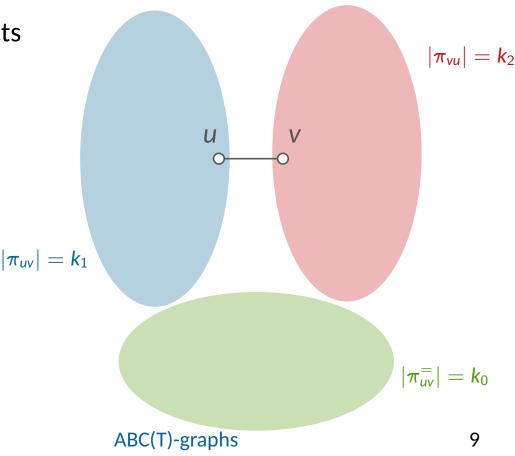
Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

 $\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0}$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

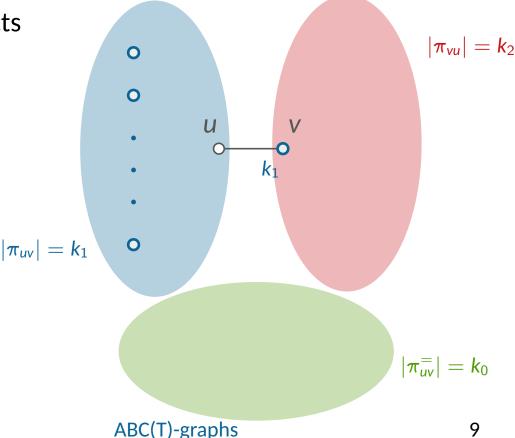
Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

$$\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0} = \pi_{uv} v^{k_1}$$



Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

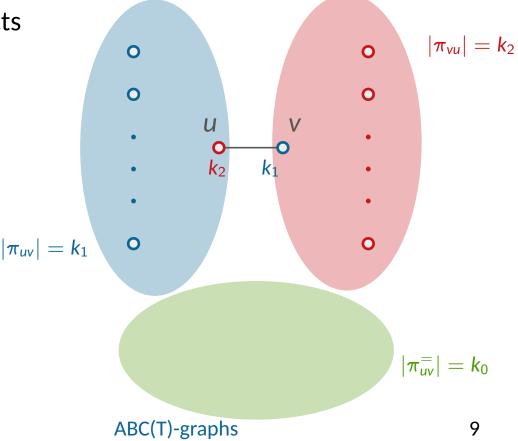
Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

 $\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0} = \pi_{uv} v^{k_1} \pi_{vu} u^{k_2}$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

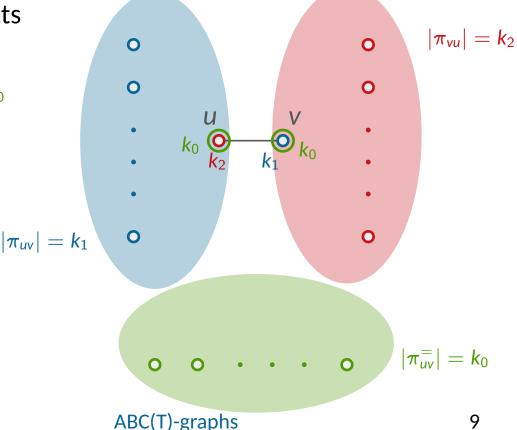
Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

$$\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0} = \pi_{uv} v^{k_1} \pi_{vu} u^{k_2} \pi_{uv}^{=} u^{k_0} v^{k_0}$$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

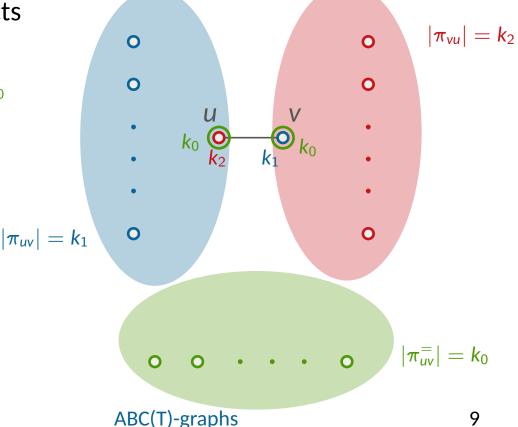
(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

$$\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0} = \pi_{uv} v^{k_1} \pi_{vu} u^{k_2} \pi_{uv}^{=} u^{k_0} v^{k_0}$$

u, v $\stackrel{(C)}{\in} L(\pi')$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

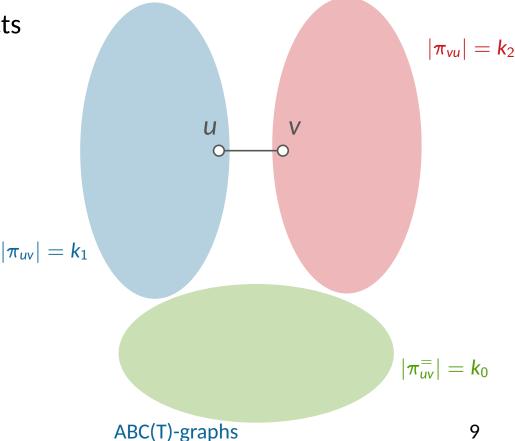
Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

$$egin{aligned} \pi' &= \pi u^{k_2+k_0} v^{k_1+k_0} \ u,v \stackrel{ ext{(C)}}{\in} L(\pi') \ ext{If } F_\pi(u) &= F_\pi(v) \end{aligned}$$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

$$\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0}$$

 $u, v \stackrel{(C)}{\in} L(\pi')$
If $F_{\pi}(u) = F_{\pi}(v) \ k_1 = k_2$

ts

$$|\pi_{vu}| = k_1$$

$$|\pi_{uv}| = k_1$$

$$|\pi_{uv}| = k_0$$

$$|\pi_{uv}| = k_0$$

$$|\pi_{uv}| = k_0$$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

$$\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0}$$

 $u, v \stackrel{(C)}{\in} L(\pi')$
If $F_{\pi}(u) = F_{\pi}(v) \ k_1 = k_2$

$$L(\pi u^{k_2+k_0}v^{k_1+k_0}) = L(\pi u^p v^p)$$

$$|\pi_{uv}| = k_1$$

$$|\pi_{uv}| = k_1$$

$$|\pi_{uv}| = k_0$$

$$|\pi_{uv}| = k_0$$

$$|ABC(T)-graphs$$

$$9$$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

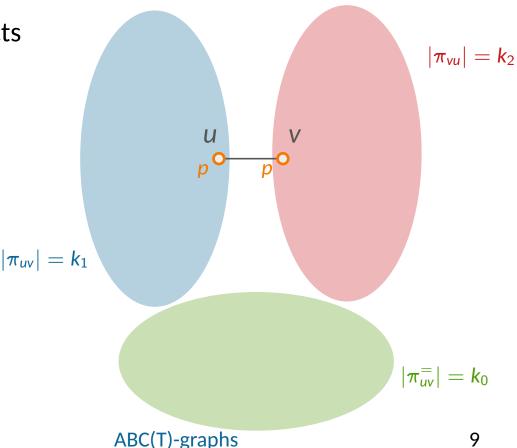
(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

$$\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0}$$

 $u, v \stackrel{(C)}{\in} L(\pi')$
If $F_{\pi}(u) = F_{\pi}(v) \ k_1 = k_2$
 $L(\pi u^{k_2 + k_0} v^{k_1 + k_0}) = L(\pi \ u^p v^p)$
 $u, v \stackrel{(B)}{\in} L(u, v)$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

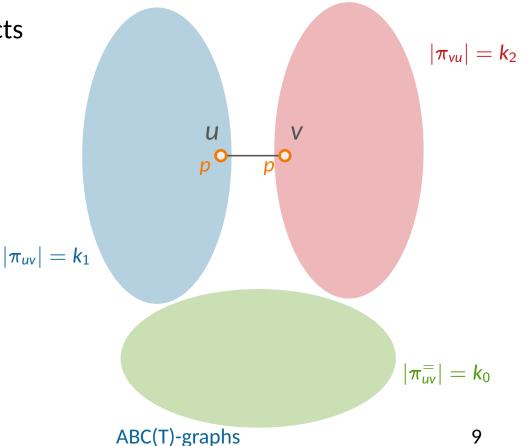
v^p)

Let *L* be a consensus function that respects the ABCT axioms

$$\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0}$$

u, v $\stackrel{(C)}{\in} L(\pi')$
If $F_{\pi}(u) = F_{\pi}(v) \ k_1 = k_2$
 $L(\pi u^{k_2 + k_0} v^{k_1 + k_0}) = L(\pi u^p)$

 $u, v \stackrel{(B)}{\in} L(u, v) \quad u, v \stackrel{(C)}{\in} L(u^p v^p)$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (2)

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$:

(1)
$$F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$$

(2)
$$F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$$
 iff $v \in L(\pi)$

Let *L* be a consensus function that respects the ABCT axioms

$$\pi' = \pi u^{k_2 + k_0} v^{k_1 + k_0}$$

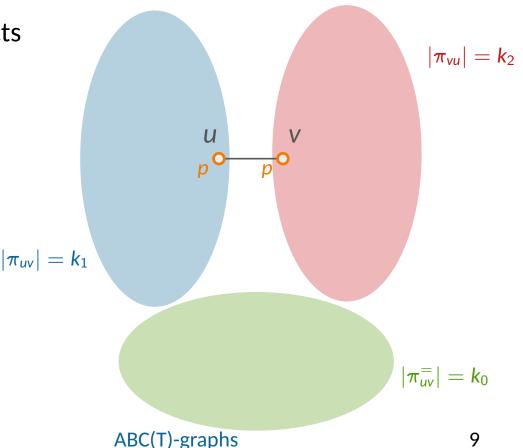
$$u, v \stackrel{(C)}{\in} L(\pi')$$

If $F_{\pi}(u) = F_{\pi}(v) \ k_1 = k_2$

$$L(\pi u^{k_2 + k_0} v^{k_1 + k_0}) = L(\pi \ u^p v^p)$$

$$u, v \stackrel{(B)}{\in} L(u, v) \quad u, v \stackrel{(C)}{\in} L(u^p v^p)$$

$$u \in L(\pi) \text{ iff } v \in L(\pi)$$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABCT-property (3)

Theorem A: Graphs with connected medians are ABCT-graphs

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (1)

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (1)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (1)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$: (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (1)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$: (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph: (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (1)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 1: If *L* is a consensus function that respects the ABCT axioms then for any $uv \in E$: (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph: (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

Theorem B: Modular graphs with G²-connected medians are ABC-graphs

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

ABC(T)-graphs

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

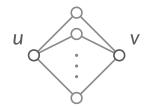
Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

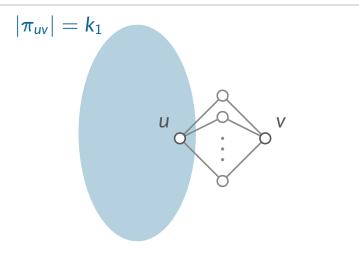


Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

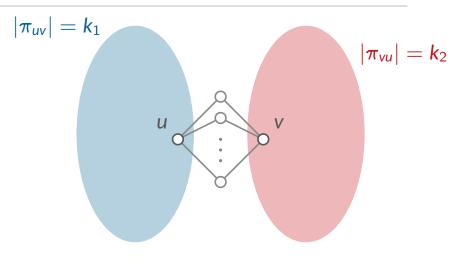


Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$



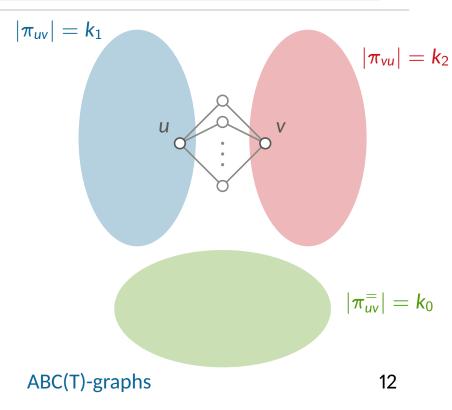
Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$



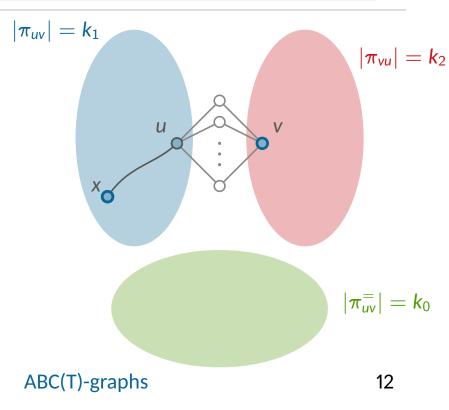
Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$



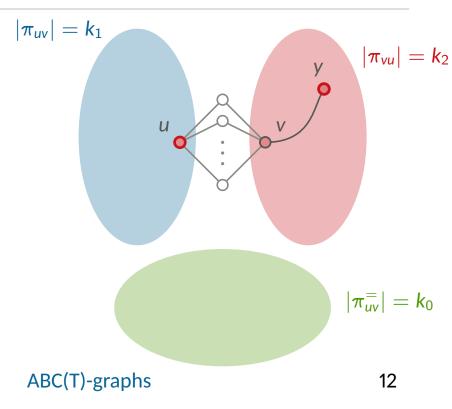
Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$



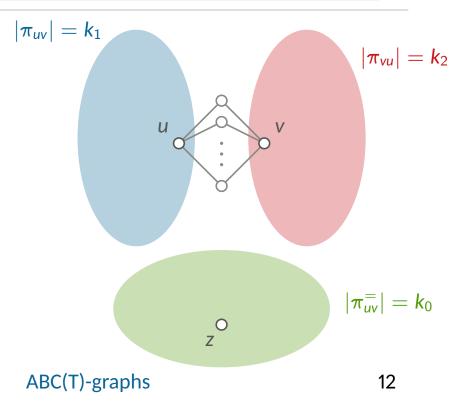
Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$



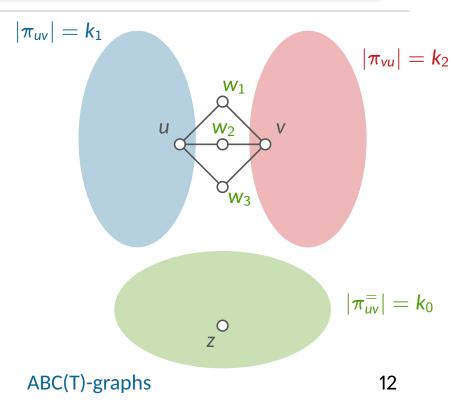
Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$



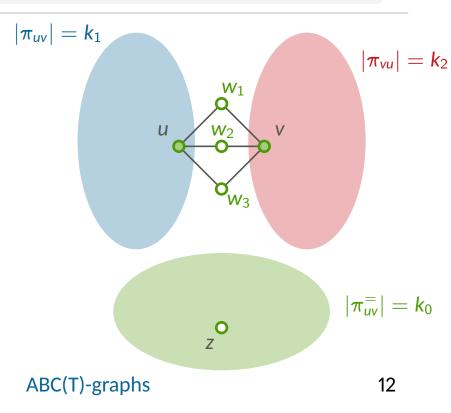
Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$



Graphs with connected medians are ABCT-graphs

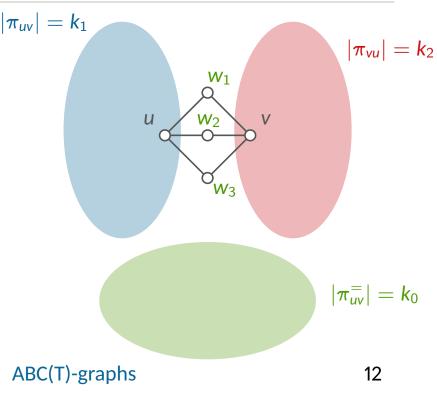
Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

 $\pi' =$



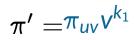
Graphs with connected medians are ABCT-graphs

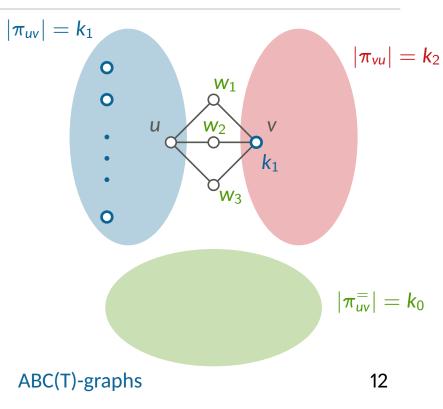
Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$





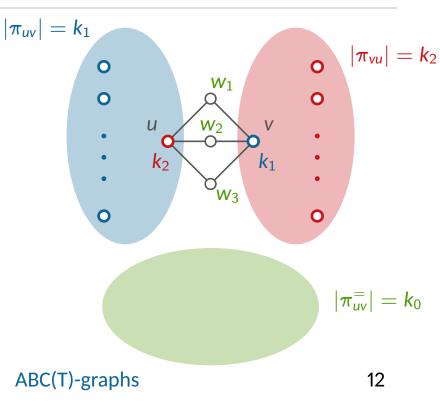
Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with G^2 -connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$



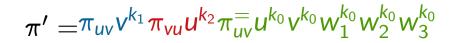
Graphs with connected medians are ABCT-graphs

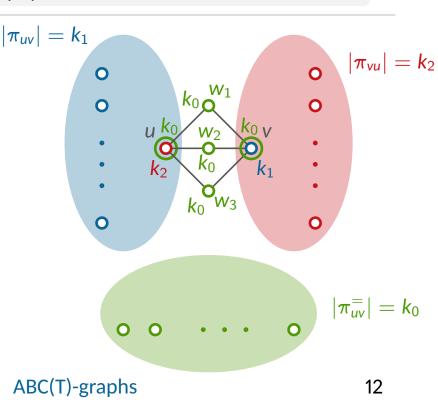
Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with *G*²-connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$





Graphs with connected medians are ABCT-graphs

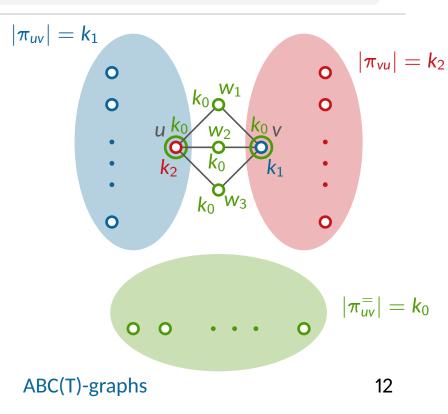
Modular graphs with G²-connected medians are ABC-graphs

ABC-property (2)

Modular graphs : For each $u, v, w \in V$, $I(u, v) \cap I(u, w) \cap I(v, w) \neq \emptyset$

Claim 2: If *L* is a consensus function that respects the ABC axioms then for any *u*, *v* d(u, v) = 2 in *G*, a modular graph with *G*²-connected medians : (1) $F_{\pi}(u) > F_{\pi}(v) \Rightarrow u \notin L(\pi)$ (2) $F_{\pi}(u) = F_{\pi}(v) \Rightarrow u \in L(\pi)$ iff $v \in L(\pi)$

$$\pi' = \pi_{uv} v^{k_1} \pi_{vu} u^{k_2} \pi_{uv}^{=} u^{k_0} v^{k_0} w_1^{k_0} w_2^{k_0} w_3^{k_0}$$
$$= \pi u^{k_2 + k_0} v^{k_1 + k_0} w_1^{k_0} w_2^{k_0} w_3^{k_0}$$



Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

ABC-property (3)

Theorem B: Modular graphs with G²-connected medians are ABC-graphs

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Conclusion

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Conclusion

Main results:

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Conclusion

Main results: Characterization of graphs with *G*^{*p*}-connected medians

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Conclusion

Main results: Characterization of graphs with G^p-connected medians Graphs with connected medians are ABCT-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Conclusion

Main results: Characterization of graphs with G^p-connected medians
 Graphs with connected medians are ABCT-graphs
 Modular graphs with G²-connected medians are ABC-graphs

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Conclusion

Main results: Characterization of graphs with G^p-connected medians
 Graphs with connected medians are ABCT-graphs
 Modular graphs with G²-connected medians are ABC-graphs

Questions:

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Conclusion

Main results:Characterization of graphs with G^p -connected mediansGraphs with connected medians are ABCT-graphsModular graphs with G^2 -connected medians are ABC-graphs

Questions : Are chordal graphs ABCT-graphs ?

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Graphs with G^p connected medians

Graphs with connected medians are ABCT-graphs

Modular graphs with G²-connected medians are ABC-graphs

Conclusion

Main results:Characterization of graphs with G^p -connected mediansGraphs with connected medians are ABCT-graphsModular graphs with G^2 -connected medians are ABC-graphs

Questions : Are chordal graphs ABCT-graphs ? Are ABC-graphs triangle-free graphs ?

L. Bénéteau, J. Chalopin, V. Chepoi, Y. Vaxès

Thank You !